Half-Dose versus Single-Dose Gadobutrol for Extracellular Volume Measurements in Cardiac Magnetic Resonance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Image Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Doeblin, P.; Al-Tabatabaee, S.; Klingel, K.; Tanacli, R.; Weiß, K.J.; Stehning, C.; Patel, A.R.; Pieske, B.; Zou, J.; et al. Synthetic Extracellular Volume in Cardiac Magnetic Resonance without Blood Sampling: A Reliable Tool to Replace Conventional Extracellular Volume. Circ. Cardiovasc. Imaging 2022, 15, e013745. [Google Scholar] [CrossRef] [PubMed]
- Ugander, M.; Oki, A.J.; Hsu, L.-Y.; Kellman, P.; Greiser, A.; Aletras, A.H.; Sibley, C.T.; Chen, M.Y.; Bandettini, W.P.; Arai, A.E. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur. Heart J. 2012, 33, 1268–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doeblin, P.; Hashemi, D.; Tanacli, R.; Lapinskas, T.; Gebker, R.; Stehning, C.; Motzkus, L.A.; Blum, M.; Tahirovic, E.; Dordevic, A.; et al. CMR Tissue Characterization in Patients with HFmrEF. J. Clin. Med. 2019, 8, 1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doltra, A.; Messroghli, D.; Stawowy, P.; Hassel, J.; Gebker, R.; Leppänen, O.; Gräfe, M.; Schneeweis, C.; Schnackenburg, B.; Fleck, E.; et al. Potential Reduction of Interstitial Myocardial Fibrosis with Renal Denervation. J. Am. Heart Assoc. 2014, 3, e001353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, C.; Slimani, A.; De Meester, C.; Amzulescu, M.; Pasquet, A.; Vancraeynest, D.; Beauloye, C.; Vanoverschelde, J.-L.; Gerber, B.L.; Pouleur, A.-C. Associations and prognostic significance of diffuse myocardial fibrosis by cardiovascular magnetic resonance in heart failure with preserved ejection fraction. J. Cardiovasc. Magn. Reson. 2018, 20, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schelbert, E.B.; Piehler, K.M.; Zareba, K.M.; Moon, J.C.; Ugander, M.; Messroghli, D.R.; Valeti, U.S.; Chang, C.-C.H.; Shroff, S.G.; Diez, J.; et al. Myocardial Fibrosis Quantified by Extracellular Volume Is Associated with Subsequent Hospitalization for Heart Failure, Death, or Both across the Spectrum of Ejection Fraction and Heart Failure Stage. J. Am. Heart Assoc. 2015, 4, e002613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanacli, R.; Hassel, J.H.; Gebker, R.; Berger, A.; Grafe, M.; Schneeweis, C.; Doeblin, P.; Fleck, E.; Stehning, C.; Tacke, F.; et al. Cardiac Magnetic Resonance Reveals Incipient Cardiomyopathy Traits in Adult Patients with Phenylketonuria. J. Am. Heart Assoc. 2021, 10, e020351. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.C.; Piehler, K.; Meier, C.G.; Testa, S.M.; Klock, A.M.; Aneizi, A.A.; Shakesprere, J.; Kellman, P.; Shroff, S.G.; Schwartzman, D.S.; et al. Association between Extracellular Matrix Expansion Quantified by Cardiovascular Magnetic Resonance and Short-Term Mortality. Circulation 2012, 126, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Todd, D.J.; Kay, J. Gadolinium-Induced Fibrosis. Annu. Rev. Med. 2016, 67, 273–291. [Google Scholar] [CrossRef]
- Woolen, S.A.; Shankar, P.R.; Gagnier, J.J.; MacEachern, M.P.; Singer, L.; Davenport, M.S. Risk of Nephrogenic Systemic Fibrosis in Patients with Stage 4 or 5 Chronic Kidney Disease Receiving a Group II Gadolinium-Based Contrast Agent: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2020, 180, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, J.C.; Rodby, R.A.; Yee, J.; Wang, C.L.; Fine, D.; McDonald, R.J.; Perazella, M.A.; Dillman, J.R.; Davenport, M.S. Use of Intravenous Gadolinium-based Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology 2021, 298, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Bayer Health Care Pharmaceuticals Inc. Gadavist Prescribing Information. Reference ID: 4461436. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201277s017lbl.pdf (accessed on 19 July 2023).
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017, 19, 75. [Google Scholar] [PubMed] [Green Version]
- Schons, M.; Pilgram, L.; Reese, J.-P.; Stecher, M.; Anton, G.; Appel, K.S.; Bahmer, T.; Bartschke, A.; Bellinghausen, C.; Bernemann, I.; et al. The German National Pandemic Cohort Network (NAPKON): Rationale, study design and baseline characteristics. Eur. J. Epidemiol. 2022, 37, 849–870. [Google Scholar] [CrossRef] [PubMed]
- Messroghli, D.R.; Radjenovic, A.; Kozerke, S.; Higgins, D.M.; Sivananthan, M.U.; Ridgway, J.P. Modified Look-Locker inversion recovery (MOLLI) for high-resolutionT1 mapping of the heart. Magn. Reson. Med. 2004, 52, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Kawel, N.; Nacif, M.; Zavodni, A.; Jones, J.; Liu, S.; Sibley, C.T.; A Bluemke, D. T1 mapping of the myocardium: Intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J. Cardiovasc. Magn. Reson. 2012, 14, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDiarmid, A.K.; Swoboda, P.P.; Erhayiem, B.; Ripley, D.P.; Kidambi, A.; Broadbent, D.A.; Higgins, D.M.; Greenwood, J.P.; Plein, S. Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3 Tesla. J. Cardiovasc. Magn. Reson. 2015, 17, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caballeros, M.; Bartolomé, P.; González, F.; Greiser, A.; Del Barrio, L.G.; Pueyo, J.; Bastarrika, G. Effect of contrast dose in the quantification of myocardial extra-cellular volume in adenosine stress/rest perfusion cardiac magnetic resonance examinations. Acta Radiol. 2017, 58, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.A.; Naish, J.H.; Bishop, P.; Coutts, G.; Clark, D.; Zhao, S.; Ray, S.G.; Yonan, N.; Williams, S.G.; Flett, A.S.; et al. Response to Letter Regarding Article, “Comprehensive Validation of Cardiovascular Magnetic Resonance Techniques for the Assessment of Myocardial Extracellular Volume”. Circ. Cardiovasc. Imaging 2013, 6, 373–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, C.W.; Semple, S.; Malley, T.; White, A.C.; Mirsadraee, S.; Weale, P.J.; Prasad, S.; Newby, D.E.; Dweck, M.R. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 556–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total (N = 25) | |
---|---|
Age | 59.4 ± 15 |
Sex (male) | 12 (52%) |
Hematocrit [%] | 42.0 ± 4.7 |
LV-EDVi [mL/m²] | 73.0 ± 13.3 |
LV-EF [%] | 60.0 ± 6.8 |
RV-EDVi [mL/m²] | 73.6 ± 14.0 |
RV-EF [%] | 56.3 ± 8.4 |
Native | |
HR [s−1] | 67.8 ± 9.2 |
T1 myo [ms] | 1256 ± 39 |
T1 blood [ms] | 1859 ± 85 |
Half dose (0.05 mmol/kg) | |
HR [s−1] | 73.6 ± 8.3 |
dT [mm:ss] | 10:15 ± 02:06 |
T1 myo [ms] | 786.6 ± 51.7 |
T1 blood [ms] | 654 ± 74 |
ECV [%] | 27.6 ± 3.1 |
Full dose (0.1 mmol/kg) | |
HR [s−1] | 72.7 ± 7.6 |
dT [mm:ss] | 10:54 ± 2:10 |
T1 myo [ms] | 608 ± 39 |
T1 blood [ms] | 422 ± 48 |
ECV [%] | 26.7 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doeblin, P.; Steinbeis, F.; Witzenrath, M.; Hashemi, D.; Chen, W.; Weiss, K.J.; Stawowy, P.; Kelle, S. Half-Dose versus Single-Dose Gadobutrol for Extracellular Volume Measurements in Cardiac Magnetic Resonance. J. Cardiovasc. Dev. Dis. 2023, 10, 316. https://doi.org/10.3390/jcdd10080316
Doeblin P, Steinbeis F, Witzenrath M, Hashemi D, Chen W, Weiss KJ, Stawowy P, Kelle S. Half-Dose versus Single-Dose Gadobutrol for Extracellular Volume Measurements in Cardiac Magnetic Resonance. Journal of Cardiovascular Development and Disease. 2023; 10(8):316. https://doi.org/10.3390/jcdd10080316
Chicago/Turabian StyleDoeblin, Patrick, Fridolin Steinbeis, Martin Witzenrath, Djawid Hashemi, Wensu Chen, Karl Jakob Weiss, Philipp Stawowy, and Sebastian Kelle. 2023. "Half-Dose versus Single-Dose Gadobutrol for Extracellular Volume Measurements in Cardiac Magnetic Resonance" Journal of Cardiovascular Development and Disease 10, no. 8: 316. https://doi.org/10.3390/jcdd10080316
APA StyleDoeblin, P., Steinbeis, F., Witzenrath, M., Hashemi, D., Chen, W., Weiss, K. J., Stawowy, P., & Kelle, S. (2023). Half-Dose versus Single-Dose Gadobutrol for Extracellular Volume Measurements in Cardiac Magnetic Resonance. Journal of Cardiovascular Development and Disease, 10(8), 316. https://doi.org/10.3390/jcdd10080316