Blood Immune Cell Alterations in Patients with Hypertensive Left Ventricular Hypertrophy and Heart Failure with Preserved Ejection Fraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Echocardiography
2.3. Diastolic Stress Test (DST)
2.4. NT-proBNP
2.5. Lymphocyte and Monocyte Immunophenotyping
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Immune Cell Correlates of Cardiac Function in HFpEF
3.3. Immune Cell Values in Patients with HFpEF Depending on Diabetes Status
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsao, C.W.; Lyass, A.; Enserro, D.; Larson, M.G.; Ho, J.E.; Kizer, J.R.; Gottdiener, J.S.; Psaty, B.M.; Vasan, R.S. Temporal Trends in the Incidence of and Mortality Associated with Heart Failure with Preserved and Reduced Ejection Fraction. JACC Heart Fail. 2018, 6, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.S.; Xu, H.; Matsouaka, R.A.; Bhatt, D.L.; Heidenreich, P.A.; Hernandez, A.F.; Devore, A.D.; Yancy, C.W.; Fonarow, G.C. Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J. Am. Coll. Cardiol. 2017, 70, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Kitzman, D.W.; Borlaug, B.A.; van Heerebeek, L.; Zile, M.R.; Kass, D.A.; Paulus, W.J. Phenotype-Specific Treatment of Heart Failure with Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation 2016, 134, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulus, W.J.; Dal Canto, E. Distinct Myocardial Targets for Diabetes Therapy in Heart Failure with Preserved or Reduced Ejection Fraction. JACC Heart Fail. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Nemtsova, V.; Vischer, A.S.; Burkard, T. Hypertensive Heart Disease: A Narrative Review Series-Part 1: Pathophysiology and Microstructural Changes. J. Clin. Med. 2023, 12, 2606. [Google Scholar] [CrossRef] [PubMed]
- Adamo, L.; Rocha-Resende, C.; Prabhu, S.D.; Mann, D.L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 2020, 17, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, A.G.; Arefieva, T.I.; Potekhina, A.V.; Filatova, A.Y.; Ageev, F.T.; Boytsov, S.A. The Molecular and Cellular Mechanisms Associated with a Microvascular Inflammation in the Pathogenesis of Heart Failure with Preserved Ejection Fraction. Acta Nat. 2020, 12, 40–51. [Google Scholar] [CrossRef]
- Xia, Y.; Lee, K.; Li, N.; Corbett, D.; Mendoza, L.; Frangogiannis, N.G. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem. Cell Biol. 2009, 131, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Hulsmans, M.; Sager, H.B.; Roh, J.D.; Valero-Muñoz, M.; Houstis, N.E.; Iwamoto, Y.; Sun, Y.; Wilson, R.M.; Wojtkiewicz, G.; Tricot, B.; et al. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 2018, 215, 423–440. [Google Scholar] [CrossRef]
- Westermann, D.; Lindner, D.; Kasner, M.; Zietsch, C.; Savvatis, K.; Escher, F.; von Schlippenbach, J.; Skurk, C.; Steendijk, P.; Riad, A.; et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 2011, 4, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glezeva, N.; Voon, V.; Watson, C.; Horgan, S.; McDonald, K.; Ledwidge, M.; Baugh, J. Exaggerated inflammation and monocytosis associate with diastolic dysfunction in heart failure with preserved ejection fraction: Evidence of M2 macrophage activation in disease pathogenesis. J. Card. Fail. 2015, 21, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.; Tallquist, M.D. Fibroblast and Immune Cell Cross-Talk in Cardiac Fibrosis. Curr. Cardiol. Rep. 2023, 25, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Nevers, T.; Salvador, A.M.; Grodecki-Pena, A.; Knapp, A.; Velázquez, F.; Aronovitz, M.; Kapur, N.K.; Karas, R.H.; Blanton, R.M.; Alcaide, P. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 2015, 8, 776–787. [Google Scholar] [CrossRef] [Green Version]
- Tuleta, I.; Frangogiannis, N.G. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv. Drug Deliv. Rev. 2021, 176, 113904. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Mor-Avi, V.; Lang, R.M.; Badano, L.P.; Belohlavek, M.; Cardim, N.M.; Derumeaux, G.; Galderisi, M.; Marwick, T.; Nagueh, S.F.; Sengupta, P.P.; et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur. J. Echocardiogr. 2011, 12, 167–205. [Google Scholar] [CrossRef] [Green Version]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Filatova, A.Y.; Potekhina, A.V.; Arefieva, T.I. Age-associated characteristics of CD4+ T-cell composition in patients with atherosclerosis. Immuno 2021, 1, 277–284. [Google Scholar] [CrossRef]
- Ziegler-Heitbrock, L. Blood Monocytes and Their Subsets: Established Features and Open Questions. Front. Immunol. 2015, 6, 423. [Google Scholar] [CrossRef] [PubMed]
- Potekhina, A.V.; Pylaeva, E.; Provatorov, S.; Ruleva, N.; Masenko, V.; Noeva, E.; Krasnikova, T.; Arefieva, T. Treg/Th17 balance in stable CAD patients with different stages of coronary atherosclerosis. Atherosclerosis 2015, 238, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Qin, X.; Yao, J.; Yang, Y.; Zhao, M.; Sun, L. Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiol. 2020, 230, e13537. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yu, X.; Ding, Y.J.; Fu, Q.Q.; Xie, J.J.; Tang, T.T.; Yao, R.; Chen, Y.; Liao, Y.H. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 2008, 127, 89–97. [Google Scholar] [CrossRef]
- Bas, H.D.; Baser, K.; Yavuz, E.; Bolayir, H.A.; Yaman, B.; Unlu, S.; Cengel, A.; Bagriacik, E.U.; Yalcin, R. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J. Investig. Med. 2014, 62, 78–83. [Google Scholar] [CrossRef]
- Laroumanie, F.; Douin-Echinard, V.; Pozzo, J.; Lairez, O.; Tortosa, F.; Vinel, C.; Delage, C.; Calise, D.; Dutaur, M.; Parini, A.; et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 2014, 129, 2111–2124. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Z.; Ji, Q.; Huang, Y.; Zeng, T.; Hu, H.; Ye, D.; Wan, J.; Lin, Y. Circulating Th1, Th2, Th9, Th17, Th22, and Treg Levels in Aortic Dissection Patients. Mediat. Inflamm. 2018, 2018, 5697149. [Google Scholar] [CrossRef]
- Nevers, T.; Salvador, A.M.; Velazquez, F.; Ngwenyama, N.; Carrillo-Salinas, F.J.; Aronovitz, M.; Blanton, R.M.; Alcaide, P. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J. Exp. Med. 2017, 214, 3311–3329. [Google Scholar] [CrossRef]
- Fukunaga, T.; Soejima, H.; Irie, A.; Sugamura, K.; Oe, Y.; Tanaka, T.; Nagayoshi, Y.; Kaikita, K.; Sugiyama, S.; Yoshimura, M.; et al. Relation between CD4+ T-cell activation and severity of chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2007, 100, 483–488. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Liu, Q.; Cheng, P.; Zhao, T.; Yang, T.; Zhao, Y.; Sha, W.; Zhao, Y.; Qu, H. Targeting regulatory T cells for cardiovascular diseases. Front. Immunol. 2023, 14, 1126761. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, H.; Zhang, C.; Hu, J.; Xu, D. Recent advances in understanding the roles of T cells in pressure overload-induced cardiac hypertrophy and remodeling. J. Mol. Cell Cardiol. 2019, 129, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Kvakan, H.; Kleinewietfeld, M.; Qadri, F.; Park, J.K.; Fischer, R.; Schwarz, I.; Rahn, H.P.; Plehm, R.; Wellner, M.; Elitok, S.; et al. Regulatory T Cells Ameliorate Angiotensin II–Induced Cardiac Damage. Circulation 2009, 119, 2904–2912. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.R.; Dale, B.L.; Smart, C.D.; Elijovich, F.; Wogsland, C.E.; Lima, S.M.; Irish, J.M.; Madhur, M.S. Immune Profiling Reveals Decreases in Circulating Regulatory and Exhausted T Cells in Human Hypertension. JACC Basic Transl. Sci. 2023, 8, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Riley, H.J.; Kelly, R.R.; Van Laer, A.O.; Neff, L.S.; Dasgupta, S.; Baicu, C.F.; McDonald, L.T.; LaRue, A.C.; Zile, M.R.; Bradshaw, A.D. SPARC production by bone marrow-derived cells contributes to myocardial fibrosis in pressure overload. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H604–H612. [Google Scholar] [CrossRef]
- McDonald, L.T.; Zile, M.R.; Zhang, Y.; Van Laer, A.O.; Baicu, C.F.; Stroud, R.E.; Jones, J.A.; LaRue, A.C.; Bradshaw, A.D. Increased macrophage-derived SPARC precedes collagen deposition in myocardial fibrosis. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H92–H100. [Google Scholar] [CrossRef]
- DeBerge, M.; Shah, S.J.; Wilsbacher, L.; Thorp, E.B. Macrophages in Heart Failure with Reduced versus Preserved Ejection Fraction. Trends Mol. Med. 2019, 25, 328–340. [Google Scholar] [CrossRef]
- Hahn, V.S.; Yanek, L.R.; Vaishnav, J.; Ying, W.; Vaidya, D.; Lee, Y.Z.J.; Riley, S.J.; Subramanya, V.; Brown, E.E.; Hopkins, C.D.; et al. Endomyocardial Biopsy Characterization of Heart Failure with Preserved Ejection Fraction and Prevalence of Cardiac Amyloidosis. JACC Heart Fail. 2020, 8, 712–724. [Google Scholar] [CrossRef]
- Kuwahara, F.; Kai, H.; Tokuda, K.; Takeya, M.; Takeshita, A.; Egashira, K.; Imaizumi, T. Hypertensive myocardial fibrosis and diastolic dysfunction: Another model of inflammation? Hypertension 2004, 43, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.; Bansal, S.S.; Ismahil, M.A.; Hamid, T.; Rokosh, G.; Mack, M.; Prabhu, S.D. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling during Pressure Overload. JACC Basic Transl. Sci. 2018, 3, 230–244. [Google Scholar] [CrossRef]
- Patel, B.; Ismahil, M.A.; Hamid, T.; Bansal, S.S.; Prabhu, S.D. Mononuclear Phagocytes Are Dispensable for Cardiac Remodeling in Established Pressure-Overload Heart Failure. PLoS ONE 2017, 12, e0170781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, D.; Watson, C.; Martos, R.; Collier, P.; Patle, A.; Donnelly, S.; Ledwidge, M.; Baugh, J.; McDonald, K. Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes. PLoS ONE 2012, 7, e49259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciarretta, S.; Ferrucci, A.; Ciavarella, G.M.; De Paolis, P.; Venturelli, V.; Tocci, G.; De Biase, L.; Rubattu, S.; Volpe, M. Markers of inflammation and fibrosis are related to cardiovascular damage in hypertensive patients with metabolic syndrome. Am. J. Hypertens. 2007, 20, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef] [Green Version]
- Glezeva, N.; Horgan, S.; Baugh, J.A. Monocyte and macrophage subsets along the continuum to heart failure: Misguided heroes or targetable villains? J. Mol. Cell Cardiol. 2015, 89, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Barisione, C.; Garibaldi, S.; Ghigliotti, G.; Fabbi, P.; Altieri, P.; Casale, M.C.; Spallarossa, P.; Bertero, G.; Balbi, M.; Corsiglia, L.; et al. CD14CD16 monocyte subset levels in heart failure patients. Dis. Markers 2010, 28, 115–124. [Google Scholar] [CrossRef]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- Chow, F.Y.; Nikolic-Paterson, D.J.; Ozols, E.; Atkins, R.C.; Tesch, G.H. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J. Am. Soc. Nephrol. 2005, 16, 1711–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, F.Y.; Nikolic-Paterson, D.J.; Ma, F.Y.; Ozols, E.; Rollins, B.J.; Tesch, G.H. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 2007, 50, 471–480. [Google Scholar] [CrossRef] [Green Version]
- McHugh, K.; DeVore, A.D.; Wu, J.; Matsouaka, R.A.; Fonarow, G.C.; Heidenreich, P.A.; Yancy, C.W.; Green, J.B.; Altman, N.; Hernandez, A.F. Heart Failure with Preserved Ejection Fraction and Diabetes: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 602–611. [Google Scholar] [CrossRef]
- Kalogeropoulos, A.; Georgiopoulou, V.; Psaty, B.M.; Rodondi, N.; Smith, A.L.; Harrison, D.G.; Liu, Y.; Hoffmann, U.; Bauer, D.C.; Newman, A.B.; et al. Inflammatory markers and incident heart failure risk in older adults: The Health ABC (Health, Aging, and Body Composition) study. J. Am. Coll. Cardiol. 2010, 55, 2129–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaar, D.; Dumont, B.L.; Vulesevic, B.; Neagoe, P.E.; Räkel, A.; White, M.; Sirois, M.G. Neutrophils and Circulating Inflammatory Biomarkers in Diabetes Mellitus and Heart Failure with Preserved Ejection Fraction. Am. J. Cardiol. 2022, 178, 80–88. [Google Scholar] [CrossRef]
- Cherian, S.; Lopaschuk, G.D.; Carvalho, E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E937–E949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Heerebeek, L.; Hamdani, N.; Handoko, M.L.; Falcao-Pires, I.; Musters, R.J.; Kupreishvili, K.; Ijsselmuiden, A.J.; Schalkwijk, C.G.; Bronzwaer, J.G.; Diamant, M.; et al. Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008, 117, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.D.; Shah, R.V.; Garg, R.; Abbasi, S.A.; Neilan, T.G.; Perlstein, T.S.; Di Carli, M.F.; Jerosch-Herold, M.; Kwong, R.Y.; Adler, G.K. Aldosterone and myocardial extracellular matrix expansion in type 2 diabetes mellitus. Am. J. Cardiol. 2013, 112, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Yang, E.Y.; Nguyen, D.T.; Nabi, F.; Hinojosa, J.; Jabel, M.; Nagueh, S.F.; Graviss, E.A.; Shah, D.J. Examining the Relationship and Prognostic Implication of Diabetic Status and Extracellular Matrix Expansion by Cardiac Magnetic Resonance. Circ. Cardiovasc. Imaging 2020, 13, e011000. [Google Scholar] [CrossRef]
- Bertero, E.; Dudek, J.; Cochain, C.; Delgobo, M.; Ramos, G.; Gerull, B.; Higuchi, T.; Vaeth, M.; Zernecke, A.; Frantz, S.; et al. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc. Res. 2022, 118, 37–52. [Google Scholar] [CrossRef]
- Urbina, P.; Singla, D.K. BMP-7 attenuates adverse cardiac remodeling mediated through M2 macrophages in prediabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H762–H772. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, M.; Nakamura, T.; Kataoka, K.; Nako, H.; Tokutomi, Y.; Dong, Y.F.; Ogawa, H.; Kim-Mitsuyama, S. Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J. Hypertens. 2010, 28, 340–352. [Google Scholar] [CrossRef]
- Morey, M.; O’Gaora, P.; Pandit, A.; Hélary, C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. PLoS ONE 2019, 14, e0220577. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Hu, L.; Shu, Z.; Chen, L.; Li, X.; Du, M.; Sun, D.; Mao, X.; Deng, S.; Huang, K.; et al. Role of CCR2 in the Development of Streptozotocin-Treated Diabetic Cardiomyopathy. Diabetes 2019, 68, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Abdullah, C.S.; Jin, Z.Q. Inhibition of PKC-θ preserves cardiac function and reduces fibrosis in streptozotocin-induced diabetic cardiomyopathy. Br. J. Pharmacol. 2014, 171, 2913–2924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, C.S.; Jin, Z.Q. Targeted deletion of T-cell S1P receptor 1 ameliorates cardiac fibrosis in streptozotocin-induced diabetic mice. FASEB J. 2018, 32, 5426–5435. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.F.; Xiao, Y.; Sun, L. A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. Adv. Exp. Med. Biol. 2019, 1165, 49–79. [Google Scholar] [PubMed]
- Martinez, N.; Vallerskog, T.; West, K.; Nunes-Alves, C.; Lee, J.; Martens, G.W.; Behar, S.M.; Kornfeld, H. Chromatin decondensation and T cell hyperresponsiveness in diabetes-associated hyperglycemia. J. Immunol. 2014, 193, 4457–4468. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, G.; Schneider, C.; Wong, N.; Bredemeyer, A.; Hulsmans, M.; Nahrendorf, M.; Epelman, S.; Kreisel, D.; Liu, Y.; Itoh, A.; et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 2018, 24, 1234–1245. [Google Scholar] [CrossRef]
Variables | Asymptomatic LVH (n = 21) | LVH + HFpEF (n = 36) | p Value |
---|---|---|---|
Clinical parameters | |||
Age, y | 65 (64–74) | 68 (60–71) | 0.69 |
Men, n (%) | 13 (62) | 16 (44) | 0.21 |
6 min walk distance, m | 485 (434–560) | 384 (325–438) | <0.001 |
NYHA I/II/III, n (%) | 0/0/0 | 7/18/11 (19/50/31) | <0.001 |
Hypertension a, n (%) | 21 (100) | 36 (100) | 1.0 |
Paroxysmal atrial fibrillation, n (%) | 7 (33) | 17 (47) | 0.31 |
Ischemic heart disease, n (%) | 8 (38) | 14 (39) | 0.95 |
Myocardial revascularization, n (%) | 2 (10) | 10 (28) | 0.11 |
Type 2 diabetes mellitus, n (%) | 5 (24) | 16 (44) | 0.12 |
Body mass index, kg/m2 | 29.8 (26.9–31.2) | 32.0 (27.4–35.8) | 0.15 |
Obesity b, n (%) | 10 (48) | 23 (64) | 0.23 |
Estimated GFR, mL/min/1.73 m2 | 77 (62–92) | 73 (66–88) | 0.64 |
Chronic kidney disease c, n (%) | 4 (19) | 9 (25) | 0.61 |
Systolic BP, mm Hg | 135 (130–140) | 140 (130–140) | 0.88 |
Diastolic BP, mm Hg | 80 (80–90) | 85 (80–90) | 0.56 |
Heart rate, bpm | 64 (58–68) | 65 (61–70) | 0.30 |
NT-proBNP, pg/mL | 115 (69–164) | 294 (187–583) | <0.001 |
Baseline treatments | |||
ACEI/ARB, n (%) | 17 (81) | 36 (100) | 0.007 |
β-Blockers, n (%) | 14 (67) | 28 (78) | 0.36 |
Diuretics, n (%) | 5 (24) | 28 (78) | <0.001 |
Statins, n (%) | 14 (67) | 31 (86) | 0.085 |
Aspirin, n (%) | 9 (43) | 14 (39) | 0.77 |
Mineralocorticoid receptor antagonists, n (%) | 4 (19) | 11 (31) | 0.35 |
SGLT2 inhibitors, n (%) | 3 (14) | 12 (33) | 0.12 |
Echocardiographic measures | |||
LV ejection fraction, % | 62 (60–64) | 63 (56–66) | 0.11 |
LV GLS, % | 19.1 (16.8–20.5) | 19.0 (15.8–21.7) | 0.71 |
LV mass index, g/m2 | 114 (102–126) | 124 (111–145) | 0.033 |
LA volume index, mL/m2 | 33 (29–42) | 42 (37–50) | 0.004 |
LASr, % SRIVR, s–1 SRE, s–1 | 24 (21–26) 0.27 (0.19–0.37) 0.89 (0.80–1.23) | 21 (17–24) 0.28 (0.21–0.44) 1.00 (0.73–1.31) | 0.046 0.62 0.69 |
e′, cm/s | 7.1 (6.5–8.3) | 6.0 (5.1–6.8) | 0.002 |
E/e′ ratio | 10.1 (8.4–12.0) | 12.5 (10.0–17.3) | 0.005 |
TAPSE, cm | 2.5 (2.1–2.7) | 2.4 (2.0–2.5) | 0.66 |
PASP, mm Hg | 28 (26–33) | 39 (31–42) | 0.0001 |
LVDD grade II–III, n (%) GWI, mm Hg% GWE, % GCW, mm Hg% GWW, mm Hg% | 0 1597 (1377–1750) 89 (84–91) 2029 (1670–2170) 223 (180–287) | 18 (50) 1657 (1547–1913) 88 (82–93) 2084 (1924–2279) 265 (167–380) | <0.001 0.29 0.96 0.25 0.42 |
Immune cell populations | |||
Leucocytes, 106/mL | 6.7 (6.2–7.6) | 7.4 (5.9–9.1) | 0.19 |
Lymphocytes, 106/mL | 1.7 (1.4–2.1) | 1.6 (1.2–2.1) | 0.33 |
CD4+ T-cells, 103/mL | 771 (635–941) | 672 (475–882) | 0.12 |
Th-act, 103/mL | 296 (248–366) | 419 (284–514) | 0.016 |
Treg, 103/mL | 34 (27–51) | 27 (20–39) | 0.054 |
Treg/Th-act ratio | 0.096 (0.089–0.150) | 0.074 (0.057–0.087) | 0.0009 |
Monocytes, 103/mL | 384 (319–531) | 368 (246–536) | 0.50 |
Classical monocytes, 103/mL | 291 (271–382) | 269 (178–411) | 0.50 |
Non-classical monocytes, 103/mL | 62 (52–101) | 61 (50–88) | 0.58 |
Intermediate monocytes, 103/mL | 23 (19–42) | 22 (14–36) | 0.35 |
Variable | AUC (95% CI) | p Value | Comparison of AUC (95% CI) | p Value for Comparison of AUC | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
NT-proBNP (>200 pg/mL) | 0.86 (0.72–0.95) | <0.0001 | 0.02 (−0.16 to 0.19) | 0.86 | 74 | 85 |
Treg/Th-act ratio (≤0.080) | 0.82 (0.79–0.92) | <0.0001 | Reference | – | 70 | 92 |
PASP (>36 mm Hg) | 0.82 (0.69–0.91) | <0.0001 | −0.02 (−0.20 to 0.13) | 0.73 | 61 | 95 |
e′ (≤6.9 cm/s) | 0.75 (0.61–0.85) | 0.001 | −0.08 (−0.36 to 0.07) | 0.20 | 83 | 65 |
LA volume index (>38 mL/m2) | 0.73 (0.60–0.84) | 0.0002 | −0.05 (−0.13 to 0.23) | 0.61 | 74 | 71 |
E/e′ ratio (>9.5) | 0.70 (0.56–0.82) | 0.005 | −0.12 (−0.38 to 0.05) | 0.13 | 83 | 50 |
Th-act (>371 × 103/mL) | 0,70 (0.55–0.82) | 0.021 | −0.13 (−0.35 to 0.08) | 0.22 | 58 | 92 |
LV mass index (>136 g/m2) | 0.67 (0.53–0.79) | 0.019 | −0.18 (−0.36 to −0.02) | 0.033 | 33 | 95 |
Treg (≤22.3 × 103/mL) | 0.66 (0.52–0.79) | 0.039 | −0.17 (−0.37 to −0.03) | 0.02 | 39 | 94 |
LASr (≤20.0%) | 0.65 (0.51–0.77) | 0.04 | −0.21 (−0.42 to 0.0) | 0.047 | 46 | 85 |
Variable | Intermediate Monocytes | Classic Monocytes | Non-Classic Monocytes | |||
---|---|---|---|---|---|---|
r | p Value | r | p Value | r | p Value | |
LV ejection fraction | −0.34 | 0.049 | − | − | − | − |
LV GLS during rest | −0.50 | 0.003 | − | − | − | − |
Change in LV GLS during exercise | −0.35 | 0.045 | − | − | − | − |
Global myocardial work index | −0.57 | 0.0008 | − | − | − | − |
Global myocardial work efficiency | −0.44 | 0.013 | − | – | – | – |
Global constructive work | −0.52 | 0.003 | − | – | – | – |
Global wasted work | – | – | 0.43 | 0.015 | 0.41 | 0.023 |
TAPSE during rest | −0.45 | 0.006 | – | – | – | – |
Change in TAPSE during exercise | – | – | −0.34 | 0.049 | −0.36 | 0.035 |
Mitral annular e′ during rest | −0.34 | 0.047 | – | – | ||
Change in e′ during exercise | – | – | −0.36 | 0.034 | – | – |
Mitral E/e′ ratio during rest | 0.45 | 0.039 | – | – | – | – |
Pulmonary vein S/D ratio | −0.36 | 0.035 | – | – | – | – |
LASr | −0.40 | 0.020 | – | – | – | – |
SRIVR | −0.53 | 0.002 | – | – | – | – |
SRE | −0.35 | 0.040 | – | – | – | – |
RV wall thickness | – | – | 0.35 | 0.043 | – | – |
Tricuspid E/A ratio | – | – | 0.46 | 0.007 | – | – |
Tricuspid E/e′ ratio | 0.43 | 0.012 | – | – | – | – |
LV mass index | – | – | – | – | – | – |
Variables | HFpEF with Diabetes (n = 16) | HFpEF without Diabetes (n = 20) | p Value |
---|---|---|---|
Clinical parameters | |||
Age, y | 70 (66–72) | 66 (56–70) | 0.21 |
Men, n (%) | 5 (31) | 11 (55) | 0.16 |
6 min walk distance, m | 363 (319–420) | 424 (363–473) | 0.021 |
NYHA I/II/III, n (%) | 1/6/9 (6/38/56) | 6/12/2 (30/60/10) | 0.008 |
Body mass index, kg/m2 | 35.5 (29.8–37.6) | 30.3 (26.8–32.8) | 0.045 |
Estimated GFR, mL/min/1.73 m2 | 73 (58–83) | 77 (68–91) | 0.15 |
NT-proBNP, pg/mL | 339 (224–623) | 212 (116–373) | 0.065 |
Echocardiographic measures | 2 (10) | 10 (28) | 0.11 |
LV ejection fraction, % | 62 (56–65) | 64 (57–67) | 0.65 |
LV GLS, % | 18.7 (14.9–20.6) | 19.0 (16.7–22.0) | 0.68 |
LV mass index, g/m2 | 123 (109–140) | 124 (114–149) | 0.42 |
LA volume index, mL/m2 | 45 (38–52) | 41 (36–48) | 0.69 |
LASr, % | 19 (15–22) | 22 (20–26) | 0.064 |
E/e′ ratio | 13.5 (11.4–17.3) | 11.8 (9.4–16.0) | 0.049 |
TAPSE, cm | 2.1 (1.8–2.4) | 2.5 (2.2–2.6) | 0.015 |
PASP, mm Hg | 40 (32–43) | 37 (30–40) | 0.52 |
LV diastolic dysfunction grade II–III, n (%) | 8 (50) | 10 (50) | 1.0 |
Immune/inflammatory cell populations | |||
Leucocytes, 106/mL | 7.4 (5.9–9.8) | 7.5 (5.9–9.0) | 0.46 |
Lymphocytes, 106/mL | 1.5 (1.2–2.1) | 1.7 (1.3–2.2) | 0.47 |
CD4+ T-cells, 103/mL | 672 (450–802) | 658 (498–902) | 0.37 |
Th-act, 103/mL | 426 (271–514) | 411 (319–519) | 0.69 |
Treg, 103/mL | 22 (14–38) | 29 (23–40) | 0.089 |
Treg/Th-act ratio | 0.068 (0.050–0.074) | 0.079 (0.064–1.00) | 0.036 |
Monocytes, 103/mL | 399 (228–513) | 355 (252–546) | 0.91 |
Classical monocytes, 103/mL | 269 (167–398) | 275 (190–420) | 0.81 |
Non-classical monocytes, 103/mL | 77 (48–93) | 58 (50–75) | 0.25 |
Intermediate monocytes, 103/mL | 28 (15–44) | 17 (13–25) | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovchinnikov, A.; Filatova, A.; Potekhina, A.; Arefieva, T.; Gvozdeva, A.; Ageev, F.; Belyavskiy, E. Blood Immune Cell Alterations in Patients with Hypertensive Left Ventricular Hypertrophy and Heart Failure with Preserved Ejection Fraction. J. Cardiovasc. Dev. Dis. 2023, 10, 310. https://doi.org/10.3390/jcdd10070310
Ovchinnikov A, Filatova A, Potekhina A, Arefieva T, Gvozdeva A, Ageev F, Belyavskiy E. Blood Immune Cell Alterations in Patients with Hypertensive Left Ventricular Hypertrophy and Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Development and Disease. 2023; 10(7):310. https://doi.org/10.3390/jcdd10070310
Chicago/Turabian StyleOvchinnikov, Artem, Anastasiya Filatova, Alexandra Potekhina, Tatiana Arefieva, Anna Gvozdeva, Fail Ageev, and Evgeny Belyavskiy. 2023. "Blood Immune Cell Alterations in Patients with Hypertensive Left Ventricular Hypertrophy and Heart Failure with Preserved Ejection Fraction" Journal of Cardiovascular Development and Disease 10, no. 7: 310. https://doi.org/10.3390/jcdd10070310
APA StyleOvchinnikov, A., Filatova, A., Potekhina, A., Arefieva, T., Gvozdeva, A., Ageev, F., & Belyavskiy, E. (2023). Blood Immune Cell Alterations in Patients with Hypertensive Left Ventricular Hypertrophy and Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Development and Disease, 10(7), 310. https://doi.org/10.3390/jcdd10070310