Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect
Abstract
:1. Introduction
2. Cellular and Molecular Mechanisms of Myocardial Fibrosis
3. Epigenetic Regulation of Cardiac Fibrosis
3.1. DNA Methylation
3.2. Histone Modification That Regulates Cardiac Fibrosis
4. Currently Available Antifibrosis Treatments
Classes of Drugs | Effects | References |
---|---|---|
TGF beta inhibitors | Inhibit fibroblast to myofibroblast transformation. Approved for the treatment of idiopathic pulmonary fibrosis but do not improve diastolic function in cardiac fibrosis | [8,111] |
Angiotensin-Converting Enzyme inhibitors (ACE inhibitors) | Collagen volume fraction reduction, side effect of hypotension in prolonged use. | [112] |
Angiotensin Receptor Blockers (ARB) | Type I Collagen degradation, reduce infarct size | [9,112] |
Mineralocorticoid Receptor Antagonist (MRA) | Decreases serum markers of cardiac fibrosis; prevents cardiac remodeling following MI. Side effects may include hypotension | [113] |
Angiotensin Receptor neprilysin inhibitor | Treatment of HFrEF; prevents cardiac remodeling post-MI | [114] |
Connective tissue Growth factor (CTGF) inhibitors | Attenuate development of fibrosis in idiopathic pulmonary fibrosis and currently in Phase 3 clinical trial | [115] |
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers | Reduction in serum aldosterone; reduce fibroblast activation | [116] |
Matrix metalloproteinases inhibitors | Digest excessive ECM: reduce left ventricular remodeling and have an antibacterial effect; however, cause photosensitivity | [117,118] |
Soluble guanylate cyclase (sGC) stimulators | Improve outcome in patients with HFrEF. Vericiguat is currently in a clinical trial (NCT05799638) | [119] |
Beta 3-adrenergic receptor agonist | Improves ejection fraction of the left ventricle. However, causes increased blood pressure via the modulation of nitric oxide. Side effects include bronchospasm and depression | [120] |
Hydroxymethylglutaryl coenzymeA Reductase Inhibitors | Reduction of atherosclerosis; anti-inflammatory effect; inhibit cardiac remodeling following MI. Side effect includes rhabdomyolysis | [121] |
5. Challenges with the Development of Therapy for Cardiac Fibrosis
6. Bioactive Agents
6.1. Bioactive Compounds
6.1.1. Flavonoids
- Epicatechin: Epicatechin is a flavonoid found in cocoa and tea. Studies have shown that epicatechin can improve cardiac function and reduce cardiac fibrosis in an aged, female rat model of pre-HFpEF [137].
- Kaempferol: Kaempferol, a flavonoid found in many fruits and vegetables, including grapes, broccoli, and kale, can inhibit the proliferation of cardiac fibroblasts and reduce collagen deposition in the heart, which may help prevent cardiac fibrosis [138].
- Apigenin: Apigenin, a flavonoid found in many fruits and vegetables, including parsley, celery, and chamomile tea, inhibits ECM proteins and collagen production in cardiac fibroblasts, which may help prevent cardiac fibrosis [139]. The study also showed that apigenin inhibits isoproterenol-induced myocardial fibrosis in mice via enhancing the antioxidant’s capacity to exert its antifibrotic effects, and it also decreases the NF-κB/TGF-β1 signaling pathway axis [140].
6.1.2. Organosulfur Compounds
- Sulforaphane: Sulforaphane is an organosulfur compound, which mainly exists in the form of a precursor called Glucorapahnin found in cruciferous vegetables. Sulforaphane can improve cardiac function and reduce fibrosis in animal models of heart failure [144,145]. Wang et al. showed that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in protecting against Ang II-induced aortic fibrosis. Furthermore, sulforaphane inhibited Ang II-induced aortic damage by stimulating Nrf2 through the ERK/GSK-3β/Fyn pathway [146].
- Diallyl trisulfide: Diallyl trisulfide, an organosulfur compound found in garlic, has been shown to reduce the expression of genes involved in fibrosis and improve cardiac function in an isoproterenol-induced acute myocardial infarction rat model of heart failure. Diallyl trisulfide therapy demonstrated cardioprotective benefits via modulation of autophagy, PI3K/Akt signaling, eNOS, and FOXO-1 downregulation [147].
- S-allylcysteine: An organosulfur compound found in garlic, it can inhibit the proliferation of cardiac fibroblasts and reduce collagen deposition in the heart, which may help prevent cardiac fibrosis [148]. A study by Zainalabidin et al. also showed that S-allylcysteine reduces adverse cardiac remodeling after myocardial infarction in a rat model and also limits cardiac fibrosis in rats [149].
6.1.3. Terpenoids
- β-Caryophyllene: β-Caryophyllene is a terpenoid found in many herbs and spices, including black pepper, oregano, and cloves. Studies have shown that β-caryophyllene can shield the cardiac tissues against cardiotoxicity by mitigating inflammation, reducing collagen deposition, and improving cardiac function in rat models [151].
- Limonene: Limonene, found in many citrus fruits, including oranges, lemons, and limes, inhibits ECM proteins and the production of collagen in cardiac fibroblasts, which may help prevent cardiac fibrosis [152]. It can ameliorate cardiac injury induced by carbon tetrachloride intoxication through its antioxidant and anti-inflammatory potential [153].
- Rosmarinic acid: Rosmarinic acid is a terpenoid found in many herbs, including rosemary, sage, and thyme. Rosmarinic acid has been reported to reduce collagen deposition and improve cardiac function in animal models of heart failure. Supplementation of rosmarinic acid attenuated cardiac dysfunction, as well as inhibited cardiac fibrosis and prevented transdifferentiation of cardiac fibroblast [156].
- There are other terpenoids, such as Artemisinin, Betulin, Celastrol, Dioscin, Geniposide, Ginsenoside Rg3, Oridonin, Sweroside, Triptolide, and oleanolic acid, that are also involved in decreasing cardiac inflammation and myocardial fibrosis, improving left-ventricular function, and inhibiting NF-κB protein expression in rats with experimental diabetic cardiomyopathy [150,157]. This implies that these terpenoids have myocardial protection, which is related to their anti-inflammatory effects [150,157].
6.1.4. Phenols
- Resveratrol: Studies have demonstrated that resveratrol, a polyphenol found in grapes, red wine, and peanuts, can reduce fibrosis and inflammation in the heart [154]. Many studies found that resveratrol reduced cardiac fibrosis in rats with hypertension [158,159,160,161]. Resveratrol supplement reduced NLRP3 inflammasome activity, decreased TGF-β1 production, and downregulated the p-SMAD2/SMAD2 expression in a rat model of acute myocardial infarction, thus protecting the heart against cardiac fibrosis [162].
- Curcumin: A natural compound found in turmeric, a spice commonly used in Indian and Middle Eastern cuisine, has been shown to have anti-inflammatory, anti-apoptotic and antioxidant properties. There is evidence to suggest that it may have beneficial effects on cardiac fibrosis [163]. Several studies have investigated the effects of curcumin on cardiac fibrosis in animal models of cardiac disease. These studies have reported that curcumin can reduce the expression of profibrotic genes and proteins, as well as the deposition of collagen in the heart [164]. Curcumin has also been shown to decrease oxidative stress and inflammation, key factors in the development of cardiac fibrosis.
- Curcumin has been shown to protect the heart from cardiac fibrosis after myocardial infarction by inhibiting macrophage–fibroblast cross talk in the acute phase post-injury and retrained the activation of IL18-TGFβ1-p-SMAD2/3 signaling in the mice model [165]. Another study suggested that abemaciclib administration causes cardiac damage and increases cardiac fibrosis. However, co-administration of curcumin and abedmaciclib suppressed myocardial fibrosis associated with cardiac damage [166]. While these findings are promising, it should be noted that the majority of studies on the effects of curcumin on cardiac fibrosis have been undertaken in animal models, and further study is needed to determine whether curcumin has similar benefits in human subjects and what appropriate doses are needed in the treatment of cardiac fibrosis.
- Ellagic acid is a natural phenolic compound found in various fruits, nuts, and vegetables. It has been shown to have a range of potential health benefits, including anti-inflammatory, antioxidant, and anticancer effects. However, there is limited research on its effects on cardiac fibrosis. Ellagic acid has been reported to significantly reduce cardiac fibrosis in rats with myocardial infarction [167]. The effect of ellagic acid has been attributed to its antioxidant and anti-inflammatory properties, which can help to prevent the activation of fibroblasts and the production of ECM proteins.
- There are other polyphenols that are also involved in decreasing cardiac inflammation and myocardial fibrosis, improving left-ventricular function, and inhibiting NF-κB protein expression and NLRP3 inflammasomes in rat/mice models, including Ferulic acid, Gallic acid, Paeonol, Phloretin and Salidroside [150].
6.1.5. Alkaloids
- Berberine: Berberine is an alkaloid found in many herbs, including goldenseal, barberry, and Oregon grape. Long-term berberine administration reduces cardiac fibrosis and dysfunction in diabetic rats by downregulating IGF-1R expression in cardiac fibroblasts and subsequently lowering MMP-2/MMP-9, α-SMA, and collagen type I expression [168].
- Piperine: Piperine is an alkaloid mostly found in black pepper, has been demonstrated to offer various health benefits, including anti-inflammatory and antioxidant effects. There is some evidence to suggest that piperine may have potential in the treatment of cardiac fibrosis in animal models. One study found that piperine attenuates cardiac fibrosis via the activation of PPAR-γ and the resultant inhibition of AKT/GSK3β [171]. The mechanism by which piperine attenuates cardiac fibrosis is not fully understood, but it may be related to its anti-inflammatory and antioxidant properties.
6.1.6. Saponins
- Ginsenoside: Ginsenoside is a triterpene saponin found in ginseng, which can ameliorate isoproterenol-induced myocardial fibrosis via regulation of the TGF-β1/Smad3 pathway [172]. Ginsenoside can ameliorate acute myocardial infarction and angiotensin Ⅱ-induced myocardial fibrosis. The mechanism is at least partially related to the regulation of the miR-489/myd88/NF-κB signaling pathway. Others have reported that treatment with ginsenosides reduced the deposition of collagen and improved heart function in mice [173].
- Astragaloside IV: Astragaloside IV is a significant active astragaloside component of Astragalus Propinquuos and is prominent in cardiovascular disease studies. Astragaloside IV may prevent myocardial infarction-induced fibrosis by inhibiting the endothelial-to-mesenchymal transition mediated by the AKT/GSK3-β/SNAIL signaling pathway [172]. While these studies suggest that saponins may have potential benefits for cardiac fibrosis, more research is needed to confirm these effects in humans.
6.1.7. Coumarins
6.1.8. Stilbenes
6.1.9. Phenolic Acids
- Chlorogenic acid: Chlorogenic acid is another type of phenolic acid found in coffee and other foods. Studies reported the antifibrotic function of chlorogenic acid in diabetic heart and established that chlorogenic acid exerted its antifibrotic effect through activation of the NO/cGMP/PKG pathway [180,181].
- Vanillic acid, which is a phenolic compound widely found in plants and fruits, has a protective role on right-ventricular function by inhibiting the Rho-associated protein kinase signaling pathway. It may also prevent cardiac fibrosis, promote cardiomyocyte enlargement, and prevent cardiomyocyte apoptosis in Rats with Monocrotaline-Induced Pulmonary Arterial Hypertension [182]. While these studies suggest that phenolic acids may have potential benefits for cardiac fibrosis, more research is needed to confirm these effects in humans.
6.1.10. Anthocyanins and Tannins
6.1.11. Carotenoids
- Astaxanthin: A reddish-orange aquatic carotenoid, found in salmon, red snapper, and shrimp, was able to reduce cardiac fibrosis in a rat model of pressure overload-induced cardiac fibrosis, which was facilitated by the TGF-β1/Smad signaling pathway. The studies have also suggested that carotenoids may have anti-inflammatory and antifibrotic effects in various organs, including the heart [186]. More research, however, is required to completely comprehend the mechanisms underlying these effects and to determine whether carotenoid supplementation could be a useful strategy for preventing or treating cardiac fibrosis in humans.
6.1.12. Omega-3 Fatty Acids
- Omega-3 fatty acids are a group of polyunsaturated fatty acids that are essential for human health and are commonly found in fish oil and certain plant sources such as flaxseed oil, chia seeds, and walnuts. These fatty acids are known for their anti-inflammatory properties and have been shown to have numerous cardiovascular benefits. They are already used for the treatment of hypertriglyceridemia, a cardiovascular risk factor. Although the OMEMI clinical trial [187] reported negative results regarding the cardiac benefits of omega-3 fatty acids [186], there is evidence suggesting that omega-3 fatty acids may be beneficial for preventing or reducing the severity of cardiac fibrosis. Nevertheless, this trial highlights the need for further studies to determine the clinical role of these molecules in preventing or treating cardiac fibrosis.
- Studies have shown that DHA (Docosahexaenoic acid) from microalgae had protective effects on diabetes-induced cardiac fibrosis through boosting fatty acid oxidation in cardiac fibroblast and maintenance of ECM homeostasis. In addition, cardiac fibroblasts and myofibroblasts’ increased apoptosis and autophagy, decreased proliferation, and transdifferentiation were primarily responsible for maintaining ECM homeostasis [188].
- Eicosapentaenoic Acid (EPA) may have anti-inflammatory and anti-ibrotic effects in the heart of Spontaneously Hypertensive Rats. Such effects of EPA are facilitated in part by polarization of macrophages toward anti-inflammatory M2 phenotype and enhancement of the anti-inflammatory cytokine, IL-10 [189].
6.1.13. Bioactive Peptides
- DIKTNKPVIF peptide from potatoes may be utilized to treat hypertensive myocardial damage. Exercise and DIKTNKPVIF peptides work together synergistically to reduce myocardial damage induced by spontaneous hypertension. This may be accomplished via modulating the AMPK/SirT1/PGC-1/FOXO3 energy metabolism signaling pathway and preventing myocardial fibrosis [191].
- IF and DI peptides extracted from potatoes had a therapeutic benefit in protecting against cardiac inflammation, hypertrophy, and fibrosis under hypertensive conditions. This occurs by downregulating protein expression of the hypertrophy markers especially BNP and MYH, the major inflammatory markers such as p-NFkB, IL-6, and TNF-α, and the fibrotic markers such as TIMP1, CTGF, uPA, and MMP-2 [192].
- Another study on moth bean seeds bioactive peptide revealed it has an ACE inhibitory properties. It effectively reduced systolic blood pressure, cardio–renal hemorrhage, and fibrosis in dexamethasone-induced hypertensive rats [193].
- Similar results were also observed in chicken muscle hydrolysate, which reduced fibrosis in spontaneously hypertensive rats [194].
6.1.14. Vitamin D
6.1.15. Probiotics
Bioactive | Class | Structure | Source | Reference |
---|---|---|---|---|
Quercetin | Flavonoids | Onions, apples, and broccoli | [134,136] | |
Epicatechin | Flavonoids | Cocoa, dark chocolate, red wine and tea | [137] | |
Kaempferol | Flavonoids | Apple, grape, tomato, green tea, broccoli, pine, and ginkgo leaf. | [138] | |
Apigenin | Flavonoids | parsley, celery, basil, chamomile, cilantro, and oregano | [140] | |
Allicin | Organosulfur compounds | Garlic | [142,143] | |
Sulforaphane | Organosulfur compounds | Broccoli and Brussels sprouts. | [144,145,146] | |
Allitridin (Diallyl trisulfide) | Organosulfur compounds | Garlic | [147] | |
S-allylcysteine | Organosulfur compounds | Garlic | [148,149] | |
β-Caryophyllene | Terpenoids | many herbs and spices, including black pepper, oregano, and cloves | [151] | |
Limonene | Terpenoids | citrus fruits, including oranges, lemons, and limes | [152,153] | |
Ursolic acid | Terpenoids | Apples, bilberries, cranberries, elder flower, peppermint, lavender, oregano, thyme, hawthorn, and prunes | [154,155] | |
Rosmarinic acid | Terpenoids | Culinary herbs such as lemon balm, rosemary, oregano, sage, thyme, and peppermint. | [156] | |
Resveratrol | Phenols | Peanuts, berries, and grapes. | [158,159,160,161,162] | |
Curcumin | Phenols | Curcuma longa L. (turmeric) rhizome | [163,164,165,166,201] | |
Ellagic acid | Phenols | blackberries, raspberries, strawberries, cranberries, walnuts, pecans, pomegranates, and wolfberry, | [167] | |
Berberine | Alkaloids | European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric | [167] | |
Vincamine | Alkaloids | leaves of Vinca minor (lesser periwinkle) | [168,169] | |
Piperine | Alkaloids | black pepper (Piper nigrum) | [171,202] | |
Ginsenoside | Saponins | Ginseng root | [173] | |
Astragaloside IV | Saponins | Astragalus membranaceus | [172] | |
Coumarins | Coumarins | tonka bean, cassia bark | [174] | |
Stilbenes | Stilbenes | grapes, peanuts, and berries | [150,177] | |
Caffeic acid | Phenolic acids | apples and red wine | [178,179] | |
Chlorogenic acid | Phenolic acids | Coffee | [180,181] | |
Vanillic acid | Phenolic acids | vanilla beans | [182] | |
Anthocyanins | Anthocyanins | red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants | [183] | |
Tannins | Tannins | plant-based foods and beverages, such as tea, coffee, and wine | [184] | |
Astaxanthin | Carotenoids | algae, yeast, salmon, trout, krill, shrimp, and crayfish | [186] | |
Docosahexaenoic acid | Omega-3 fatty acids | cold-water, fatty fish, such as salmon. | [188] | |
Eicosapentaenoic Acid | Omega-3 fatty acids | cold-water fatty fish, such as salmon. | [189] | |
DIKTNKPVIF | Peptides | Potato | [191] | |
IF | Peptides | Potato | [192] | |
DI | Peptides | Potato | [192] | |
Vitamin D | Vitamins | fatty fish, egg yolks, and fortified dairy products | [195,196] |
6.2. Bioavailability of Bioactive Compounds
- Formulation: The form in which the bioactive compound is consumed can have a significant impact on its bioavailability. For example, some compounds may be more bioavailable in liquid or capsule form compared to tablets or powder [203].
- Molecular structure: The molecular structure of the bioactive compound can affect its ability to be absorbed and utilized by the body. Some compounds may be more readily absorbed if they are in a specific form or if they are combined with certain carriers or excipients [204].
- Interactions with other substances: Some substances in food or other dietary supplements can interact with bioactive compounds, affecting their bioavailability. For example, certain compounds may be more readily absorbed when consumed with a specific type of food or nutrient [205].
- Individual differences: Bioavailability can vary widely between individuals due to differences in genetics, gut microbiota, and other factors [206].
7. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Humeres, C.; Frangogiannis, N.G. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl. Sci. 2019, 4, 449. [Google Scholar] [CrossRef]
- Hall, C.; Gehmlich, K.; Denning, C.; Pavlovic, D. Complex Relationship Between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease. J. Am. Heart Assoc. 2021, 10, e019338. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Christia, P.; Frangogiannis, N.G. The Pathogenesis of Cardiac Fibrosis. Cell Mol. Life Sci. 2014, 71, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinderer, S.; Schenke-Layland, K. Cardiac Fibrosis—A Short Review of Causes and Therapeutic Strategies. Adv. Drug Deliv. Rev. 2019, 146, 77–82. [Google Scholar] [CrossRef]
- Hassan, S.; Barrett, C.J.; Crossman, D.J. Imaging Tools for Assessment of Myocardial Fibrosis in Humans: The Need for Greater Detail. Biophys. Rev. 2020, 12, 969–987. [Google Scholar] [CrossRef]
- Danoff, T.M.; Neilson, E.G. Immunological Mechanisms of Interstitial Disease. In Seldin and Giebisch’s the Kidney: Physiology & Pathophysiology 1–2; Elsevier: Amsterdam, The Netherlands, 2007; pp. 2477–2505. [Google Scholar] [CrossRef]
- Travers, J.G.; Tharp, C.A.; Rubino, M.; McKinsey, T.A. Therapeutic Targets for Cardiac Fibrosis: From Old School to next-Gen. J. Clin. Investig. 2022, 132, e148554. [Google Scholar] [CrossRef]
- Park, S.; Nguyen, N.B.; Pezhouman, A.; Ardehali, R. Cardiac Fibrosis: Potential Therapeutic Targets. Transl. Res. 2019, 209, 121. [Google Scholar] [CrossRef]
- Wilson, A.C.; Chiles, J.; Ashish, S.; Chanda, D.; Kumar, P.L.; Mobley, J.A.; Neptune, E.R.; Thannickal, V.J.; McDonald, M.L.N. Integrated Bioinformatics Analysis Identifies Established and Novel TGFβ1-Regulated Genes Modulated by Anti-Fibrotic Drugs. Sci. Rep. 2022, 12, 3080. [Google Scholar] [CrossRef]
- Groß, S.; Thum, T. TGF-β Inhibitor CILP as a Novel Biomarker for Cardiac Fibrosis. JACC Basic Transl. Sci. 2020, 5, 444–446. [Google Scholar] [CrossRef]
- Fuchs, M.; Kreutzer, F.P.; Kapsner, L.A.; Mitzka, S.; Just, A.; Perbellini, F.; Terracciano, C.M.; Xiao, K.; Geffers, R.; Bogdan, C.; et al. Integrative Bioinformatic Analyses of Global Transcriptome Data Decipher Novel Molecular Insights into Cardiac Anti-Fibrotic Therapies. Int. J. Mol. Sci. 2020, 21, 4727. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, W.Y.; Li, L.L.; Hu, C.; Tang, Q.Z. Therapeutic Potential of Polyphenols in Cardiac Fibrosis. Front. Pharmacol. 2018, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, K.; Jung, M.; Foinquinos, A.; José, G.S.; Beaumont, J.; Bock, K.; Grote-Levi, L.; Xiao, K.; Bär, C.; Pfanne, A.; et al. Natural Compound Library Screening Identifies New Molecules for the Treatment of Cardiac Fibrosis and Diastolic Dysfunction. Circulation 2020, 141, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Kreutzer, F.P.; Meinecke, A.; Mitzka, S.; Hunkler, H.J.; Hobuß, L.; Abbas, N.; Geffers, R.; Weusthoff, J.; Xiao, K.; Jonigk, D.D.; et al. Development and Characterization of Anti-Fibrotic Natural Compound Similars with Improved Effectivity. Basic Res. Cardiol. 2022, 117, 9. [Google Scholar] [CrossRef] [PubMed]
- Kendall, R.T.; Feghali-Bostwick, C.A. Fibroblasts in Fibrosis: Novel Roles and Mediators. Front. Pharmacol. 2014, 5, 123. [Google Scholar] [CrossRef] [Green Version]
- Gibb, A.A.; Lazaropoulos, M.P.; Elrod, J.W. Myofibroblasts and Fibrosis-Mitochondrial and Metabolic Control of Cellular Differentiation. Circ. Res. 2020, 127, 427. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Shi, X.; Dang, X.; Chen, J.; Chen, C.; Chen, Y.; Pan, X.; Huang, T. Identification of Common Genes and Pathways in Eight Fibrosis Diseases. Front. Genet. 2021, 11, 627396. [Google Scholar] [CrossRef] [PubMed]
- Umbarkar, P.; Ejantkar, S.; Tousif, S.; Lal, H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021, 10, 2412. [Google Scholar] [CrossRef]
- Rodriguez, P.; Sassi, Y.; Troncone, L.; Benard, L.; Ishikawa, K.; Gordon, R.E.; Lamas, S.; Laborda, J.; Hajjar, R.J.; Lebeche, D. Deletion of Delta-like 1 Homologue Accelerates Fibroblast–Myofibroblast Differentiation and Induces Myocardial Fibrosis. Eur. Heart J. 2019, 40, 967–978. [Google Scholar] [CrossRef]
- Gladka, M.M.; Molenaar, B.; De Ruiter, H.; Van Der Elst, S.; Tsui, H.; Versteeg, D.; Lacraz, G.P.A.; Huibers, M.M.H.; Van Oudenaarden, A.; Van Rooij, E. Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation. Circulation 2018, 138, 166–180. [Google Scholar] [CrossRef]
- Tan, H.; Chen, Z.; Chen, F.; Xu, W.; Liu, X. CKAP4 Participates in Tryptase-Induced Phenotypic Conversion in Atrial Fibroblasts through PAR2/P38/JNK Pathway. Am. J. Transl. Res. 2021, 13, 2270. [Google Scholar] [PubMed]
- Piccoli, M.T.; Bär, C.; Thum, T. Non-Coding RNAs as Modulators of the Cardiac Fibroblast Phenotype. J. Mol. Cell Cardiol. 2016, 92, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Thum, T. Noncoding RNAs and Myocardial Fibrosis. Nat. Rev. Cardiol. 2014, 11, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, K.; Stojanović, S.D.; Huang, C.K.; Jung, M.; Meyer, M.H.; Xiao, K.; Grote-Levi, L.; Bär, C.; Pfanne, A.; Mitzka, S.; et al. Combined High-Throughput Library Screening and next Generation RNA Sequencing Uncover MicroRNAs Controlling Human Cardiac Fibroblast Biology. J. Mol. Cell Cardiol. 2021, 150, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Du, D.; Chen, S.; Chen, Z.; Zhao, J. New Insights into the Functions of MicroRNAs in Cardiac Fibrosis: From Mechanisms to Therapeutic Strategies. Genes 2022, 13, 1390. [Google Scholar] [CrossRef]
- Creemers, E.E.; Van Rooij, E. Function and Therapeutic Potential of Noncoding RNAs in Cardiac Fibrosis. Circ. Res. 2016, 118, 108–118. [Google Scholar] [CrossRef]
- Karakikes, I.; Chaanine, A.H.; Kang, S.; Mukete, B.N.; Jeong, D.; Zhang, S.; Hajjar, R.J.; Lebeche, D. Therapeutic Cardiac-Targeted Delivery of MiR-1 Reverses Pressure Overload-Induced Cardiac Hypertrophy and Attenuates Pathological Remodeling. J. Am. Heart Assoc. 2013, 2, e000078. [Google Scholar] [CrossRef] [Green Version]
- Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; et al. MicroRNA-21 Contributes to Myocardial Disease by Stimulating MAP Kinase Signalling in Fibroblasts. Nature 2008, 456, 980–984. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, C.; Ban, T.; Liu, Y.; Mei, L.; Piao, X.; Zhao, D.; Lu, Y.; Chu, W.; Yang, B. A Novel Reciprocal Loop between MicroRNA-21 and TGFβRIII Is Involved in Cardiac Fibrosis. Int. J. Biochem. Cell Biol. 2012, 44, 2152–2160. [Google Scholar] [CrossRef]
- Roy, S.; Khanna, S.; Hussain, S.R.A.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA Expression in Response to Murine Myocardial Infarction: MiR-21 Regulates Fibroblast Metalloprotease-2 via Phosphatase and Tensin Homologue. Cardiovasc. Res. 2009, 82, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, J.M.; Schauerte, C.; Hübner, A.; Kölling, M.; Martino, F.; Scherf, K.; Batkai, S.; Zimmer, K.; Foinquinos, A.; Kaucsar, T.; et al. Osteopontin Is Indispensible for AP1-Mediated Angiotensin II-Related MiR-21 Transcription during Cardiac Fibrosis. Eur. Heart J. 2015, 36, 2184–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagpal, V.; Rai, R.; Place, A.T.; Murphy, S.B.; Verma, S.K.; Ghosh, A.K.; Vaughan, D.E. MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Circulation 2016, 133, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, K.; Lei, W.; Wu, H.; Wu, J.; Yang, Z.; Yan, S.; Lu, X.A.; Li, J.; Xia, X.; Han, X.; et al. LncRNA-Safe Contributes to Cardiac Fibrosis through Safe-Sfrp2-HuR Complex in Mouse Myocardial Infarction. Theranostics 2019, 9, 7282–7297. [Google Scholar] [CrossRef]
- Ounzain, S.; Micheletti, R.; Beckmann, T.; Schroen, B.; Alexanian, M.; Pezzuto, I.; Crippa, S.; Nemir, M.; Sarre, A.; Johnson, R.; et al. Genome-Wide Profiling of the Cardiac Transcriptome after Myocardial Infarction Identifies Novel Heart-Specific Long Non-Coding RNAs. Eur. Heart J. 2015, 36, 353–368. [Google Scholar] [CrossRef]
- Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; et al. Inhibition of the Cardiac Fibroblast-Enriched LncRNA Meg3 Prevents Cardiac Fibrosis and Diastolic Dysfunction. Circ. Res. 2017, 121, 575–583. [Google Scholar] [CrossRef]
- Micheletti, R.; Plaisance, I.; Abraham, B.J.; Sarre, A.; Ting, C.C.; Alexanian, M.; Maric, D.; Maison, D.; Nemir, M.; Young, R.A.; et al. The Long Noncoding RNA Wisper Controls Cardiac Fibrosis and Remodeling. Sci. Transl. Med. 2017, 9, eaai9118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.; Du, Y.; Shu, Y.; Gao, M.; Sun, F.; Luo, S.; Yang, T.; Zhan, L.; Yuan, Y.; Chu, W.; et al. MIAT Is a Pro-Fibrotic Long Non-Coding RNA Governing Cardiac Fibrosis in Post-Infarct Myocardium. Sci. Rep. 2017, 7, 42657. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.H.; Hao, W.; Meng, Q.T.; Du, X.B.; Lei, S.Q.; Xia, Z.Y. Long Non-Coding RNA MALAT1 Functions as a Mediator in Cardioprotective Effects of Fentanyl in Myocardial Ischemia-Reperfusion Injury. Cell Biol. Int. 2017, 41, 62–70. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, L.; Song, J.; Wang, Z.; Huang, X.; Guo, Z.; Chen, F.; Zhao, X. Long Noncoding RNA MALAT1 Mediates Cardiac Fibrosis in Experimental Postinfarct Myocardium Mice Model. J. Cell Physiol. 2019, 234, 2997–3006. [Google Scholar] [CrossRef]
- Sun, F.; Zhuang, Y.; Zhu, H.; Wu, H.; Li, D.; Zhan, L.; Yang, W.; Yuan, Y.; Xie, Y.; Yang, S.; et al. LncRNA PCFL Promotes Cardiac Fibrosis via MiR-378/GRB2 Pathway Following Myocardial Infarction. J. Mol. Cell Cardiol. 2019, 133, 188–198. [Google Scholar] [CrossRef]
- Gu, X.; Jiang, Y.N.; Wang, W.J.; Zhang, J.; Shang, D.S.; Sun, C.B.; Tian, J.T.; Tian, J.W.; Yu, B.; Zhang, Y. Comprehensive CircRNA Expression Profile and Construction of CircRNA-Related CeRNA Network in Cardiac Fibrosis. Biomed. Pharmacother. 2020, 125, 109944. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pan, W.; Yang, T.; Meng, X.; Jiang, Z.; Tao, L.; Wang, L. Upregulation of Circular RNA CircNFIB Attenuates Cardiac Fibrosis by Sponging MiR-433. Front. Genet. 2019, 10, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, P.; Si, W.; Wu, H.; Wang, C.; Liu, K.; Jia, Y.; Zhang, Z.; Zhang, F.; Kong, X.; Yang, Y.; et al. The Circular RNA CircHelz Enhances Cardiac Fibrosis by Facilitating the Nuclear Translocation of YAP1. Transl. Res. 2023, 257, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Xu, J.; Du, W.W.; Li, X.; Awan, F.M.; Li, F.; Misir, S.; Eshaghi, E.; Lyu, J.; Zhou, L.; et al. YAP Circular RNA, CircYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and Gamma-Actin Decreasing Actin Polymerization. Mol. Ther. 2021, 29, 1138–1150. [Google Scholar] [CrossRef]
- Tao, H.; Shi, K.H.; Yang, J.J.; Huang, C.; Liu, L.P.; Li, J. Epigenetic Regulation of Cardiac Fibrosis. Cell. Signal. 2013, 25, 1932–1938. [Google Scholar] [CrossRef] [Green Version]
- Papait, R.; Serio, S.; Condorelli, G. Role of the Epigenome in Heart Failure. Physiol. Rev. 2020, 100, 1753–1777. [Google Scholar] [CrossRef]
- Shao, J.; Liu, J.; Zuo, S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022, 11, 2347. [Google Scholar] [CrossRef]
- Stratton, M.S.; McKinsey, T.A. Epigenetic Regulation of Cardiac Fibrosis. J. Mol. Cell Cardiol. 2016, 92, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Spearman, A.D.; Ke, X.; Fu, Q.; Lane, R.H.; Majnik, A. Adverse Maternal Environment Leads to Cardiac Fibrosis in Adult Male Mice. Birth Defects Res. 2018, 110, 1551–1555. [Google Scholar] [CrossRef]
- Felisbino, M.B.; McKinsey, T.A. Epigenetics in Cardiac Fibrosis: Emphasis on Inflammation and Fibroblast Activation. JACC Basic. Transl. Sci. 2018, 3, 704–715. [Google Scholar] [CrossRef]
- Watson, C.J.; Horgan, S.; Neary, R.; Glezeva, N.; Tea, I.; Corrigan, N.; McDonald, K.; Ledwidge, M.; Baugh, J. Epigenetic Therapy for the Treatment of Hypertension-Induced Cardiac Hypertrophy and Fibrosis. J. Cardiovasc. Pharmacol. Ther. 2016, 21, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Chen, Z.; Huang, R.; Yao, Y.; Ma, G. Transforming Growth Factor Β1 Induces the Expression of Collagen Type I by DNA Methylation in Cardiac Fibroblasts. PLoS ONE 2013, 8, e60335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowson, C.; O’Reilly, S. DNA Methylation in Fibrosis. Eur. J. Cell Biol. 2016, 95, 323–330. [Google Scholar] [CrossRef]
- Wu, T.T.; Ma, Y.W.; Zhang, X.; Dong, W.; Gao, S.; Wang, J.Z.; Zhang, L.F.; Lu, D. Myocardial Tissue-Specific Dnmt1 Knockout in Rats Protects against Pathological Injury Induced by Adriamycin. Lab. Investig. 2020, 100, 974–985. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Ling, S.; Sun, Y.; Sheng, Z.; Chen, Z.; Pan, X.; Ma, G.; Xiaodong Pan, C. DNA Methylation Regulates α-Smooth Muscle Actin Expression during Cardiac Fibroblast Differentiation. J. Cell. Physiol. 2018, 234, 7174–7185. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Shi, P.; Zhao, X.-D.; Xuan, H.-Y.; Gong, W.-H.; Ding, X.-S. DNMT1 Deregulation of SOCS3 Axis Drives Cardiac Fibroblast Activation in Diabetic Cardiac Fibrosis. J. Cell. Physiol. 2020, 236, 3481–3494. [Google Scholar] [CrossRef]
- Tao, H.; Yang, J.J.; Chen, Z.W.; Xu, S.S.; Zhou, X.; Zhan, H.Y.; Shi, K.H. DNMT3A Silencing RASSF1A Promotes Cardiac Fibrosis through Upregulation of ERK1/2. Toxicology 2014, 323, 42–50. [Google Scholar] [CrossRef]
- Stenzig, J.; Schneeberger, Y.; Löser, A.; Peters, B.S.; Schaefer, A.; Zhao, R.R.; Ng, S.L.; Höppner, G.; Geertz, B.; Hirt, M.N.; et al. Pharmacological Inhibition of DNA Methylation Attenuates Pressure Overload-Induced Cardiac Hypertrophy in Rats. J. Mol. Cell Cardiol. 2018, 120, 53–63. [Google Scholar] [CrossRef]
- Watson, C.J.; Collier, P.; Tea, I.; Neary, R.; Watson, J.A.; Robinson, C.; Phelan, D.; Ledwidge, M.T.; Mcdonald, K.M.; Mccann, A.; et al. Hypoxia-Induced Epigenetic Modifications Are Associated with Cardiac Tissue Fibrosis and the Development of a Myofibroblast-like Phenotype. Hum. Mol. Genet. 2014, 23, 2176–2188. [Google Scholar] [CrossRef] [Green Version]
- Vujic, A.; Robinson, E.L.; Ito, M.; Haider, S.; Ackers-Johnson, M.; See, K.; Methner, C.; Figg, N.; Brien, P.; Roderick, H.L.; et al. Experimental Heart Failure Modelled by the Cardiomyocyte-Specific Loss of an Epigenome Modifier, DNMT3B. J. Mol. Cell Cardiol. 2015, 82, 174–183. [Google Scholar] [CrossRef]
- Xu, X.; Tan, X.; Tampe, B.; Nyamsuren, G.; Liu, X.; Maier, L.S.; Sossalla, S.; Kalluri, R.; Zeisberg, M.; Hasenfuss, G.; et al. Epigenetic Balance of Aberrant Rasal1 Promoter Methylation and Hydroxymethylation Regulates Cardiac Fibrosis. Cardiovasc. Res. 2015, 105, 279–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.C.; Wang, J.S.; Shyu, Y.C.; Fu, T.C.; Juan, Y.H.; Yuan, S.S.; Wang, C.H.; Yeh, C.H.; Liao, P.C.; Wu, H.Y.; et al. Hypermethylation of ACADVL Is Involved in the High-Intensity Interval Training-Associated Reduction of Cardiac Fibrosis in Heart Failure Patients. J. Transl. Med. 2023, 21, 187. [Google Scholar] [CrossRef]
- Glezeva, N.; Moran, B.; Collier, P.; Moravec, C.S.; Phelan, D.; Donnellan, E.; Russell-Hallinan, A.; O’connor, D.P.; Gallagher, W.M.; Gallagher, J.; et al. Targeted DNA Methylation Profiling of Human Cardiac Tissue Reveals Novel Epigenetic Traits and Gene Deregulation across Different Heart Failure Patient Subtypes. Circ. Heart Fail. 2019, 12, e005765. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Ehrlich, K.C.; Lacey, M.; Baribault, C.; Ehrlich, M. Epigenetics and Expression of Key Genes Associated with Cardiac Fibrosis: NLRP3, MMP2, MMP9, CCN2/CTGF and AGT. Epigenomics 2021, 13, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Spinale, F.G.; Villarreal, F. Targeting Matrix Metalloproteinases in Heart Disease: Lessons from Endogenous Inhibitors. Biochem. Pharmacol. 2014, 90, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, A.R.; Moore, E.T.; Daseke, M.J.; Valerio, F.M.; Flynn, E.R.; Lindsey, M.L. The Compendium of Matrix Metalloproteinase Expression in the Left Ventricle of Mice Following Myocardial Infarction. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H706–H714. [Google Scholar] [CrossRef] [Green Version]
- Di Giorgio, E.; Franforte, E.; Cefalù, S.; Rossi, S.; Dei Tos, A.P.; Brenca, M.; Polano, M.; Maestro, R.; Paluvai, H.; Picco, R.; et al. The Co-Existence of Transcriptional Activator and Transcriptional Repressor MEF2 Complexes Influences Tumor Aggressiveness. PLoS Genet. 2017, 13, e1006752. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.J.; Martin, K.A. Coordinating Regulation of Gene Expression in Cardiovascular Disease: Interactions between Chromatin Modifiers and Transcription Factors. Front. Cardiovasc. Med. 2017, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Connolly, J.; Biggar, K.K. Beyond Histones—The Expanding Roles of Protein Lysine Methylation. FEBS J. 2017, 284, 2732–2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.-J.; Anh Tran, T.T.; Wang, M.; Ranek, M.J.; Kokkonen-Simon, K.M.; Gao, J.; Luo, X.; Tan, W.; Kyrychenko, V.; Liao, L.; et al. Histone Lysine Dimethyl-Demethylase KDM3A Controls Pathological Cardiac Hypertrophy and Fibrosis. Nat. Commun. 2018, 9, 5230. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.; Sun, T.; Ramirez, V.; Lux, E.; Eren, M.; Vaughan, D.E.; Ghosh, A.K. Acetyltransferase P300 Inhibitor Reverses Hypertension-Induced Cardiac Fibrosis. J. Cell Mol. Med. 2019, 23, 3026–3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, S.K.; Kern, C.B.; Kimbrough, D.; Addy, B.; Kasiganesan, H.; Rivers, W.T.; Patel, R.K.; Chou, J.C.; Spinale, F.G.; Mukherjee, R.; et al. Inhibition of Class I Histone Deacetylase Activity Represses Matrix Metalloproteinase-2 and -9 Expression and Preserves LV Function Postmyocardial Infarction. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1391–H1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nural-Guvener, H.F.; Zakharova, L.; Nimlos, J.; Popovic, S.; Mastroeni, D.; Gaballa, M.A. HDAC Class I Inhibitor, Mocetinostat, Reverses Cardiac Fibrosis in Heart Failure and Diminishes CD90+ Cardiac Myofibroblast Activation. Fibrogenesis Tissue Repair. 2014, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, J.L.; Jiao, L.; An, Q.; Chen, X.; Qi, Y.; Wei, B.; Zheng, Y.; Shi, X.; Gao, E.; Liu, H.M.; et al. Myofibroblast Deficiency of LSD1 Alleviates TAC-Induced Heart Failure. Circ. Res. 2021, 129, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Essa, E.M.; Zile, M.R.; Stroud, R.E.; Rice, A.; Gumina, R.J.; Leier, C.V.; Spinale, F.G. Changes in Plasma Profiles of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of MMPs in Stress-Induced Cardiomyopathy. J. Card. Fail. 2012, 18, 487–492. [Google Scholar] [CrossRef] [Green Version]
- López, B.; González, A.; Díez, J. Circulating Biomarkers of Collagen Metabolism in Cardiac Diseases. Circulation 2010, 121, 1645–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Lu, Y.; Jiang, C. Inhibition of Histone Demethylase JMJD1C Attenuates Cardiac Hypertrophy and Fibrosis Induced by Angiotensin II. J. Recept. Signal Transduct. Res. 2020, 40, 339–347. [Google Scholar] [CrossRef]
- Wang, B.; Tan, Y.; Zhang, Y.; Zhang, S.; Duan, X.; Jiang, Y.; Li, T.; Zhou, Q.; Liu, X.; Zhan, Z. Loss of KDM5B Ameliorates Pathological Cardiac Fibrosis and Dysfunction by Epigenetically Enhancing ATF3 Expression. Exp. Mol. Med. 2022, 54, 2175–2187. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Long, F.; Zhong, W.; Su, H.; Su, Z.; Liu, X. Inhibition of the Cardiac Fibroblast-Enriched Histone Methyltransferase Dot1L Prevents Cardiac Fibrosis and Cardiac Dysfunction. Cell Biosci. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Lewis, G.A.; Dodd, S.; Clayton, D.; Bedson, E.; Eccleson, H.; Schelbert, E.B.; Naish, J.H.; Jimenez, B.D.; Williams, S.G.; Cunnington, C.; et al. Pirfenidone in Heart Failure with Preserved Ejection Fraction: A Randomized Phase 2 Trial. Nat. Med. 2021, 27, 1477–1482. [Google Scholar] [CrossRef]
- Coleman, R.C.; Eguchi, A.; Lieu, M.; Roy, R.; Barr, E.W.; Ibetti, J.; Lucchese, A.M.; Peluzzo, A.M.; Gresham, K.; Chuprun, J.K.; et al. A Peptide of the N Terminus of GRK5 Attenuates Pressure-Overload Hypertrophy and Heart Failure. Sci. Signal 2021, 14, eabb5968. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Aimo, A.; Castiglione, V.; Vergaro, G.; Panichella, G.; Senni, M.; Lombardi, C.M.; Emdin, M. The Place of Vericiguat in the Landscape of Treatment for Heart Failure with Reduced Ejection Fraction. Heart Fail. Rev. 2022, 27, 1165–1171. [Google Scholar] [CrossRef]
- Zannad, F.; Alla, F.; Dousset, B.; Perez, A.; Pitt, B. Limitation of Excessive Extracellular Matrix Turnover May Contribute to Survival Benefit of Spironolactone Therapy in Patients with Congestive Heart Failure: Insights from the Randomized Aldactone Evaluation Study (RALES). Rales Investigators. Circulation 2000, 102, 2700–2706. [Google Scholar] [CrossRef] [Green Version]
- Leader, C.J.; Wilkins, G.T.; Walker, R.J. The Effect of Spironolactone on Cardiac and Renal Fibrosis Following Myocardial Infarction in Established Hypertension in the Transgenic Cyp1a1Ren2 Rat. PLoS ONE 2021, 16, e0260554. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.J.; Passeri, J.J.; Baggish, A.L.; O’Callaghan, C.; Lowry, P.A.; Yannekis, G.; Abbara, S.; Ghoshhajra, B.B.; Rothman, R.D.; Ho, C.Y.; et al. Effects of Losartan on Left Ventricular Hypertrophy and Fibrosis in Patients with Nonobstructive Hypertrophic Cardiomyopathy. JACC Heart Fail. 2013, 1, 480. [Google Scholar] [CrossRef] [PubMed]
- AlQudah, M.; Hale, T.M.; Czubryt, M.P. Targeting the Renin-Angiotensin-Aldosterone System in Fibrosis. Matrix Biol. 2020, 91–92, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-Alpha, in Patients with Moderate-to-Severe Heart Failure: Results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) Trial. Circulation 2003, 107, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G. Effect of Rosuvastatin in Patients with Chronic Heart Failure (the GISSI-HF Trial): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2008, 372, 1231–1239. [Google Scholar] [CrossRef]
- Kjekshus, J.; Apetrei, E.; Barrios, V.; Böhm, M.; Cleland, J.G.; Cornel, J.H.; Dunselman, P.; Fonseca, C.; Goudev, A.; Grande, P.; et al. Rosuvastatin in Older Patients with Systolic Heart Failure. N. Engl. J. Med. 2007, 357, 2248–2261. [Google Scholar] [CrossRef]
- Ogata, T.; Miyauchi, T.; Sakai, S.; Takanashi, M.; Irukayama-Tomobe, Y.; Yamaguchi, I. Myocardial Fibrosis and Diastolic Dysfunction in Deoxycorticosterone Acetate-Salt Hypertensive Rats Is Ameliorated by the Peroxisome Proliferator-Activated Receptor-Alpha Activator Fenofibrate, Partly by Suppressing Inflammatory Responses Associated with the Nuclear Factor-Kappa-B Pathway. J. Am. Coll. Cardiol. 2004, 43, 1481–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglarz, M.; Touyz, R.M.; Viel, E.C.; Paradis, P.; Amiri, F.; Diep, Q.N.; Schiffrin, E.L. Peroxisome Proliferator-Activated Receptor-Alpha and Receptor-Gamma Activators Prevent Cardiac Fibrosis in Mineralocorticoid-Dependent Hypertension. Hypertension 2003, 42, 737–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diep, Q.N.; Benkirane, K.; Amiri, F.; Cohn, J.S.; Endemann, D.; Schiffrin, E.L. PPARα Activator Fenofibrate Inhibits Myocardial Inflammation and Fibrosis in Angiotensin II-Infused Rats. J. Mol. Cell Cardiol. 2004, 36, 295–304. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, Y.; Tao, T.; Guo, W.; Liu, R.; Huang, J.; Xu, G. Activation of PPARα Ameliorates Cardiac Fibrosis in Dsg2-Deficient Arrhythmogenic Cardiomyopathy. Cells 2022, 11, 3184. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Gu, J.; Wang, S.; Zhou, S.; Wang, Y.; Tan, Y.; Feng, W.; Fu, Y.; Mellen, N.; et al. Fenofibrate Increases Cardiac Autophagy via FGF21/SIRT1 and Prevents Fibrosis and Inflammation in the Hearts of Type 1 Diabetic Mice. Clin. Sci. 2016, 130, 625–641. [Google Scholar] [CrossRef]
- Sarma, S. Use of Clinically Available PPAR Agonists for Heart Failure; Do the Risks Outweigh the Potential Benefits? Curr. Mol. Pharmacol. 2012, 5, 255–263. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, L.; Wang, M.; Zhou, S.; Lu, Y.; Cui, H.; Racanelli, A.C.; Zhang, L.; Ye, T.; Ding, B.; et al. Targeting Fibrosis, Mechanisms and Cilinical Trials. Signal Transduct. Target. Ther. 2022, 7, 206. [Google Scholar] [CrossRef]
- Duhaney, T.A.S.; Cui, L.; Rude, M.K.; Lebrasseur, N.K.; Ngoy, S.; De Silva, D.S.; Siwik, D.A.; Liao, R.; Sam, F. Peroxisome Proliferator-Activated Receptor Alpha-Independent Actions of Fenofibrate Exacerbates Left Ventricular Dilation and Fibrosis in Chronic Pressure Overload. Hypertension 2007, 49, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Murphy, A.J.; Dart, A.M. A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease. Front. Pharmacol. 2017, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Camargo, R.; Abual’anaz, B.; Rattan, S.G.; Filomeno, K.L.; Dixon, I.M.C. Novel Factors That Activate and Deactivate Cardiac Fibroblasts: A New Perspective for Treatment of Cardiac Fibrosis. Wound Repair. Regen. 2021, 29, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Hu, M.; Peng, J.; Zhang, X.; Sanders, Y.Y. HDAC Inhibitors as Antifibrotic Drugs in Cardiac and Pulmonary Fibrosis. Ther. Adv. Chronic Dis. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morfino, P.; Aimo, A.; Castiglione, V.; Gálvez-Montón, C.; Emdin, M.; Bayes-Genis, A. Treatment of Cardiac Fibrosis: From Neuro-Hormonal Inhibitors to CAR-T Cell Therapy. Heart Fail. Rev. 2023, 28, 555–569. [Google Scholar] [CrossRef]
- Aghajanian, H.; Kimura, T.; Rurik, J.G.; Hancock, A.S.; Leibowitz, M.S.; Li, L.; Scholler, J.; Monslow, J.; Lo, A.; Han, W.; et al. Targeting Cardiac Fibrosis with Engineered T Cells. Nature 2019, 573, 430–433. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Chen, D.H.; Guha, A.; Mackenzie, S.; Walker, J.M.; Roddie, C. CAR T Cell Therapy-Related Cardiovascular Outcomes and Management: Systemic Disease or Direct Cardiotoxicity? JACC Cardio Oncol. 2020, 2, 97–109. [Google Scholar] [CrossRef]
- Sarwar, M.; Du, X.J.; Dschietzig, T.B.; Summers, R.J. The Actions of Relaxin on the Human Cardiovascular System. Br. J. Pharmacol. 2017, 174, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, H.H.; Leo, C.H.; Parry, L.J.; Ritchie, R.H. Relaxin as a Therapeutic Target for the Cardiovascular Complications of Diabetes. Front. Pharmacol. 2018, 9, 501. [Google Scholar] [CrossRef] [PubMed]
- Metra, M.; Teerlink, J.R.; Cotter, G.; Davison, B.A.; Felker, G.M.; Filippatos, G.; Greenberg, B.H.; Pang, P.S.; Ponikowski, P.; Voors, A.A.; et al. Effects of Serelaxin in Patients with Acute Heart Failure. N. Engl. J. Med. 2019, 381, 716–726. [Google Scholar] [CrossRef]
- Samuel, C.S.; Bodaragama, H.; Chew, J.Y.; Widdop, R.E.; Royce, S.G.; Hewitson, T.D. Serelaxin Is a More Efficacious Antifibrotic than Enalapril in an Experimental Model of Heart Disease. Hypertension 2014, 64, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Täubel, J.; Hauke, W.; Rump, S.; Viereck, J.; Batkai, S.; Poetzsch, J.; Rode, L.; Weigt, H.; Genschel, C.; Lorch, U.; et al. Novel Antisense Therapy Targeting MicroRNA-132 in Patients with Heart Failure: Results of a First-in-Human Phase 1b Randomized, Double-Blind, Placebo-Controlled Study. Eur. Heart J. 2021, 42, 178. [Google Scholar] [CrossRef]
- Ma, Z.G.; Yuan, Y.P.; Wu, H.M.; Zhang, X.; Tang, Q.Z. Cardiac Fibrosis: New Insights into the Pathogenesis. Int. J. Biol. Sci. 2018, 14, 1645–1657. [Google Scholar] [CrossRef] [Green Version]
- Spoladore, R.; Falasconi, G.; Fiore, G.; Di Maio, S.; Preda, A.; Slavich, M.; Margonato, A.; Fragasso, G. Cardiac Fibrosis: Emerging Agents in Preclinical and Clinical Development. Expert. Opin. Investig. Drugs 2021, 30, 153–166. [Google Scholar] [CrossRef]
- Pandey, A.; Garg, S.; Matulevicius, S.A.; Shah, A.M.; Garg, J.; Drazner, M.H.; Amin, A.; Berry, J.D.; Marwick, T.H.; Marso, S.P.; et al. Effect of Mineralocorticoid Receptor Antagonists on Cardiac Structure and Function in Patients with Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: A Meta-Analysis and Systematic Review. J. Am. Heart Assoc. 2015, 4, e002137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Lueder, T.G.; Wang, B.H.; Kompa, A.R.; Huang, L.; Webb, R.; Jordaan, P.; Atar, D.; Krum, H. Angiotensin Receptor Neprilysin Inhibitor LCZ696 Attenuates Cardiac Remodeling and Dysfunction after Myocardial Infarction by Reducing Cardiac Fibrosis and Hypertrophy. Circ. Heart Fail. 2015, 8, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richeldi, L.; Fernández Pérez, E.R.; Costabel, U.; Albera, C.; Lederer, D.J.; Flaherty, K.R.; Ettinger, N.; Perez, R.; Scholand, M.B.; Goldin, J.; et al. Pamrevlumab, an Anti-Connective Tissue Growth Factor Therapy, for Idiopathic Pulmonary Fibrosis (PRAISE): A Phase 2, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Respir. Med. 2020, 8, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zhang, Y.; Gong, M.; Yang, Q.; Yuan, M.; Yuan, M.; Suo, Y.; Wang, X.; Li, Y.; Bao, Q.; et al. Ivabradine Ameliorates Cardiac Function in Heart Failure with Preserved and Reduced Ejection Fraction via Upregulation of MiR-133a. Oxid. Med. Cell Longev. 2021, 2021, 1257283. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.M.; Chen, Y.S.; Harn, H.J. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules 2019, 24, 4188. [Google Scholar] [CrossRef] [Green Version]
- Takawale, A.; Zhang, P.; Patel, V.B.; Wang, X.; Oudit, G.; Kassiri, Z. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin Β1 Interaction. Hypertension 2017, 69, 1092–1103. [Google Scholar] [CrossRef]
- Kassis-George, H.; Verlinden, N.J.; Fu, S.; Kanwar, M. Vericiguat in Heart Failure with a Reduced Ejection Fraction: Patient Selection and Special Considerations. Ther. Clin. Risk Manag. 2022, 18, 315–322. [Google Scholar] [CrossRef]
- Hermida, N.; Michel, L.; Esfahani, H.; Dubois-Deruy, E.; Hammond, J.; Bouzin, C.; Markl, A.; Colin, H.; Steenbergen, A.V.; De Meester, C.; et al. Cardiac Myocyte Beta3-Adrenergic Receptors Prevent Myocardial Fibrosis by Modulating Oxidant Stress-Dependent Paracrine Signaling. Eur. Heart J. 2018, 39, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Hayashidani, S.; Tsutsui, H.; Shiomi, T.; Suematsu, N.; Kinugawa, S.; Ide, T.; Wen, J.; Takeshita, A. Fluvastatin, a 3-Hydroxy-3-Methylglutaryl Coenzyme a Reductase Inhibitor, Attenuates Left Ventricular Remodeling and Failure after Experimental Myocardial Infarction. Circulation 2002, 105, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Temirkhanova, K.; Saparov, A. Novel Therapies for the Treatment of Cardiac Fibrosis Following Myocardial Infarction. Biomedicines 2022, 10, 2178. [Google Scholar] [CrossRef]
- Bretherton, R.; Bugg, D.; Olszewski, E.; Davis, J. Regulators of Cardiac Fibroblast Cell State. Matrix Biol. 2020, 91–92, 117–135. [Google Scholar] [CrossRef] [PubMed]
- German, D.M.; Mitalipov, S.; Mishra, A.; Kaul, S. Therapeutic Genome Editing in Cardiovascular Diseases. JACC Basic. Transl. Sci. 2019, 4, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Wei, B.; Fu, X.; Wang, C.; Wu, Y. Natural Products That Target the NLRP3 Inflammasome to Treat Fibrosis. Front. Pharmacol. 2020, 11, 591393. [Google Scholar] [CrossRef] [PubMed]
- Rurik, J.G.; Tombácz, I.; Yadegari, A.; Méndez Fernández, P.O.; Shewale, S.V.; Li, L.; Kimura, T.; Soliman, O.Y.; Papp, T.E.; Tam, Y.K.; et al. CAR T Cells Produced in Vivo to Treat Cardiac Injury. Science 2022, 375, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Majid, A.; Priyadarshini, C.G.P. Millet Derived Bioactive Peptides: A Review on Their Functional Properties and Health Benefits. Crit. Rev. Food Sci. Nutr. 2020, 60, 3342–3351. [Google Scholar] [CrossRef]
- Chen, K.; Chen, W.; Liu, S.L.; Wu, T.S.; Yu, K.F.; Qi, J.; Wang, Y.; Yao, H.; Huang, X.Y.; Han, Y.; et al. Epigallocatechingallate Attenuates Myocardial Injury in a Mouse Model of Heart Failure through TGF-Β1/Smad3 Signaling Pathway. Mol. Med. Rep. 2018, 17, 7652. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Du, N.; Zhang, L.; Wu, X.; Hu, Y.; Li, X.; Shen, N.; Li, Y.; Yang, B.; Xu, C.; et al. Genistein Alleviates Pressure Overload-Induced Cardiac Dysfunction and Interstitial Fibrosis in Mice. Br. J. Pharmacol. 2015, 172, 5559–5572. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021, 26, 4021. [Google Scholar] [CrossRef]
- Jubaidi, F.F.; Zainalabidin, S.; Taib, I.S.; Hamid, Z.A.; Budin, S.B. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Int. J. Mol. Sci. 2021, 22, 5094. [Google Scholar] [CrossRef]
- Kozłowska, A.; Szostak-Węgierek, D. Targeting Cardiovascular Diseases by Flavonols: An Update. Nutrients 2022, 14, 1439. [Google Scholar] [CrossRef]
- Gao, L.; Yuan, P.; Wei, Y.; Fu, Y.; Hou, Y.; Li, P.; Chen, Y.; Ruan, Y.; Zhou, N.; Zheng, X.; et al. Total Flavonoids of Selaginella Tamariscina (P.Beauv.) Spring Ameliorates Doxorubicin-Induced Cardiotoxicity by Modulating Mitochondrial Dysfunction and Endoplasmic Reticulum Stress via Activating MFN2/PERK. Phytomedicine 2022, 100, 154065. [Google Scholar] [CrossRef]
- Wang, L.; Tan, A.; An, X.; Xia, Y.; Xie, Y. Quercetin Dihydrate Inhibition of Cardiac Fibrosis Induced by Angiotensin II in Vivo and in Vitro. Biomed. Pharmacother. 2020, 127, 110205. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, D.; Chen, L.; Liu, Y.; Zhao, Y.; Mei, G.; Tang, Y.; Yang, Y.; Yao, P.; Gao, C. Quercetin Ameliorated Cardiac Injury via Reducing Inflammatory Actions and the Glycerophospholipid Metabolism Dysregulation in a Diabetic Cardiomyopathy Mouse Model. Food Funct. 2022, 13, 7847–7856. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, T.; Wang, J.; Liu, Y.; Yan, P.; Meng, Q.; Yin, Y.; Wang, S. SIRT5-Related Desuccinylation Modification Contributes to Quercetin-Induced Protection against Heart Failure and High-Glucose-Prompted Cardiomyocytes Injured through Regulation of Mitochondrial Quality Surveillance. Oxid. Med. Cell Longev. 2021, 2021, 5876841. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Pozo, M.; Ramirez-Sanchez, I.; Garate-Carrillo, A.; Ito, B.; Navarrete, V.; Haro, M.; Garcia, R.; Carson, N.; Ceballos, G.; Villarreal, F. (−)-Epicatechin Ameliorates Cardiac Fibrosis in a Female Rat Model of Pre-Heart Failure with Preserved Ejection Fraction. J. Med. Food 2022, 25, 836–844. [Google Scholar] [CrossRef]
- Hua, F.; Li, J.Y.; Zhang, M.; Zhou, P.; Wang, L.; Ling, T.J.; Bao, G.H. Kaempferol-3-O-Rutinoside Exerts Cardioprotective Effects through NF-ΚB/NLRP3/Caspase-1 Pathway in Ventricular Remodeling after Acute Myocardial Infarction. J. Food Biochem. 2022, 46, e14305. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.D.; Jha, N.K.; Jha, S.K.; Sadek, B.; Ojha, S. Pharmacological and Molecular Insight on the Cardioprotective Role of Apigenin. Nutrients 2023, 15, 385. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Niu, G.; Weng, J.; Zhang, Q.; Xie, M.; Li, C.; Sun, K. Apigenin Inhibits Isoproterenol-Induced Myocardial Fibrosis and Smad Pathway in Mice by Regulating Oxidative Stress and MiR-122-5p/155-5p Expressions. Drug Dev. Res. 2022, 83, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Sharma, K. Organosulfur Compounds in Aged Garlic Extract Ameliorate Glucose Induced Diabetic Cardiomyopathy by Attenuating Oxidative Stress, Cardiac Fibrosis, and Cardiac Apoptosis. Cardiovasc. Hematol. Agents Med. Chem. 2023, 21. [Google Scholar] [CrossRef]
- Cui, T.; Liu, W.; Yu, C.; Ren, J.; Li, Y.; Shi, X.; Li, Q.; Zhang, J. Protective Effects of Allicin on Acute Myocardial Infarction in Rats via Hydrogen Sulfide-Mediated Regulation of Coronary Arterial Vasomotor Function and Myocardial Calcium Transport. Front. Pharmacol. 2022, 12, 3728. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gloria, J.L.; Arellano-Buendía, A.S.; Juárez-Rojas, J.G.; García-Arroyo, F.E.; Argüello-García, R.; Sánchez-Muñoz, F.; Sánchez-Lozada, L.G.; Osorio-Alonso, H. Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 9082. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, M.; Guo, R.; Ding, Y.; Zhang, H.; He, Y. The Improvement of Sulforaphane in Type 2 Diabetes Mellitus (T2DM) and Related Complications: A Review. Trends Food Sci. Technol. 2022, 129, 397–407. [Google Scholar] [CrossRef]
- Poletto Bonetto, J.H.; Luz De Castro, A.; Fernandes, R.O.; Corssac, G.B.; Cordero, E.A.; Schenkel, P.C.; Sander Da Rosa Araujo, A.; Belló-Klein, A. Sulforaphane Effects on Cardiac Function and Calcium-Handling–Related Proteins in 2 Experimental Models of Heart Disease: Ischemia-Reperfusion and Infarction. J. Cardiovasc. Pharmacol. 2022, 79, 325–334. [Google Scholar] [CrossRef]
- Wang, H.; Tian, Y.; Zhang, Q.; Liu, W.; Meng, L.; Jiang, X.; Xin, Y. Essential Role of Nrf2 in Sulforaphane-Induced Protection against Angiotensin II-Induced Aortic Injury. Life Sci. 2022, 306, 120780. [Google Scholar] [CrossRef]
- El-Ashmawy, N.E.; Khedr, N.F.; Shaban, M.N.; Al-Ashmawy, G.M. Diallyl Trisulfide Modulated Autophagy in Isoproterenol Induced Acute Myocardial Infarction. Clin. Phytosci. 2022, 8, 20. [Google Scholar] [CrossRef]
- Zainalabidin, S.; Aziz, N.F.; Murugan, D.D.; Mahadi, M.K. S-Allylcysteine Limits Cardiac Structural Changes via Antioxidant Status in Ovariectomized Rats with Induced Myocardial Injury. Eur. Heart J. 2023, 44. [Google Scholar] [CrossRef]
- Zainalabidin, S.; Ramalingam, A.; Mohamed, S.F.A.; Ali, S.S.; Latip, J.; Yap, W.B. S-Allylcysteine Therapy Reduces Adverse Cardiac Remodelling after Myocardial Infarction in a Rat Model. J. Funct. Foods 2020, 66, 103750. [Google Scholar] [CrossRef]
- Hua, F.; Shi, L.; Zhou, P. Phenols and Terpenoids: Natural Products as Inhibitors of NLRP3 Inflammasome in Cardiovascular Diseases. Inflammopharmacology 2022, 30, 137–147. [Google Scholar] [CrossRef]
- Younis, N.S. β-Caryophyllene Ameliorates Cyclophosphamide Induced Cardiac Injury: The Association of TLR4/NFκB and Nrf2/HO1/NQO1 Pathways. J. Cardiovasc. Dev. Dis. 2022, 9, 133. [Google Scholar] [CrossRef]
- Rhana, P.; Barros, G.M.; Santos, V.C.O.; Costa, A.D.; dos Santos, D.M.; Fernandes-Braga, W.; Durço, A.O.; Santos, M.R.V.; Roman-Campos, D.; de Vasconcelos, C.M.L.; et al. S-Limonene Protects the Heart in an Experimental Model of Myocardial Infarction Induced by Isoproterenol: Possible Involvement of Mitochondrial Reactive Oxygen Species. Eur. J. Pharmacol. 2022, 930, 175134. [Google Scholar] [CrossRef]
- AlSaffar, R.M.; Rashid, S.; Ahmad, S.B.; Rehman, M.U.; Hussain, I.; Parvaiz Ahmad, S.; Ganaie, M.A. D-Limonene (5 (One-Methyl-Four-[1-Methylethenyl]) Cyclohexane) Diminishes CCl4-Induced Cardiac Toxicity by Alleviating Oxidative Stress, Inflammatory and Cardiac Markers. Redox Rep. 2022, 27, 92. [Google Scholar] [CrossRef]
- Wang, X.T.; Gong, Y.; Zhou, B.; Yang, J.; Cheng, Y.; Zhao, J.G.; Qi, M.Y. Ursolic Acid Ameliorates Oxidative Stress, Inflammation and Fibrosis in Diabetic Cardiomyopathy Rats. Biomed. Pharmacother. 2018, 97, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J.; Kujaciński, M.; Wiciński, M. Beneficial Effects of Ursolic Acid and Its Derivatives—Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients 2021, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, Z.G.; Yuan, Y.P.; Xu, S.C.; Wei, W.Y.; Song, P.; Kong, C.Y.; Deng, W.; Tang, Q.Z. Rosmarinic Acid Attenuates Cardiac Fibrosis Following Long-Term Pressure Overload via AMPKα/Smad3 Signaling. Cell Death Dis. 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Castellano, J.M.; Ramos-Romero, S.; Perona, J.S.; Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Citation: Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022, 14, 623. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Tang, Z.; Li, B.; Yu, J.; Li, W.; Liu, Z.; Tian, C. Resveratrol against Cardiac Fibrosis: Research Progress in Experimental Animal Models. Molecules 2021, 26, 6860. [Google Scholar] [CrossRef] [PubMed]
- Grujić-Milanović, J.; Jaćević, V.; Miloradović, Z.; Jovović, D.; Milosavljević, I.; Milanović, S.D.; Mihailović-Stanojević, N. Resveratrol Protects Cardiac Tissue in Experimental Malignant Hypertension due to Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Properties. Int. J. Mol. Sci. 2021, 22, 5006. [Google Scholar] [CrossRef]
- Fan, S.; Hu, Y.; You, Y.; Xue, W.; Chai, R.; Zhang, X.; Shou, X.; Shi, J. Role of Resveratrol in Inhibiting Pathological Cardiac Remodeling. Front. Pharmacol. 2022, 13, 3452. [Google Scholar] [CrossRef]
- Zivarpour, P.; Reiner, Ž.; Hallajzadeh, J.; Mirsafaei, L. Resveratrol and Cardiac Fibrosis Prevention and Treatment. Curr. Pharm. Biotechnol. 2021, 23, 190–200. [Google Scholar] [CrossRef]
- Jiang, J.; Gu, X.; Wang, H.; Ding, S. Resveratrol Improves Cardiac Function and Left Ventricular Fibrosis after Myocardial Infarction in Rats by Inhibiting NLRP3 Inflammasome Activity and the TGF-Β1/SMAD2 Signaling Pathway. PeerJ 2021, 9, e11501. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jin, J.; Pu, F.; Bai, Y.; Chen, Y.; Li, Y.; Wang, X. Cardioprotective Effects of Curcumin against Myocardial I/R Injury: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Front. Pharmacol. 2023, 14, 630. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Zhao, X.; Liang, W.; Qin, X.; Bian, L.; He, K.; Wu, Z. Curcumin, Novel Application in Reversing Myocardial Fibrosis in the Treatment for Atrial Fibrillation from the Perspective of Transcriptomics in Rat Model. Biomed. Pharmacother. 2022, 146, 112522. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, Y.; Chen, Q.; Hong, T.; Zhong, Z.; He, J.; Ni, C. Curcumin Ameliorates Cardiac Fibrosis by Regulating Macrophage-Fibroblast Crosstalk via IL18-P-SMAD2/3 Signaling Pathway Inhibition. Front. Pharmacol. 2022, 12, 3972. [Google Scholar] [CrossRef] [PubMed]
- Huyut, Z.; Uçar, B.; Yıldızhan, K.; Altındağ, F. The Protective Effect of Curcumin on Cardiac Markers and Fibrosis in Abemaciclib-Induced Cardiac Damage in Rats. J. Biochem. Mol. Toxicol. 2023, 37, e23226. [Google Scholar] [CrossRef]
- Lin, C.; Wei, D.; Xin, D.; Pan, J.; Huang, M. Ellagic Acid Inhibits Proliferation and Migration of Cardiac Fibroblasts by Down-Regulating Expression of HDAC1. J. Toxicol. Sci. 2019, 44, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Xing, W.; Zhang, M.; Geng, F.; Yang, H.; Zhang, H.; Zhang, X.; Li, J.; Dong, L.; Gao, F. Antifibrotic Cardioprotection of Berberine via Downregulating Myocardial IGF-1 Receptor-Regulated MMP-2/MMP-9 Expression in Diabetic Rats. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H802–H813. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, C. Updates of Recent Vinpocetine Research in Treating Cardiovascular Diseases. J. Cell Immunol. 2020, 2, 211. [Google Scholar] [CrossRef]
- Wu, M.P.; Zhang, Y.S.; Xu, X.; Zhou, Q.; Li, J.D.; Yan, C. Vinpocetine Attenuates Pathological Cardiac Remodeling by Inhibiting Cardiac Hypertrophy and Fibrosis. Cardiovasc. Drugs Ther. 2017, 31, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.G.; Yuan, Y.P.; Zhang, X.; Xu, S.C.; Wang, S.S.; Tang, Q.Z. Piperine Attenuates Pathological Cardiac Fibrosis Via PPAR-γ/AKT Pathways. EBioMedicine 2017, 18, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Lu, J.; Gu, X.R.; Jia, Y.; Shen, B.; Weiming, Y.; Du, G.H.; Zheng, C.B. Cardioprotective Effects and Mechanisms of Saponins on Cardiovascular Disease. Nat. Prod. Commun. 2022, 17. [Google Scholar] [CrossRef]
- Sun, J.; Wang, R.; Chao, T.; Peng, J.; Wang, C.; Chen, K. Ginsenoside Re Inhibits Myocardial Fibrosis by Regulating MiR-489/Myd88/NF-ΚB Pathway. J. Ginseng Res. 2023, 47, 218. [Google Scholar] [CrossRef]
- Rostom, B.; Karaky, R.; Kassab, I.; Sylla-Iyarreta Veitía, M. Coumarins Derivatives and Inflammation: Review of Their Effects on the Inflammatory Signaling Pathways. Eur. J. Pharmacol. 2022, 922, 174867. [Google Scholar] [CrossRef] [PubMed]
- Stasi, L.C. Di Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs. Pharmaceuticals 2023, 16, 511. [Google Scholar] [CrossRef] [PubMed]
- Rong, N.; Yang, R.; Abdel, I.; Ibrahim, A.; Zhang, W. Cardioprotective Role of Scopoletin on Isoproterenol-Induced Myocardial Infarction in Rats. Appl. Biochem. Biotechnol. 2010, 195, 919–932. [Google Scholar] [CrossRef]
- Kang, L.L.; Zhang, D.M.; Jiao, R.Q.; Pan, S.M.; Zhao, X.J.; Zheng, Y.J.; Chen, T.Y.; Kong, L.D. Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/MiR-15b Pathway. Oxid. Med. Cell Longev. 2019, 2019, 1243215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguly, R.; Singh, S.V.; Jaiswal, K.; Kumar, R.; Pandey, A.K. Modulatory Effect of Caffeic Acid in Alleviating Diabetes and Associated Complications. World J. Diabetes 2023, 14, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.; Lopes, N.M.F. Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Front. Physiol. 2020, 11, 595516. [Google Scholar] [CrossRef]
- Nwafor, E.O.; Lu, P.; Zhang, Y.; Liu, R.; Peng, H.; Xing, B.; Liu, Y.; Li, Z.; Zhang, K.; Zhang, Y.; et al. Chlorogenic Acid: Potential Source of Natural Drugs for the Therapeutics of Fibrosis and Cancer. Transl. Oncol. 2022, 15, 101294. [Google Scholar] [CrossRef]
- Qin, L.; Zang, M.; Xu, Y.; Zhao, R.; Wang, Y.; Mi, Y.; Mei, Y. Chlorogenic Acid Alleviates Hyperglycemia-Induced Cardiac Fibrosis through Activation of the NO/CGMP/PKG Pathway in Cardiac Fibroblasts. Mol. Nutr. Food Res. 2021, 65, 2000810. [Google Scholar] [CrossRef]
- Chen, J.; Huayu, M.; Su, S.; Wang, S.; Yang, Z.; Nan, X.; Lu, D.; Li, Z. Vanillic Acid Alleviates Right Ventricular Function in Rats with MCT-Induced Pulmonary Arterial Hypertension. Nat. Prod. Commun. 2023, 18, 1934578X221148896. [Google Scholar] [CrossRef]
- Yue, E.; Yu, Y.; Wang, X.; Liu, B.; Bai, Y.; Yang, B. Anthocyanin Protects Cardiac Function and Cardiac Fibroblasts From High-Glucose Induced Inflammation and Myocardial Fibrosis by Inhibiting IL-17. Front. Pharmacol. 2021, 11, 2289. [Google Scholar] [CrossRef]
- Ma, D.; Zheng, B.; Du, H.; Han, X.; Zhang, X.; Zhang, J.; Gao, Y.; Sun, S.; Chu, L. The Mechanism Underlying the Protective Effects of Tannic Acid Against Isoproterenol-Induced Myocardial Fibrosis in Mice. Front. Pharmacol. 2020, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Arroo, R. The Protective Effects of Flavonoids and Carotenoids against Diabetic Complications—A Review of in Vivo Evidence. Front. Nutr. 2023, 10, 382. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, W.; Xiao, W. Astaxanthin: A Promising Therapeutic Agent for Organ Fibrosis. Pharmacol. Res. 2023, 188, 106657. [Google Scholar] [CrossRef]
- Kalstad, A.A.; Myhre, P.L.; Laake, K.; Tveit, S.H.; Schmidt, E.B.; Smith, P.; Nilsen, D.W.T.; Tveit, A.; Fagerland, M.W.; Solheim, S.; et al. Effects of N-3 Fatty Acid Supplements in Elderly Patients after Myocardial Infarction. Circulation 2021, 143, 528–539. [Google Scholar] [CrossRef]
- Qin, L.; Mei, Y.; An, C.; Ning, R.; Zhang, H. Docosahexaenoic Acid Administration Improves Diabetes-Induced Cardiac Fibrosis through Enhancing Fatty Acid Oxidation in Cardiac Fibroblast. J. Nutr. Biochem. 2023, 113, 109244. [Google Scholar] [CrossRef]
- Gharraee, N.; Wang, Z.; Pflum, A.; Medina-Hernandez, D.; Herrington, D.; Zhu, X.; Meléndez, G.C. Eicosapentaenoic Acid Ameliorates Cardiac Fibrosis and Tissue Inflammation in Spontaneously Hypertensive Rats. J. Lipid Res. 2022, 63, 100292. [Google Scholar] [CrossRef]
- Majid, A.; Lakshmikanth, M.; Lokanath, N.K.; Poornima Priyadarshini, C.G. Generation, Characterization and Molecular Binding Mechanism of Novel Dipeptidyl Peptidase-4 Inhibitory Peptides from Sorghum Bicolor Seed Protein. Food Chem. 2022, 369, 130888. [Google Scholar] [CrossRef]
- Ho, J.H.; Baskaran, R.; Wang, M.F.; Yang, H.S.; Lo, Y.H.; Mohammedsaleh, Z.M.; Lin, W.T. Bioactive Peptides and Exercise Modulate the AMPK/SIRT1/PGC-1α/FOXO3 Pathway as a Therapeutic Approach for Hypertensive Rats. Pharmaceuticals 2022, 15, 819. [Google Scholar] [CrossRef]
- Huang, C.Y.; Nithiyanantham, S.; Liao, J.Y.; Lin, W.T. Bioactive Peptides Attenuate Cardiac Hypertrophy and Fibrosis in Spontaneously Hypertensive Rat Hearts. J. Food Drug Anal. 2020, 28, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhadkaria, A.; Narvekar, D.T.; Nagar, D.P.; Sah, S.P.; Srivastava, N.; Bhagyawant, S.S. Purification, Molecular Docking and in Vivo Analyses of Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Protein Hydrolysate of Moth Bean (Vigna Aconitifolia (Jacq.) Màrechal) Seeds. Int. J. Biol. Macromol. 2023, 230, 123138. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Liao, W.; Spaans, F.; Pasha, M.; Davidge, S.T.; Wu, J. Chicken Muscle Hydrolysate Reduces Blood Pressure in Spontaneously Hypertensive Rats, Upregulates ACE2, and Ameliorates Vascular Inflammation, Fibrosis, and Oxidative Stress. J. Food Sci. 2022, 87, 1292–1305. [Google Scholar] [CrossRef]
- Ebrahimzadeh, F.; Farhangi, M.A.; Tausi, A.Z.; Mahmoudinezhad, M.; Mesgari-Abbasi, M.; Jafarzadeh, F. Vitamin D Supplementation and Cardiac Tissue Inflammation in Obese Rats. BMC Nutr. 2022, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-L. Anti-Inflammatory Effect of Vitamin D via Suppression of YKL-40 Production: One of the Possible Mechanisms for Cardiovascular Protection. Korean Circ. J. 2023, 53, 103–105. [Google Scholar] [CrossRef] [PubMed]
- de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and Cardiovascular Health. Clin. Nutr. 2021, 40, 2946. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Tsai, C.C.; Kuo, W.W.; Ho, T.J.; Day, C.H.; Pai, P.Y.; Chung, L.C.; Huang, C.C.; Wang, H.F.; Liao, P.H.; et al. Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats. Int. J. Med. Sci. 2016, 13, 277. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, J.; Li, L.; Zhang, H.; Pang, D.; Ouyang, H.; Jin, X.; Tang, X. Clostridium Butyricum and Bifidobacterium Pseudolongum Attenuate the Development of Cardiac Fibrosis in Mice. Microbiol. Spectr. 2022, 10, e0252422. [Google Scholar] [CrossRef]
- Chen, K.; Wu, S.; Guan, Y.; Ma, Y.; Huang, Y.; Liu, X.; Quan, D.; Zhang, J.; Lv, L.; Zhang, G. Changes in Gut Microbiota Linked to a Prevention of Cardiac Remodeling Induced by Hypertension in Spontaneously Hypertensive Rats Fed a Pawpaw Fruit Diet. Heliyon 2023, 9, e15576. [Google Scholar] [CrossRef]
- Gorabi, A.M.; Hajighasemi, S.; Kiaie, N.; Rosano, G.M.C.; Sathyapalan, T.; Al-Rasadi, K.; Sahebkar, A. Anti-Fibrotic Effects of Curcumin and Some of Its Analogues in the Heart. Heart Fail. Rev. 2020, 25, 731–743. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Zhang, J.; Xia, Z.; Chen, W. Streptozotocin-Induced Diabetic Cardiomyopathy in Rats: Ameliorative Effect of PIPERINE via Bcl2, Bax/Bcl2, and Caspase-3 Pathways. Biosci. Biotechnol. Biochem. 2020, 84, 2533–2544. [Google Scholar] [CrossRef] [PubMed]
- Hughey, J.R.; Keen, J.M.; Miller, D.A.; Brough, C.; McGinity, J.W. Preparation and Characterization of Fusion Processed Solid Dispersions Containing a Viscous Thermally Labile Polymeric Carrier. Int. J. Pharm. 2012, 438, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Probert, H.M.; Loo, J.V.; Rastall, R.A.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Updating the Concept of Prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemoto, J.K.; Reynolds, J.K.; Remsberg, C.M.; Vega-Villa, K.R.; Davies, N.M. Clinical Pharmacokinetic and Pharmacodynamic Profile of Etoricoxib. Clin. Pharmacokinet. 2008, 47, 703–720. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A Novel Drug Delivery Approach for Enhancement of Bioavailability. Recent. Pat. Nanotechnol. 2020, 14, 276–293. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, L.; Shen, M.; Tu, C.; Wu, H.; Gu, M.; Paik, D.T.; Wu, J.C. Generation of Quiescent Cardiac Fibroblasts from Human Induced Pluripotent Stem Cells for In Vitro Modeling of Cardiac Fibrosis. Circ. Res. 2019, 125, 552. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, H.; Huang, S.; Yin, L.; Wang, F.; Luo, P.; Huang, H. Epigenetic Regulation in Cardiovascular Disease: Mechanisms and Advances in Clinical Trials. Signal Transduct. Target. Ther. 2022, 7, 200. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majid, A.; Hassan, F.O.; Hoque, M.M.; Gbadegoye, J.O.; Lebeche, D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. J. Cardiovasc. Dev. Dis. 2023, 10, 313. https://doi.org/10.3390/jcdd10070313
Majid A, Hassan FO, Hoque MM, Gbadegoye JO, Lebeche D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. Journal of Cardiovascular Development and Disease. 2023; 10(7):313. https://doi.org/10.3390/jcdd10070313
Chicago/Turabian StyleMajid, Abdul, Fasilat Oluwakemi Hassan, Md Monirul Hoque, Joy Olaoluwa Gbadegoye, and Djamel Lebeche. 2023. "Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect" Journal of Cardiovascular Development and Disease 10, no. 7: 313. https://doi.org/10.3390/jcdd10070313
APA StyleMajid, A., Hassan, F. O., Hoque, M. M., Gbadegoye, J. O., & Lebeche, D. (2023). Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. Journal of Cardiovascular Development and Disease, 10(7), 313. https://doi.org/10.3390/jcdd10070313