Tricuspid Regurgitation (TR) after Implantation of a Cardiac Implantable Electronic Device (CIED)—One-Year Observation of Patients with or without Left Ventricular Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of This Study
2.2. Echocardiographic Examination
2.3. Data Analysis
3. Results
3.1. Clinical Characteristics of Patients
3.2. Baseline Echocardiographic Characteristics
3.3. CIED Characteristics
3.4. Postimplant Echocardiographic Characteristics
3.5. Primary Outcome Analysis (All-Cause Mortality and Hospitalizations)
4. Discussion
4.1. TR Progression
4.2. LV and RV Function
4.3. CIED Type
4.4. All-Cause Mortality and Hospitalizations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Mauro, M.; Bezante, G.P.; Di Baldassarre, A. Review: Functional tricuspid regurgitation: An underestimated issue. Int. J. Cardiol. 2013, 168, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Evans, J.C.; Levy, D.; Larson, M.G.; Freed, L.A.; Fuller, D.L.; Lehman, B.; Benjamin, E.J. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (The Framingham Heart Study). Am. J. Cardiol. 1999, 83, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Tatum, R.; Maynes, E.J.; Wood, C.T.; Deb, A.K.; Austin, M.A.; O’Malley, T.J.; Choi, J.H.; Massey, H.T.; Morris, R.J.; Pavri, B.B.; et al. Tricuspid regurgitation associated with implantable electrical device insertion: A systematic review and meta-analysis. Pacing Clin. Electrophysiol. 2021, 44, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Wei, M.; Xiang, R.; Lu, Y.M.; Zhang, L.; Li, Y.D.; Zhang, J.H.; Xing, Q.; Tu-Erhong, Z.K.; Tang, B.P.; et al. Incidence, Risk Factors, and Prognosis of Tricuspid Regurgitation After Cardiac Implantable Electronic Device Implantation: A Systematic Review and Meta-analysis. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Gelves-Meza, J.; Lang, R.M.; Valderrama-Achury, M.D.; Zamorano, J.L.; Vargas-Acevedo, C.; Medina, H.M.; Salazar, G. Tricuspid Regurgitation Related to Cardiac Implantable Electronic Devices: An Integrative Review. J. Am. Soc. Echocardiogr. 2022, 35, 1107–1122. [Google Scholar] [CrossRef]
- Wang, N.; Fulcher, J.; Abeysuriya, N.; McGrady, M.; Wilcox, I.; Celermajer, D.; Lal, S. Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis. Eur. Heart J. 2019, 40, 476–484. [Google Scholar] [CrossRef]
- Mediratta, A.; Addetia, K.; Yamat, M.; Moss, J.D.; Nayak, H.M.; Burke, M.C.; Weinert, L.; Maffessanti, F.; Jeevanandam, V.; Mor-Avi, V.; et al. 3D Echocardiographic Location of Implantable Device Leads and Mechanism of Associated Tricuspid Regurgitation. JACC Cardiovasc. Imaging 2014, 7, 337–347. [Google Scholar] [CrossRef]
- Fanari, Z.; Hammami, S.; Hammami, M.B.; Hammami, S.; Shuraih, M. The effects of right ventricular apical pacing with transvenous pacemaker and implantable cardioverter defibrillator on mitral and tricuspid regurgitation. J. Electrocardiol. 2015, 48, 791–797. [Google Scholar] [CrossRef]
- Lee, R.C.; Friedman, S.E.; Kono, A.T.; Greenberg, M.L.; Palac, R.T. Tricuspid Regurgitation Following Implantation of Endocardial Leads: Incidence and Predictors. PACE Pacing Clin. Electrophysiol. 2015, 38, 1267–1274. [Google Scholar] [CrossRef]
- Arabi, P.; Özer, N.; Ateş, A.H.; Yorgun, H.; Oto, A.; Aytemir, K. Effects of pacemaker and implantable cardioverter defibrillator electrodes on tricuspid regurgitation and right sided heart functions. Cardiol. J. 2015, 22, 637–644. [Google Scholar] [CrossRef]
- Al-Bawardy, R.; Krishnaswamy, A.; Rajeswaran, J.; Bhargava, M.; Wazni, O.; Wilkoff, B.; Tuzcu, E.M.; Martin, D.; Thomas, J.; Blackstone, E.; et al. Tricuspid regurgitation and implantable devices. PACE Pacing Clin. Electrophysiol. 2015, 38, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Delling, F.N.; Hassan, Z.K.; Piatkowski, G.; Tsao, C.W.; Rajabali, A.; Markson, L.J.; Zimetbaum, P.J.; Manning, W.J.; Chang, J.D.; Mukamal, K.J. Tricuspid regurgitation and mortality in patients with transvenous permanent pacemaker leads. Am. J. Cardiol. 2016, 117, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Rydlewska, A.; Ząbek, A.; Boczar, K.; Lelakowski, J.; Małecka, B. Tricuspid valve regurgitation in the presence of endocardial leads—An underestimated problem. Postep. Kardiol. Interwencyjnej 2017, 13, 165–169. [Google Scholar] [CrossRef]
- Nakajima, H.; Seo, Y.; Ishizu, T.; Iida, N.; Sato, K.; Yamamoto, M.; MacHino-Ohtsuka, T.; Nogami, A.; Ohte, N.; Ieda, M. Features of lead-induced tricuspid regurgitation in patients with heart failure events after cardiac implantation of electronic devices—A three-dimensional echocardiographic study. Circ. J. 2020, 84, 2302–2311. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Nakajima, H.; Ishizu, T.; Iida, N.; Sato, K.; Yamamoto, M.; Machino-Ohtsuka, T.; Nogami, A.; Ohte, N.; Ieda, M. Comparison of Outcomes in Patients with Heart Failure with Versus without Lead-Induced Tricuspid Regurgitation after Cardiac Implantable Electronic Devices Implantations. Am. J. Cardiol. 2020, 130, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Kim, D.Y.; Cho, I.; Hong, G.R.; Ha, J.W.; Shim, C.Y. Prevalence, predictors, and prognosis of tricuspid regurgitation following permanent pacemaker implantation. PLoS ONE 2020, 15, e0235230. [Google Scholar] [CrossRef]
- Paniagua, D.; Aldrich, H.R.; Lieberman, E.H.; Lamas, G.A.; Agatston, A.S. Increased prevalence of significant tricuspid regurgitation in patients with transvenous pacemakers leads. Am. J. Cardiol. 1998, 82, 1130–1132. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Falconer, D.; Wyeth, N.; Lloyd, G.; Pellerin, D.; Speechly-Dick, E.; Segal, O.R.; Lowe, M.; Rowland, E.; Lambiase, P.D.; et al. Effect of tricuspid regurgitation and right ventricular dysfunction on long-term mortality in patients undergoing cardiac devices implantation: >10-year follow-up study. Int. J. Cardiol. 2020, 319, 52–56. [Google Scholar] [CrossRef]
- Lee, W.C.; Fang, H.Y.; Chen, H.C.; Chen, Y.L.; Tsai, T.H.; Pan, K.L.; Lin, Y.S.; Liu, W.H.; Chen, M.C. Progressive tricuspid regurgitation and elevated pressure gradient after transvenous permanent pacemaker implantation. Clin. Cardiol. 2021, 44, 1098–1105. [Google Scholar] [CrossRef]
- Riesenhuber, M.; Spannbauer, A.; Gwechenberger, M.; Pezawas, T.; Schukro, C.; Stix, G.; Schneider, M.; Goliasch, G.; Anvari, A.; Wrba, T.; et al. Pacemaker lead-associated tricuspid regurgitation in patients with or without pre-existing right ventricular dilatation. Clin. Res. Cardiol. 2021, 110, 884–894. [Google Scholar] [CrossRef]
- Kanawati, J.; Ng, A.C.C.; Khan, H.; Yu, C.; Hyun, K.; Abed, H.; Kritharides, L.; Sy, R.W. Long-Term Follow-Up of Mortality and Heart Failure Hospitalisation in Patients with Intracardiac Device-Related Tricuspid Regurgitation. Hear Lung Circ. 2021, 30, 692–697. [Google Scholar] [CrossRef]
- Mangieri, A.; Montalto, C.; Pagnesi, M.; Jabbour, R.J.; Rodés-Cabau, J.; Moat, N.; Colombo, A.; Latib, A. Mechanism and Implications of the Tricuspid Regurgitation: From the Pathophysiology to the Current and Future Therapeutic Options. Circ. Cardiovasc. Interv. 2017, 10, e005043. [Google Scholar] [CrossRef] [PubMed]
- Poorzand, H.; Tayyebi, M.; Hosseini, S.; Bakavoli, A.H.; Keihanian, F.; Jarahi, L.; Hamadanchi, A. Predictors of worsening TR severity after right ventricular lead placement: Any added value by post-procedural fluoroscopy versus three–dimensional echocardiography? Cardiovasc. Ultrasound 2021, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Ishizu, T.; Nakajima, H.; Sekiguchi, Y.; Watanabe, S.; Aonuma, K. Clinical utility of 3-dimensional echocardiography in the evaluation of tricuspid regurgitation caused by pacemaker leads. Circ. J. 2008, 72, 1465–1470. [Google Scholar] [CrossRef]
- Kim, J.B.; Spevack, D.M.; Tunick, P.A.; Bullinga, J.R.; Kronzon, I.; Chinitz, L.A.; Reynolds, H.R. The Effect of Transvenous Pacemaker and Implantable Cardioverter Defibrillator Lead Placement on Tricuspid Valve Function: An Observational Study. J. Am. Soc. Echocardiogr. 2008, 21, 284–287. [Google Scholar] [CrossRef]
- Webster, G.; Margossian, R.; Alexander, M.E.; Cecchin, F.; Triedman, J.K.; Walsh, E.P.; Berul, C.I. Impact of transvenous ventricular pacing leads on tricuspid regurgitation in pediatric and congenital heart disease patients. J. Interv. Card. Electrophysiol. 2008, 21, 65–68. [Google Scholar] [CrossRef]
- Klutstein, M.; Balkin, J.; Butnaru, A.; Ilan, M.; Lahad, A.; Rosenmann, D. Tricuspid incompetence following permanent pacemaker implantation. PACE Pacing Clin. Electrophysiol. 2009, 32 (Suppl. S1), 135–137. [Google Scholar] [CrossRef]
- Alizadeh, A.; Sanati, H.R.; Haji-Karimi, M.; Yazdi, A.H.; Rad, M.A.; Haghjoo, M.; Emkanjoo, Z. Induction and aggravation of atrioventricular valve regurgitation in the course of chronic right ventricular apical pacing. Europace 2011, 13, 1587–1590. [Google Scholar] [CrossRef]
- Addetia, K.; Maffessanti, F.; Mediratta, A.; Yamat, M.; Weinert, L.; Moss, J.D.; Nayak, H.M.; Burke, M.C.; Patel, A.R.; Kruse, E.; et al. Impact of Implantable Transvenous Device Lead Location on Severity of Tricuspid Regurgitation. J. Am. Soc. Echocardiogr. 2014, 27, 1164–1175. [Google Scholar] [CrossRef]
- Höke, U.; Auger, D.; Thijssen, J.; Wolterbeek, R.; Van Der Velde, E.T.; Holman, E.R.; Schalij, M.J.; Bax, J.J.; Delgado, V.; Marsan, N.A. Significant lead-induced tricuspid regurgitation is associated with poor prognosis at long-term follow-up. Heart 2014, 100, 960–968. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, H.; Tang, L.; Li, J.; Yao, L. Clinical utility of three-dimensional echocardiography in the evaluation of tricuspid regurgitation induced by implantable device leads. Echocardiography 2016, 33, 1689–1696. [Google Scholar] [CrossRef]
- Polewczyk, A.; Jacheć, W.; Nowosielecka, D.; Tomaszewski, A.; Brzozowski, W.; Szczęśniak-Stańczyk, D.; Duda, K.; Kutarski, A. Lead dependent tricuspid valve dysfunction-risk factors, improvement after transvenous lead extraction and long-term prognosis. J. Clin. Med. 2022, 11, 89. [Google Scholar] [CrossRef]
- Polewczyk, A.; Kutarski, A.; Tomaszewski, A.; Brzozowski, W.; Czajkowski, M.; Polewczyk, M.; Janion, M. Lead dependent tricuspid dysfunction: Analysis of the mechanism and management in patients referred for transvenous lead extraction. Cardiol. J. 2013, 20, 402–410. [Google Scholar] [CrossRef]
- Lin, G.; Nishimura, R.A.; Connolly, H.M.; Dearani, J.A.; Sundt, T.M.; Hayes, D.L. Severe Symptomatic Tricuspid Valve Regurgitation Due to Permanent Pacemaker or Implantable Cardioverter-Defibrillator Leads. J. Am. Coll. Cardiol. 2005, 45, 1672–1675. [Google Scholar] [CrossRef]
- Trankle, C.R.; Gertz, Z.M.; Koneru, J.N.; Kasirajan, V.; Nicolato, P.; Bhardwaj, H.L.; Ellenbogen, K.A.; Kalahasty, G. Severe tricuspid regurgitation due to interactions with right ventricular permanent pacemaker or defibrillator leads. PACE Pacing Clin. Electrophysiol. 2018, 41, 845–853. [Google Scholar] [CrossRef]
- Yu, Y.J.; Chen, Y.; Lau, C.P.; Liu, Y.X.; Wu, M.Z.; Chen, Y.Y.; Ho, L.M.; Tse, H.F.; Yiu, K.H. Nonapical Right Ventricular Pacing Is Associated with Less Tricuspid Valve Interference and Long-Term Progress of Tricuspid Regurgitation. J. Am. Soc. Echocardiogr. 2020, 33, 1375–1383. [Google Scholar] [CrossRef]
- Saito, M.; Iannaccone, A.; Kaye, G.; Negishi, K.; Kosmala, W.; Marwick, T.H. Effect of Right Ventricular Pacing on Right Ventricular Mechanics and Tricuspid Regurgitation in Patients with High-Grade Atrioventricular Block and Sinus Rhythm (from the Protection of Left Ventricular Function during Right Ventricular Pacing Study). Am. J. Cardiol. 2015, 116, 1875–1882. [Google Scholar] [CrossRef]
- Beurskens, N.E.G.; Tjong, F.V.Y.; De Bruin-Bon, R.H.A.; Dasselaar, K.J.; Kuijt, W.J.; Wilde, A.A.M.; Knops, R.E. Impact of Leadless Pacemaker Therapy on Cardiac and Atrioventricular Valve Function Through 12 Months of Follow-Up. Circ. Arrhythmia Electrophysiol. 2019, 12, e007124. [Google Scholar] [CrossRef]
- Chang, J.D.; Manning, W.J.; Ebrille, E.; Zimetbaum, P.J. Tricuspid Valve Dysfunction Following Pacemaker or Cardioverter-Defibrillator Implantation. J. Am. Coll. Cardiol. 2017, 69, 2331–2341. [Google Scholar] [CrossRef]
- Mutlak, D.; Aronson, D.; Lessick, J.; Reisner, S.A.; Dabbah, S.; Agmon, Y. Functional tricuspid regurgitation in patients with pulmonary hypertension: Is pulmonary artery pressure the only determinant of regurgitation severity? Chest 2009, 135, 115–121. [Google Scholar] [CrossRef]
- Cho, M.S.; Kim, J.; Lee, J.B.; Nam, G.B.; Choi, K.J.; Kim, Y.H. Incidence and predictors of moderate to severe tricuspid regurgitation after dual-chamber pacemaker implantation. PACE Pacing Clin. Electrophysiol. 2019, 42, 85–92. [Google Scholar] [CrossRef]
- Dokainish, H.; Elbarasi, E.; Masiero, S.; Van de Heyning, C.; Brambatti, M.; Ghazal, S.; AL-Maashani, S.; Capucci, A.; Buikema, L.; Leong, D.; et al. Prospective study of tricuspid valve regurgitation associated with permanent leads in patients undergoing cardiac rhythm device implantation: Background, rationale, and design. Glob. Cardiol. Sci. Pract. 2015, 2015, 41. [Google Scholar] [CrossRef]
- Rajappan, K. Permanent pacemaker implantation technique: Part II. Heart 2009, 95, 334–342. [Google Scholar] [CrossRef]
- Addetia, K.; Harb, S.C.; Hahn, R.T.; Kapadia, S.; Lang, R.M. Cardiac Implantable Electronic Device Lead-Induced Tricuspid Regurgitation. JACC Cardiovasc. Imaging 2019, 12, 622–636. [Google Scholar] [CrossRef]
- Orban, M.; Orban, M.; Hausleiter, J.; Braun, D. Tricuspid regurgitation and right ventricular dysfunction after cardiac device implantation—Is it time for intra-procedural TEE-guided lead implantation? Int. J. Cardiol. 2020, 321, 131–132. [Google Scholar] [CrossRef]
- Lancellotti, P.; Tribouilloy, C.; Hagendorff, A.; Popescu, B.A.; Edvardsen, T.; Pierard, L.A.; Badano, L.; Zamorano, J.L. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 611–644. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Marijon, E.; Trinquart, L.; Otmani, A.; Leclercq, C.; Fauchier, L.; Chevalier, P.; Klug, D.; Defaye, P.; Lellouche, N.; Mansourati, J.; et al. Predictors for short-term progressive heart failure death in New York Heart Association II patients implanted with a cardioverter defibrillator-the EVADEF study. Am. Heart J. 2010, 159, 659–664.e1. [Google Scholar] [CrossRef] [PubMed]
- Offen, S.; Strange, G.; Playford, D.; Celermajer, D.S.; Stewart, S. Prevalence and prognostic impact of tricuspid regurgitation in patients with cardiac implantable electronic devices: From the national echocardiography database of Australia. Int. J. Cardiol. 2023, 370, 338–344. [Google Scholar] [CrossRef]
- Chorin, E.; Rozenbaum, Z.; Topilsky, Y.; Konigstein, M.; Ziv-Baran, T.; Richert, E.; Keren, G.; Banai, S. Tricuspid regurgitation and long-term clinical outcomes. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 157–165. [Google Scholar] [CrossRef]
- Cork, D.P.; Mccullough, P.A.; Mehta, H.S.; Barker, C.M.; Van Houten, J.; Gunnarsson, C.; Ryan, M.P.; Baker, E.R.; Mollenkopf, S.; Verta, P. The economic impact of clinically significant tricuspid regurgitation in a large, administrative claims database. J. Med. Econ. 2020, 23, 521–528. [Google Scholar] [CrossRef] [PubMed]
All (n = 101) | Group 1 (n = 60) | Group 2 (n = 41) | p | |
---|---|---|---|---|
Men n (%) | 57 (56.4%) | 29 (48.3%) | 28 (68.3%) | 0.065 |
Age [years] | 69.0 (60.0–76.0) | 73 (63–78) | 62 (59–72) | 0.001 |
Weight [kg] | 84.0 (74.0–94.0) | 83.5 (74.0–90.0) | 87.0 (74.0–94.0) | 0.486 |
High [m] | 1.70 (1.64–1.76) | 1.70 (1.62–1.75) | 1.74 (1.69–1.76) | 0.083 |
Coronary artery disease n (%) | 52 (51.5%) | 28 (46.7%) | 24 (58.5%) | 0.311 |
Diabetes mellitus n (%) | 29 (28.7%) | 14 (23.3%) | 15 (36.6%) | 0.181 |
Pulmonary disease n (%) | 7 (6.9%) | 5 (8.3%) | 2 (4.9%) | 0.697 |
Atrial fibrillation n (%) | 37 (36.6%) | 20 (33.3%) | 17 (41.6%) | 0.528 |
NYHA n (%) | ||||
I | 58 (58.42%) | 54 (90%) | 4 (9.8%) | 0.001 |
II | 34 (33.66%) | 6 (10%) | 28 (68.3%) | 0.001 |
III | 5 (4.95%) | 0 (0.0%) | 5 (12.2%) | 0.009 |
IV | 3 (2.97%) | 0 (0.0%) | 3 (7.3%) | 0.064 |
Bilirubin [µmol/L] | 10.10 (7.2–14.7) | 9.65 (7.2–14.2) | 10.20 (8.9–15.3) | 0.359 |
INR | 1.07 (0.99–1.18) | 1.05 (0.99–1.14) | 1.09 (1.0–1.47) | 0.225 |
Creatinine [µmol/L] | 85.0 (75.0–103) | 83.5 (71.0–98) | 93.0 (78.0–110) | 0.076 |
Time since CIED implantation [months] | 13.0 (12.0–16.0) | 13.5 (12.0–16.0) | 13.0 (12.0–15.0) | 0.074 |
All (n = 101) | Group 1 (n = 60) | Group 2 (n = 41) | p | |
---|---|---|---|---|
RV dimension in four chamber view [mm] | 37.0 (35.0–40.5) | 38.0 (35.0–41.0) | 37.0 (33.0–40.0) | 0.466 |
Area of RA in diastole [cm2] | 17.30 (15.0–21.4) | 18.8 (15.2–21.4) | 16.4 (14.6 Q75–22.8 | 0.326 |
Area of RA in systole [cm2] | 12.0 (10.4–16.3) | 12.25 (10.8–16.3) | 11.9 (10.01–16.3) | 0.672 |
TV diameter [mm] | 32.0 (29.0–38.0) | 32.0 (29.0–38.0) | 32.0 (29.0–38.0) | 0.771 |
FAC [%] | 38.39 (±10.65) | 38.79 (±10.79) | 37.91 (±10.65) | 0.747 |
TAPSE [mm] | 20.0 (17.0–23.0) | 21.0 (18.0–25.5) | 18.0 (15.0–20.0) | 0.001 |
RVSP [mmHg] | 33.57 (±15.82) | 32.89 (±12.49) | 34.38 (±19.35) | 0.738 |
TAPSE/TRPG [mm/mmHg] | 0.51 (0.43–0.9) | 0.61 (0.47–0.97) | 0.45 (0.27–0.87) | 0.061 |
LV EDV [mL] | 127.5 (86.0–169.0) | 93.50 (65.5–119.0) | 169.5 (154.0–219.0) | 0.001 |
LV ESV [mL] | 87.1 (36.0–120.0) | 38.0 (30.0–49.0) | 124.5 (106.75–152.5) | 0.001 |
LVEF [%] | 50.0 (30.0–55.0) | 55.0 (50.0–60.0) | 29.0 (21.0–32.0) | 0.001 |
TR n (%)
| ||||
59 (58.4%) | 37 (61.7%) | 22 (53.6%) | 0.537 | |
32 (31.7%) | 17 (28.3%) | 15 (36.6%) | 0.393 | |
9 (8.9%) | 5 (8.3%) | 4 (9.7%) | 1.000 | |
1 (0.9%) | 1 (1.7%) | 0 (0.0%) | 1.000 | |
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
Aortic stenosis n (%)
| ||||
10 (9.9%) | 9 (15.0%) | 1 (2.4%) | 0.045 | |
3 (2.9%) | 2 (3.3%) | 1 (2.4%) | 1.000 | |
1 (0.99%) | 1 (1.67%) | 0 (0.0%) | 1.000 | |
Aortic regurgitation n (%)
| ||||
11 (10.9%) | 6 (10.0%) | 5 (12.2%) | 0.753 | |
3 (2.9%) | 1 (1.7%) | 2 (4.9%) | 0.564 | |
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
Mitral stenosis n (%)
| ||||
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
Mitral regurgitation n (%)
| ||||
30 (29.7%) | 19 (31.7%) | 11 (26.8%) | 0.661 | |
9 (8.9%) | 3 (5.0%) | 6 (14.6%) | 0.153 | |
5 (4.9%) | 0 (0.0%) | 5 (12.2%) | 0.009 |
All (n = 101) | Group 1 (n = 60) | Group 2 (n = 41) | p | |
---|---|---|---|---|
CIED type and parameters | ||||
Type of device n(%) | ||||
| 57 (56.4%) | 56 (93.3%) | 1 (2.4%) | 0.001 |
28 (27.7%) | 4 (6.7%) | 24 (58.5%) | 0.001 | |
16 (15.8%) | 0 (0.0%) | 16 (39.1%) | 0.001 | |
Pacing mode n(%)
| ||||
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
27 (26.7%) | 12 (20.0%) | 15 (36.6%) | 0.0721 | |
59 (58.4%) | 48 (80.0%) | 11 (26.8%) | 0.001 | |
15 (14.8%) | 0 (0.0%) | 15 (36.6%) | 0.001 | |
Percentage of ventricular pacing [%] | 19.3 (1.0–93.0) | 23.0 (1.5–90.0) | 4.0 (1.0–97.5) | 0.460 |
Echocardiographic parameters | ||||
TV diameter [mm] | 33.0 (30.0–38.0) | 32.0 (29.0–37.0) | 33.0 (31.0–38.0) | 0.496 |
FAC [%] | 41.74 (±11.17) | 43.05 (±11.57) | 39.76 (±10.39) | 0.172 |
TAPSE [mm] | 19.0 (16.0–23.0) | 21.0 (18.0–23.0) | 17.50 (14.0–19.5) | 0.001 |
RVSP [mmHg] | 30.0 (±14.2) | 29.76 (±14.5) | 30.39 (±13.9) | 0.853 |
TAPSE/TRPG [mm/mmHg] | 0.62 (0.46–0.94) | 0.74 (0.5–1.0) | 0.49 (0.43–0.82) | 0.077 |
LV EDV [mL] | 115.6 (86.0–166.0) | 104.0 (74.0–117.0) | 166.0 (119.0–211.0) | 0.001 |
LV ESV [mL] | 59.0 (38.5–104.5) | 42.0 (28.9–59.0) | 106.50 (69.0–156.0) | 0.001 |
LVEF [%] | 49.0 (31.0–58.0) | 56.0 (50.0–60.0) | 30.0 (26.0–38.0) | 0.001 |
TR n (%)
| ||||
30 (29.7%) | 17 (28.3%) | 13 (31.7%) | 0.825 | |
42 (41.6%) | 28 (46.7%) | 14 (34.1%) | 0.225 | |
17 (16.8%) | 9 (15.0%) | 8 (19.5%) | 0.595 | |
10 (9.9%) | 4 (6.7%) | 6 (14.6%) | 0.308 | |
2 (1.9%) | 2 (3.3%) | 0 (0.0%) | 0.512 | |
Aortic stenosis n (%)
| ||||
7 (6.3%) | 6 (10.0%) | 1 (2.4%) | 0.235 | |
3 (2.9%) | 1 (1.7%) | 2 (4.9%) | 0.564 | |
1 (0.9%) | 1 (1.7%) | 0 (0.0%) | 1.000 | |
Aortic regurgitation n (%)
| ||||
11 (10.9%) | 3 (5.0%) | 8 (19.5%) | 0.046 | |
3 (2.9%) | 1 (1.7%) | 2 (4.9%) | 0.564 | |
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
Mitral stenosis n (%)
| ||||
4 (3.9%) | 4 (6.7%) | 0 (0.0%) | 0.1442 | |
1 (0.9%) | 1 (1.7%) | 0 (0.0%) | 1.000 | |
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 | |
Mitral regurgitation n (%)
| ||||
29 (28.7%) | 16 (26.7%) | 13 (31.7%) | 0.656 | |
16 (15.8%) | 7 (11.7%) | 9 (21.9%) | 0.178 | |
2 (1.9%) | 1 (1.7%) | 1 (2.4%) | 1.000 |
All (n = 101) | Group 1 (n = 60) | Group 2 (n = 41) | p | |
---|---|---|---|---|
PROGRESSION OF TR | ||||
No progression n(%) | 41 (40.6%) | 24 (40.0%) | 17 (41.46%) | 0.522 |
TR progression by 1 grade n (%) | 35 (34.6%) | 26 (43.3%) | 9 (21.9%) | 0.033 |
| 25 (24.75%) | 19 (31.67%) | 6 (14.63%) | 0.0179 |
5 (4.95%) | 3 (5.0%) | 2 (4.88%) | 1.000 | |
4 (3.96%) | 3 (5.0%) | 1 (2.44%) | 0.6445 | |
1 (0.99%) | 1 (1.67%) | 0 (0.0%) | 1.000 | |
TR progression by ≥2 grades n (%) | 16 (15.8%) | 6 (10.0%) | 10 (24.4%) | 0.093 |
| 9 (8.91%) | 4 (6.67%) | 5 (12.19%) | 0.4796 |
2 (1.98%) | 1 (1.67%) | 1 (2.44%) | 1.0000 | |
5 (4.95%) | 1 (1.67%) | 4 (9.76%) | 0.1551 | |
0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.0000 | |
Regression n(%) | 9 (8.9%) | 4 (6.67%) | 5 (12.19%) | 0.479 |
POSITION OF THE LEAD | ||||
RVA n(%) | 24 (23.76%) | 7 (11.67%) | 17 (41.46%) | 0.0008 |
Non-RVA n(%) | 77 (76.24%) | 53 (88.33%) | 24 (58.53%) | 0.0008 |
Parameter | All (n = None/trace to severe101) | Group 1 (n = 60) | Group 2 (n = 41) | ||||||
---|---|---|---|---|---|---|---|---|---|
Before Implantation | After Implantation | p | Before Implantation | After Implantation | p | Before Implantation | After Implantation | p | |
TR grade | |||||||||
n (%) | |||||||||
None | 59 (58.4%) | 30 (29.7%) | 0.001 | 37 (61.7%) | 17 (28.3%) | 0.01 | 22 (53.6%) | 13 (31.7%) | 0.073 |
Mild | 32 (31.7%) | 42 (41.6%) | 0.189 | 17 (28.3%) | 28 (46.7%) | 0.06 | 15 (36.6%) | 14 (34.1%) | 1.000 |
Medium | 9 (8.9%) | 17 (16.8%) | 0.140 | 5 (8.3%) | 9 (15.0%) | 0.39 | 4 (9.7%) | 8 (19.5%) | 0.349 |
≥Severe | 1 (0.9%) | 12 (11.8%) | 0.002 | 1 (1.7%) | 6 (10.0%) | 0.11 | 0 (0.0%) | 6 (14.6%) | 0.026 |
RA in diastole [cm2] | 17.3 (15.0–21.4) | 19.3 (16.2–23.2) | 0.150 | 18.8 (15.2–21.4) | 19.9 (16.6–23.5) | 0.127 | 16.4 (14.6–22.8) | 18.6 (15.4–23.2) | 0.628 |
RA in systole [cm2] | 12.0 (10.4–16.3) | 13.0 (11.3–16.9) | 0.330 | 12.3 (10.8–16.3) | 13.0 (11.3–16.9) | 0.598 | 11.9 (10.0–16.3) | 13.2 (11.2–16.9) | 0.425 |
TV diameter [mm] | 32.0 (29.0–38.0) | 33.0 (30.0–38.0) | 0.385 | 32.0 (29.0–38.0) | 32.0 (29.0–37.0) | 0.635 | 32.0 (29.0–38.0) | 33.0 (31.0–38.0) | 0.342 |
RV in 4 chambers [mm] | 37.0 (35.0–40.5) | 38.0 (36.0–42.0) | 0.163 | 38.0 (35.0–41.0) | 38.0 (36.0–40.0) | 0.898 | 37.0 (33.0–40.0) | 38.0 (35.0–44.0) | 0.103 |
RVSP [mmHg] | 33.6 (±15.82) | 30.0 (±14.2) | 0.185 | 32.9 (±12.5) | 29.7(±14.5) | 0.339 | 34.4 (±19.4) | 30.4 (±13.9) | 0.388 |
FAC RV [%] | 38.4 (±10.6) | 41.7 (±11.2) | 0.063 | 38.8 (±10.8) | 43.0 (±11.6) | 0.084 | 37.9 (±10.6) | 39.7 (±10.4) | 0.483 |
TAPSE [mm] | 20.0 (17.0–23.0) | 19.0 (16.0–23.0) | 0.318 | 21.0 (18.0–25.5) | 21.0 (18.0–23.0) | 0.488 | 18.0 (15.0–20.0) | 17.5 (14.0–19.5) | 0.405 |
TAPSE/TRPG [mm/mmHg] | 0.51 (0.4–0.9) | 0.62 (0.5–0.9) | 0.125 | 0.6 (0.5–0.9) | 0.7 (0.5–1.0) | 0.277 | 0.4 (0.3–0.9) | 0.5 (0.4–0.8) | 0.325 |
LV EDV [mL] | 127.5 (86.0–169.0) | 115.6 (86.0–166.0) | 0.383 | 93.5 (65.5–119.0) | 104.0 (74.0–117.0) | 0.293 | 169.5 (154.0–219.0) | 166.0 (119.0–211.0) | 0.038 |
LV ESV [mL] | 87.1 (36.0–120.0) | 59.0 (38.5–104.5) | 0.355 | 38.0 (30.0–49.0) | 42.0 (28.9–59.0) | 0.325 | 124.5 (106.8–152.5) | 106.5 (69.0–156.0) | 0.091 |
LV EF [%] | 50.0 (30.0–55.0) | 49.0 (31.0–58.0) | 0.005 | 55.0 (50.0–60.0) | 56.0 (50.0–60.0) | 0.288 | 29.0 (21.0–32.0) | 30.0 (26.0–38.0) | 0.002 |
All (n = 101) | Group 1 (n = 60) | Group 2 (n = 41) | p | |
---|---|---|---|---|
Death due to any reason n (%) | 3 (2.97%) | 1 (1.67%) | 2 (4.87%) | 0.5645 |
HF decompensation n (%) | 26 (25.7%) | 11 (18.33%) | 15 (36.6%) | 0.0625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chodór-Rozwadowska, K.; Sawicka, M.; Morawski, S.; Kalarus, Z.; Kukulski, T. Tricuspid Regurgitation (TR) after Implantation of a Cardiac Implantable Electronic Device (CIED)—One-Year Observation of Patients with or without Left Ventricular Dysfunction. J. Cardiovasc. Dev. Dis. 2023, 10, 353. https://doi.org/10.3390/jcdd10080353
Chodór-Rozwadowska K, Sawicka M, Morawski S, Kalarus Z, Kukulski T. Tricuspid Regurgitation (TR) after Implantation of a Cardiac Implantable Electronic Device (CIED)—One-Year Observation of Patients with or without Left Ventricular Dysfunction. Journal of Cardiovascular Development and Disease. 2023; 10(8):353. https://doi.org/10.3390/jcdd10080353
Chicago/Turabian StyleChodór-Rozwadowska, Karolina, Magdalena Sawicka, Stanisław Morawski, Zbigniew Kalarus, and Tomasz Kukulski. 2023. "Tricuspid Regurgitation (TR) after Implantation of a Cardiac Implantable Electronic Device (CIED)—One-Year Observation of Patients with or without Left Ventricular Dysfunction" Journal of Cardiovascular Development and Disease 10, no. 8: 353. https://doi.org/10.3390/jcdd10080353
APA StyleChodór-Rozwadowska, K., Sawicka, M., Morawski, S., Kalarus, Z., & Kukulski, T. (2023). Tricuspid Regurgitation (TR) after Implantation of a Cardiac Implantable Electronic Device (CIED)—One-Year Observation of Patients with or without Left Ventricular Dysfunction. Journal of Cardiovascular Development and Disease, 10(8), 353. https://doi.org/10.3390/jcdd10080353