Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review
Abstract
:1. Introduction
Methodological Perspectives
2. Diabetic Nephropathy
3. Diabetic Retinopathy
4. Cerebral Microvascular Disease
5. Skin Microangiopathy and Foot Ulcers
6. Diabetic Neuropathy
7. Cardiac Microvascular Disorders
8. Microvascular Dysfunction in Skeletal Muscle
9. Microvascular Dysfunction in Adipose Tissues
10. Diabetic Pulmonary Microangiopathy
11. Conclusions and Future Steps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDF Diabetes Atlas. Available online: https://diabetesatlas.org/data/en/ (accessed on 4 April 2023).
- Rayner, S.G.; Zheng, Y. Engineered Microvessels for the Study of Human Disease. J. Biomech. Eng. 2016, 138, 110801. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Chawla, A.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Fasoula, N.-A.; Karlas, A.; Prokopchuk, O.; Katsouli, N.; Bariotakis, M.; Liapis, E.; Goetz, A.; Kallmayer, M.; Reber, J.; Novotny, A.; et al. Non-invasive multispectral optoacoustic tomography resolves intrahepatic lipids in patients with hepatic steatosis. Photoacoustics 2023, 29, 100454. [Google Scholar] [CrossRef]
- Fasoula, N.-A.; Karlas, A.; Kallmayer, M.; Milik, A.B.; Pelisek, J.; Eckstein, H.-H.; Klingenspor, M.; Ntziachristos, V. Multicompartmental non-invasive sensing of postprandial lipemia in humans with multispectral optoacoustic tomography. Mol. Metab. 2021, 47, 101184. [Google Scholar] [CrossRef] [PubMed]
- Karlas, A.; Pleitez, M.A.; Aguirre, J.; Ntziachristos, V. Optoacoustic imaging in endocrinology and metabolism. Nat. Rev. Endocrinol. 2021, 17, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Reber, J.; Willershäuser, M.; Karlas, A.; Paul-Yuan, K.; Diot, G.; Franz, D.; Fromme, T.; Ovsepian, S.V.; Bézière, N.; Dubikovskaya, E.; et al. Non-invasive Measurement of Brown Fat Metabolism Based on Optoacoustic Imaging of Hemoglobin Gradients. Cell Metab. 2018, 27, 689–701.e4. [Google Scholar] [CrossRef] [PubMed]
- Karlas, A.; Fasoula, N.-A.; Paul-Yuan, K.; Reber, J.; Kallmayer, M.; Bozhko, D.; Seeger, M.; Eckstein, H.-H.; Wildgruber, M.; Ntziachristos, V. Cardiovascular optoacoustics: From mice to men—A review. Photoacoustics 2019, 14, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef]
- Gheith, O.; Farouk, N.; Nampoory, N.A.; Halim, M.; Al-Otaibi, T. Diabetic kidney disease: World wide difference of prevalence and risk factors. J. Nephropharmacology 2015, 5, 49–56. [Google Scholar] [CrossRef]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.M.; Zoungas, S.; Rossing, P.; Groop, P.-H.; Cooper, M.E. Diabetic kidney disease. Nat. Rev. Dis. Prim. 2015, 1, 15018. [Google Scholar] [CrossRef]
- Vithian, K.; Hurel, S. Microvascular complications: Pathophysiology and management. Clin. Med. 2010, 10, 505–509. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes—2021. Diabetes Care 2020, 44 (Suppl. S1), S151–S167. [Google Scholar] [CrossRef]
- Christiansen, J.S.; Gammelgaard, J.; Frandsen, M.; Parving, H.-H. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetics. Diabetologia 1981, 20, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, I.; Clementi, A.; Sessa, C.; Torrisi, I.; Meola, M. Ultrasound and color Doppler applications in chronic kidney disease. J. Nephrol. 2018, 31, 863–879. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Fujii, K.; Arima, H.; Matsumura, K.; Tsuchihashi, T.; Tokumoto, M.; Tsuruya, K.; Kanai, H.; Iwase, M.; Hirakata, H.; et al. Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. J. Hypertens. 2005, 23, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Guo, Y.; Geng, X. Value of Color Doppler Ultrasonography for Diagnosing Early Diabetic Nephropathy. Iran. J. Kidney Dis. 2022, 16, 284–291. [Google Scholar] [PubMed]
- Li, N.; Wang, Y.-R.; Tian, X.-Q.; Lin, L.; Liang, S.-Y.; Li, Q.-Y.; Fei, X.; Tang, J.; Luo, Y.-K. Potential value of three-dimensional ultrasonography in diagnosis of diabetic nephropathy in Chinese diabetic population with kidney injury. BMC Nephrol. 2020, 21, 243. [Google Scholar] [CrossRef] [PubMed]
- Barutta, F.; Bellini, S.; Canepa, S.; Durazzo, M.; Gruden, G. Novel biomarkers of diabetic kidney disease: Current status and potential clinical application. Acta Diabetol. 2021, 58, 819–830. [Google Scholar] [CrossRef]
- Buxton, R.B. The physics of functional magnetic resonance imaging (fMRI). Rep. Prog. Phys. 2013, 76, 096601. [Google Scholar] [CrossRef]
- Seah, J.-M.; Botterill, E.; MacIsaac, R.J.; Milne, M.; Ekinci, E.I.; Lim, R.P. Functional MRI in assessment of diabetic kidney disease in people with type 1 diabetes. J. Diabetes Its Complicat. 2022, 36, 108076. [Google Scholar] [CrossRef]
- Yin, W.-J.; Liu, F.; Li, X.-M.; Yang, L.; Zhao, S.; Huang, Z.-X.; Huang, Y.-Q.; Liu, R.-B. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur. J. Radiol. 2012, 81, 1426–1431. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gutiérrez, J.M.; Garcia-Fernandez, N.; Roblero, M.F.S.; Páramo, J.A.; Escalada, F.J.; Wang, D.J.; Benito, A.; Fernández-Seara, M.A. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J. Magn. Reson. Imaging 2017, 46, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gutiérrez, J.M.; Fernández-Seara, M.A.; Echeverria-Chasco, R.; Garcia-Fernandez, N. Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease. J. Clin. Med. 2021, 10, 2461. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, P.; Yagci, A.B.; Dursun, B.; Herek, D.; Fenkci, S.M. Renal diffusion-weighted imaging in diabetic nephropathy: Correlation with clinical stages of disease. Diagn. Interv. Radiol. 2014, 20, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Feng, Y.; Lu, C.-Q.; Ju, S. Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy. Eur. Radiol. 2018, 28, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Sedor, J.R.; Gulani, V.; Schelling, J.R.; O’brien, A.; Flask, C.A.; Dell, K.M. Use of Diffusion Tensor MRI to Identify Early Changes in Diabetic Nephropathy. Am. J. Nephrol. 2011, 34, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Christensen-Jeffries, K.; Couture, O.; Dayton, P.A.; Eldar, Y.C.; Hynynen, K.; Kiessling, F.; O’Reilly, M.; Pinton, G.F.; Schmitz, G.; Tang, M.-X.; et al. Super-resolution Ultrasound Imaging. Ultrasound Med. Biol. 2020, 46, 865–891. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Song, H.; Yu, J.; Kim, K. Current Development and Applications of Super-Resolution Ultrasound Imaging. Sensors 2021, 21, 2417. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Razansky, D. Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT). Chem. Rev. 2010, 110, 2783–2794. [Google Scholar] [CrossRef]
- Leung, W.K.; Gao, L.; Siu, P.M.; Lai, C.W. Diabetic nephropathy and endothelial dysfunction: Current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study. Life Sci. 2016, 166, 121–130. [Google Scholar] [CrossRef]
- Karlas, A.; Masthoff, M.; Kallmayer, M.; Helfen, A.; Bariotakis, M.; Fasoula, N.A.; Schäfers, M.; Seidensticker, M.; Eckstein, H.-H.; Ntziachristos, V.; et al. Multispectral optoacoustic tomography of peripheral arterial disease based on muscle hemoglobin gradients—A pilot clinical study. Ann. Transl. Med. 2021, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Karlas, A.; Kallmayer, M.; Bariotakis, M.; Fasoula, N.-A.; Liapis, E.; Hyafil, F.; Pelisek, J.; Wildgruber, M.; Eckstein, H.-H.; Ntziachristos, V. Multispectral optoacoustic tomography of lipid and hemoglobin contrast in human carotid atherosclerosis. Photoacoustics 2021, 23, 100283. [Google Scholar] [CrossRef]
- Kempen, J.H.; O’Colmain, B.J.; Leske, M.C.; Haffner, S.M.; Klein, R.; Moss, S.E.; Taylor, H.R.; Hamman, R.F. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 2004, 122, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Halim, S.; Gurudas, S.; Sivaprasad, S.; Owens, D. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res. Clin. Pract. 2019, 157, 107840. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, R.; Prathiba, V.; Arulmalar, S.; Usha, M. Review of retinal cameras for global coverage of diabetic retinopathy screening. Eye 2020, 35, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Witkin, A.; Salz, D. Imaging in diabetic retinopathy. Middle E. Afr. J. Ophthalmol. 2015, 22, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.K.H.; Cheung, C.Y.; Sim, S.S.; Tan, P.C.; Tan, G.S.W.; Wong, T.Y. Retinal Imaging Techniques for Diabetic Retinopathy Screening. J. Diabetes Sci. Technol. 2016, 10, 282–294. [Google Scholar] [CrossRef]
- Silva, P.S.; Cavallerano, J.D.; Tolls, D.; Omar, A.; Thakore, K.; Patel, B.; Sehizadeh, M.; Tolson, A.M.; Sun, J.K.; Aiello, L.P. Potential Efficiency Benefits of Nonmydriatic Ultrawide Field Retinal Imaging in an Ocular Telehealth Diabetic Retinopathy Program. Diabetes Care 2014, 37, 50–55. [Google Scholar] [CrossRef]
- Thibos, L.N.; Hong, X.; Bradley, A.; Cheng, X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A 2002, 19, 2329–2348. [Google Scholar] [CrossRef]
- DeHoog, E.; Schwiegerling, J. Fundus camera systems: A comparative analysis. Appl. Opt. 2009, 48, 221–228. [Google Scholar] [CrossRef]
- Mishra, C.; Tripathy, K. Fundus Camera. In Treasure Island; StatPearls: Tampa, FL, USA, 2023. [Google Scholar]
- Sarao, V.; Veritti, D.; Borrelli, E.; Sadda, S.V.R.; Poletti, E.; Lanzetta, P. A comparison between a white LED confocal imaging system and a conventional flash fundus camera using chromaticity analysis. BMC Ophthalmol. 2019, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- Chalam, K.V.; Chamchikh, J.; Gasparian, S. Optics and Utility of Low-Cost Smartphone-Based Portable Digital Fundus Camera System for Screening of Retinal Diseases. Diagnostics 2022, 12, 1499. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Hirofuji, R.; Ohnishi, T.; Hauta-Kasari, M.; Nishidate, I.; Haneishi, H. RGB Camera-Based Imaging of Oxygen Saturation and Hemoglobin Concentration in Ocular Fundus. IEEE Access 2019, 7, 56469–56479. [Google Scholar] [CrossRef]
- Blum, M.; Saemann, A.; Wolf, G. The eye, the kidney and microcirculation. In Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association—European Renal Association; Oxford University Press: Oxford, NC, USA, 2010; Volume 26, pp. 4–6. [Google Scholar] [CrossRef]
- Lal, A.; Thiagalingam, A.; Mitchell, P.; Gibbs, O.; Barry, T.; Kovoor, P. PM417 Assessing endothelial function in type-2-diabetes mellitus using ECG-gated retinal artery flicker provocation and digital reactive hyperaemia (Endopat®). Glob. Heart 2014, 9, e146. [Google Scholar] [CrossRef]
- Barth, T.; Helbig, H. Diabetische Retinopathie. Klinische Monatsblätter für Augenheilkunde (Klin Monbl Augenheilkd) 2021, 238, 1143–1159. [Google Scholar] [CrossRef] [PubMed]
- Markan, A.; Agarwal, A.; Arora, A.; Bazgain, K.; Rana, V.; Gupta, V. Novel imaging biomarkers in diabetic retinopathy and diabetic macular edema. Ther. Adv. Ophthalmol. 2020, 12, 2515841420950513. [Google Scholar] [CrossRef] [PubMed]
- Aumann, S.; Donner, S.; Fischer, J.; Muller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Bille, J.F., Ed.; Springer: Cham, Switzerland, 2019; pp. 59–85. [Google Scholar]
- Liu, B.B. Mark Edward, 4.14—Optical Coherence Tomography. In Comprehensive Biomedical Physics; Brahme, A., Ed.; Elsevier: Oxford, NC, USA, 2014; pp. 209–226. [Google Scholar]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef]
- Vujosevic, S.; Aldington, S.J.; Silva, P.; Hernández, C.; Scanlon, P.; Peto, T.; Simó, R. Screening for diabetic retinopathy: New perspectives and challenges. Lancet Diabetes Endocrinol. 2020, 8, 337–347. [Google Scholar] [CrossRef]
- Sun, J.K.; Lin, M.M.; Lammer, J.; Prager, S.; Sarangi, R.; Silva, P.S.; Aiello, L.P. Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes with Center-Involved Diabetic Macular Edema. JAMA Ophthalmol. 2014, 132, 1309–1316. [Google Scholar] [CrossRef]
- Akil, H.; Karst, S.; Heisler, M.; Etminan, M.; Navajas, E.; Maberley, D. Application of optical coherence tomography angiography in diabetic retinopathy: A comprehensive review. Can. J. Ophthalmol. 2019, 54, 519–528. [Google Scholar] [CrossRef]
- Garcia, J.M.B.d.B.; Isaac, D.L.C.; Avila, M. Diabetic retinopathy and OCT angiography: Clinical findings and future perspectives. Int. J. Retin. Vitr. 2017, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Battista, M.; Borrelli, E.; Sacconi, R.; Bandello, F.; Querques, G. Optical coherence tomography angiography in diabetes: A review. Eur. J. Ophthalmol. 2020, 30, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Sadda, S.R.; Uji, A.; Querques, G. Pearls and Pitfalls of Optical Coherence Tomography Angiography Imaging: A Review. Ophthalmol. Ther. 2019, 8, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Tey, K.Y.; Teo, K.; Tan, A.C.S.; Devarajan, K.; Tan, B.; Tan, J.; Schmetterer, L.; Ang, M. Optical coherence tomography angiography in diabetic retinopathy: A review of current applications. Eye Vis. 2019, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yang, D.; Tang, Z.; Ng, D.S.; Cheung, C.Y. Optical coherence tomography angiography in diabetic retinopathy: An updated review. Eye 2020, 35, 149–161. [Google Scholar] [CrossRef]
- Sun, Z.; Tang, F.; Wong, R.; Lok, J.; Szeto, S.K.; Chan, J.C.; Chan, C.K.; Tham, C.C.; Ng, D.S.; Cheung, C.Y. OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema. Ophthalmology 2019, 126, 1675–1684. [Google Scholar] [CrossRef]
- Ruia, S.; Tripathy, K. Fluorescein Angiography. In Treasure Island; StatPearls Publishing: Tampa, FL, USA, 2023. [Google Scholar]
- Kornblau, I.S.; El-Annan, J.F. Adverse reactions to fluorescein angiography: A comprehensive review of the literature. Surv. Ophthalmol. 2019, 64, 679–693. [Google Scholar] [CrossRef]
- Cheung, C.Y.-L.; Ikram, M.K.; Chen, C.; Wong, T.Y. Imaging retina to study dementia and stroke. Prog. Retin. Eye Res. 2017, 57, 89–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, M.; Cao, Y.; Yun, W. Correlation Between Retinal Microvascular Abnormalities and Total Magnetic Resonance Imaging Burden of Cerebral Small Vessel Disease in Patients with Type 2 Diabetes. Front. Neurosci. 2021, 15, 727998. [Google Scholar] [CrossRef]
- Barrett, E.J.; Liu, Z.; Khamaisi, M.; King, G.L.; Klein, R.; Klein, B.E.K.; Hughes, T.M.; Craft, S.I.; Freedman, B.; Bowden, D.W.; et al. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2017, 102, 4343–4410. [Google Scholar] [CrossRef]
- van Sloten, T.T.; Sedaghat, S.; Carnethon, M.R.; Launer, L.J.A.; Stehouwer, C.D. Cerebral microvascular complications of type 2 diabetes: Stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020, 8, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Pike, C.J. Alzheimer’s Disease and Type 2 Diabetes: Multiple Mechanisms Contribute to Interactions. Curr. Diabetes Rep. 2014, 14, 476. [Google Scholar] [CrossRef] [PubMed]
- Umemura, T.; Kawamura, T.; Hotta, N. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities. J. Diabetes Investig. 2017, 8, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Mäkimattila, S.; Malmberg-Cèder, K.; Häkkinen, A.-M.; Vuori, K.; Salonen, O.; Summanen, P.; Yki-Järvinen, H.; Kaste, M.; Heikkinen, S.; Lundbom, N.; et al. Brain Metabolic Alterations in Patients with Type 1 Diabetes–Hyperglycemia-Induced Injury. J. Cereb. Blood Flow Metab. 2004, 24, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Nagamachi, S.; Nishikawa, T.; Ono, S.; Kawasaki, K.; Eguchi, G.; Hoshi, H.; Jinnouchi, S.; Ohnishi, T.; Futami, S.; Watanabe, K. Regional cerebral hypoperfusion in long-term type 1 (insulin-dependent) diabetic patients: Relation to hypoglycaemic events. Nucl. Med. Commun. 1995, 16, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Kannel, C.; Paffenbarger, R.S.; Cupples, L. Heart rate and cardiovascular mortality: The Framingham study. Am. Heart J. 1987, 113, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Gunning-Dixon, F.M.; Raz, N. The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology 2000, 14, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, A.; Tench, C.; Stevenson, R.; Felmban, G.; Altokhis, A.; Aldhebaib, A.; Dineen, R.A.; Constantinescu, C.S. Investigating Brain Microstructural Alterations in Type 1 and Type 2 Diabetes Using Diffusion Tensor Imaging: A Systematic Review. Brain Sci. 2021, 11, 140. [Google Scholar] [CrossRef]
- Biessels, G.J.; Reijmer, Y.D. Brain Changes Underlying Cognitive Dysfunction in Diabetes: What Can We Learn From MRI? Diabetes 2014, 63, 2244–2252. [Google Scholar] [CrossRef]
- Fox, L.A.; For the Diabetes Research in Children Network (DirecNet); Hershey, T.; Mauras, N.; Arbeláez, A.M.; Tamborlane, W.V.; Buckingham, B.; Tsalikian, E.; Englert, K.; Raman, M.; et al. Persistence of abnormalities in white matter in children with type 1 diabetes. Diabetologia 2018, 61, 1538–1547. [Google Scholar] [CrossRef]
- Pierpaoli, C.; Jezzard, P.; Basser, P.J.; Barnett, A.; Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996, 201, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.; Mattiello, J.; LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994, 66, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-K.; Sun, S.-W.; Ramsbottom, M.J.; Changc, C.; Russellf, J.; Cross, A.H. Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water. NeuroImage 2002, 17, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Jelescu, I.O.; Zurek, M.; Winters, K.V.; Veraart, J.; Rajaratnam, A.; Kim, N.S.; Babb, J.S.; Shepherd, T.M.; Novikov, D.S.; Kim, S.G.; et al. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy. NeuroImage 2016, 132, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Tiehuis, A.M.; Vincken, K.L.; Berg, E.v.D.; Hendrikse, J.; Manschot, S.M.; Mali, W.P.T.M.; Kappelle, L.J.; Biessels, G.J. Cerebral perfusion in relation to cognitive function and type 2 diabetes. Diabetologia 2008, 51, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Mauras, N.; Buckingham, B.; White, N.H.; Tsalikian, E.; Weinzimer, S.A.; Jo, B.; Cato, A.; Fox, L.A.; Aye, T.; Arbelaez, A.M.; et al. Impact of Type 1 Diabetes in the Developing Brain in Children: A Longitudinal Study. Diabetes Care 2021, 44, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.M.; Doubal, F.N.; Jackson, C.A.; Chappell, F.M.; Sudlow, C.L.; Dennis, M.S.; Wardlaw, J.M. Enlarged Perivascular Spaces and Cerebral Small Vessel Disease. Int. J. Stroke 2015, 10, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.C.; Blane, A.; Perros, P.; McCrimmon, R.J.; Best, J.J.; Wardlaw, J.; Deary, I.J.; Frier, B.M. Cognitive ability and brain structure in type 1 diabetes: Relation to microangiopathy and preceding severe hypoglycemia. Diabetes 2003, 52, 149–156. [Google Scholar] [CrossRef]
- Caballero, A.; Arora, S.; Saouaf, R.; Lim, S.C.; Smakowski, P.; Park, J.Y.; King, G.L.; LoGerfo, F.W.; Horton, E.S.; Veves, A. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 1999, 48, 1856–1862. [Google Scholar] [CrossRef]
- Shaw, J.E.; Boulton, A.J. The pathogenesis of diabetic foot problems: An overview. Diabetes 1997, 46 (Suppl. S2), S58–S61. [Google Scholar] [CrossRef]
- Maldonado, G.; Guerrero, R.; Paredes, C.; Ríos, C. Nailfold capillaroscopy in diabetes mellitus. Microvasc. Res. 2017, 112, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Deegan, A.J.; Wang, R. Microvascular imaging of the skin. Phys. Med. Biol. 2019, 64, 07TR01. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, S.; Bergen, K.; Azizi, L.; Jörneskog, G. Skin microvascular reactivity correlates to clinical microangiopathy in type 1 diabetes: A pilot study. Diabetes Vasc. Dis. Res. 2020, 17, 1479164120928303. [Google Scholar] [CrossRef] [PubMed]
- Mennes, O.A.; van Netten, J.J.; van Baal, J.G.; Slart, R.H.J.A.; Steenbergen, W. The Association between Foot and Ulcer Microcirculation Measured with Laser Speckle Contrast Imaging and Healing of Diabetic Foot Ulcers. J. Clin. Med. 2021, 10, 3844. [Google Scholar] [CrossRef] [PubMed]
- Matheus, A.S.d.M.; Clemente, E.L.S.; Rodrigues, M.d.L.G.; Valença, D.C.T.; Gomes, M.B. Assessment of microvascular endothelial function in type 1 diabetes using laser speckle contrast imaging. J. Diabetes Its Complicat. 2017, 31, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Bjorgan, A.; Milanic, M.; Randeberg, L.L. Estimation of skin optical parameters for real-time hyperspectral imaging applications. J. Biomed. Opt. 2014, 19, 066003. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, Z.; Yang, W.; Ning, Z.; Dong, H. Review on the Application of Hyperspectral Imaging Technology of the Exposed Cortex in Cerebral Surgery. Front. Bioeng. Biotechnol. 2022, 10, 906728. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, S.; Jeffcoate, W.J.; Clark, D.J.; Musgove, A.; Game, F.L.; Morgan, S.P. Investigation of the Performance of Hyperspectral Imaging by Principal Component Analysis in the Prediction of Healing of Diabetic Foot Ulcers. J. Imaging 2018, 4, 144. [Google Scholar] [CrossRef]
- Saiko, G.; Lombardi, P.; Au, Y.; Queen, D.; Armstrong, D.; Harding, K. Hyperspectral imaging in wound care: A systematic review. Int. Wound J. 2020, 17, 1840–1856. [Google Scholar] [CrossRef]
- Nouvong, A.; Hoogwerf, B.; Mohler, E.; Davis, B.; Tajaddini, A.; Medenilla, E. Evaluation of Diabetic Foot Ulcer Healing with Hyperspectral Imaging of Oxyhemoglobin and Deoxyhemoglobin. Diabetes Care 2009, 32, 2056–2061. [Google Scholar] [CrossRef]
- Argarini, R.; McLaughlin, R.; Joseph, S.Z.; Naylor, L.H.; Carter, H.H.; Yeap, B.B.; Jansen, S.J.; Green, D.J. Optical coherence tomography: A novel imaging approach to visualize and quantify cutaneous microvascular structure and function in patients with diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001479. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.; Schwarz, M.; Garzorz, N.; Omar, M.; Buehler, A.; Eyerich, K.; Ntziachristos, V. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 2017, 1, 0068. [Google Scholar] [CrossRef]
- Schwarz, M.; Soliman, D.; Omar, M.; Buehler, A.; Ovsepian, S.V.; Aguirre, J.; Ntziachristos, V. Optoacoustic Dermoscopy of the Human Skin: Tuning Excitation Energy for Optimal Detection Bandwidth with Fast and Deep Imaging in vivo. IEEE Trans. Med. Imaging 2017, 36, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.; Schwarz, M.; Soliman, D.; Buehler, A.; Omar, M.; Ntziachristos, V. Broadband mesoscopic optoacoustic tomography reveals skin layers. Opt. Lett. 2014, 39, 6297–6300. [Google Scholar] [CrossRef] [PubMed]
- Hindelang, B.; Nau, T.; Englert, L.; Berezhnoi, A.; Lauffer, F.; Darsow, U.; Biedermann, T.; Eyerich, K.; Aguirre, J.; Ntziachristos, V. Enabling precision monitoring of psoriasis treatment by optoacoustic mesoscopy. Sci. Transl. Med. 2022, 14, eabm8059. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Fasoula, N.A.; Karlas, A.; Omar, M.; Aguirre, J.; Lutz, J.; Kallmayer, M.; Füchtenbusch, M.; Eckstein, H.H.; Ziegler, A.G.; et al. Optoacoustic skin mesoscopy opens a window to systemic effects of diabetes. medRxiv 2020, 2020–06. [Google Scholar]
- Fuchs, D.; Dupon, P.P.; Schaap, L.A.; Draijer, R. The association between diabetes and dermal microvascular dysfunction non-invasively assessed by laser Doppler with local thermal hyperemia: A systematic review with meta-analysis. Cardiovasc. Diabetol. 2017, 16, 11. [Google Scholar] [CrossRef]
- Chen, J.; Li, L. Validation of neuropathic pain assessment tools among Chinese patients with painful diabetic peripheral neuropathy. Int. J. Nurs. Sci. 2016, 3, 139–145. [Google Scholar] [CrossRef]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar]
- Bennett, M. The LANSS Pain Scale: The Leeds assessment of neuropathic symptoms and signs. Pain 2001, 92, 147–157. [Google Scholar] [CrossRef]
- Rao, H.; Gaur, N.; Tipre, D. Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy. Nucl. Med. Commun. 2017, 38, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Allman, K.C.; Stevens, M.J.; Wieland, D.M.; Hutchins, G.D.; Wolfe, E.R.; Greene, D.A.; Schwaiger, M. Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. J. Am. Coll. Cardiol. 1993, 22, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Tack, C.J.; van Gurp, P.J.; Holmes, C.; Goldstein, D.S. Local Sympathetic Denervation in Painful Diabetic Neuropathy. Diabetes 2002, 51, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Aswath, G.S.; Foris, L.A.; Ashwath, A.K.; Patel, K. Diabetic Gastroparesis. In Treasure Island; StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Sasor, A.; Ohlsson, B. Microangiopathy is Common in Submucosal Vessels of the Colon in Patients with Diabetes Mellitus. Rev. Diabet. Stud. 2014, 11, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Selvarajah, D.; Gandhi, R.; Greig, M.; Shillo, P.; Fang, F.; Wilkinson, I.D. Diabetic peripheral neuropathy may not be as its name suggests. Pain 2016, 157 (Suppl. S1), S72–S80. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, D.; Wilkinson, I.D.; Emery, C.J.; Harris, N.D.; Shaw, P.J.; Witte, D.R.; Griffiths, P.D.; Tesfaye, S. Early Involvement of the Spinal Cord in Diabetic Peripheral Neuropathy. Diabetes Care 2006, 29, 2664–2669. [Google Scholar] [CrossRef]
- Tseng, M.-T.; Chiang, M.-C.; Chao, C.-C.; Tseng, W.-Y.I.; Hsieh, S.-T. fMRI evidence of degeneration-induced neuropathic pain in diabetes: Enhanced limbic and striatal activations. Hum. Brain Mapp. 2013, 34, 2733–2746. [Google Scholar] [CrossRef]
- Bäumer, P.; Pham, M.; Ruetters, M.; Heiland, S.; Heckel, A.; Radbruch, A.; Bendszus, M.; Weiler, M. Peripheral Neuropathy: Detection with Diffusion-Tensor Imaging. Radiology 2014, 273, 185–193. [Google Scholar] [CrossRef]
- Xia, X.; Dai, L.; Zhou, H.; Chen, P.; Liu, S.; Yang, W.; Zuo, Z.; Xu, X. Assessment of peripheral neuropathy in type 2 diabetes by diffusion tensor imaging: A case-control study. Eur. J. Radiol. 2021, 145, 110007. [Google Scholar] [CrossRef]
- Thrainsdottir, S.; Malik, R.A.; Dahlin, L.B.; Wiksell, P.; Eriksson, K.F.; Rosén, I.; Petersson, J.; Greene, D.A.; Sundkvist, G. Endoneurial Capillary Abnormalities Presage Deterioration of Glucose Tolerance and Accompany Peripheral Neuropathy in Man. Diabetes 2003, 52, 2615–2622. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, N.P.; Vægter, C.B.; Andersen, H.; Østergaard, L.; Calcutt, N.A.; Jensen, T.S. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat. Rev. Neurol. 2017, 13, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, D.; Cash, T.; Davies, J.; Sankar, A.; Rao, G.; Grieg, M.; Pallai, S.; Gandhi, R.; Wilkinson, I.D.; Tesfaye, S. SUDOSCAN: A Simple, Rapid, and Objective Method with Potential for Screening for Diabetic Peripheral Neuropathy. PLoS ONE 2015, 10, e0138224. [Google Scholar] [CrossRef] [PubMed]
- Casellini, C.M.; Parson, H.K.; Richardson, M.S.; Nevoret, M.L.; Vinik, A.I.; Smith, A.G.; Singleton, J.R.; Callaghan, B.; Freedman, B.I.; Tuomilehto, J.; et al. Sudoscan, a Noninvasive Tool for Detecting Diabetic Small Fiber Neuropathy and Autonomic Dysfunction. Diabetes Technol. Ther. 2013, 15, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Liu, S.; Qiao, X.; Zheng, H.; Xiong, Q.; Wen, J.; Liu, L.; Tang, M.; Zhang, S.; Zhang, Z.; et al. Sudoscan is an effective screening method for asymptomatic diabetic neuropathy in Chinese type 2 diabetes mellitus patients. J. Diabetes Investig. 2016, 8, 363–368. [Google Scholar] [CrossRef]
- Akaza, M.; Akaza, I.; Kanouchi, T.; Sasano, T.; Sumi, Y.; Yokota, T. Nerve conduction study of the association between glycemic variability and diabetes neuropathy. Diabetol. Metab. Syndr. 2018, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Lesser, E.A.; Potts, F.A.; Gozani, S.N. Utilization of Nerve Conduction Studies for the Diagnosis of Polyneuropathy in Patients with Diabetes: A Retrospective Analysis of a Large Patient Series. J. Diabetes Sci. Technol. 2008, 2, 268–274. [Google Scholar] [CrossRef]
- Yu, Y. Gold Standard for Diagnosis of DPN. Front. Endocrinol. 2021, 12, 719356. [Google Scholar] [CrossRef]
- Kibel, A.; Selthofer-Relatic, K.; Drenjancevic, I.; Bacun, T.; Bosnjak, I.; Kibel, D.; Gros, M. Coronary microvascular dysfunction in diabetes mellitus. J. Int. Med. Res. 2017, 45, 1901–1929. [Google Scholar] [CrossRef]
- Pries, A.R.; Reglin, B. Coronary microcirculatory pathophysiology: Can we afford it to remain a black box? Eur. Heart J. 2016, 38, 478–488. [Google Scholar] [CrossRef]
- Lanza, G.A.; Crea, F. Primary Coronary Microvascular Dysfunction. Circulation 2010, 121, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.; Holubkov, R.; Lee, J.S.; Sharaf, B.; Reichek, N.; Rogers, W.J.; Walsh, E.G.; Fuisz, A.R.; Kerensky, R.; Detre, K.M.; et al. Coronary flow velocity response to adenosine characterizes coronary microvascular function in women with chest pain and no obstructive coronary disease: Results from the pilot phase of the Women’s Ischemia Syndrome Evaluation (WISE) Study. J. Am. Coll. Cardiol. 1999, 33, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Lepper, W.; Belcik, T.; Wei, K.; Lindner, J.R.; Sklenar, J.; Kaul, S. Myocardial Contrast Echocardiography. Circulation 2004, 109, 3132–3135. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, J.; Guo, J.; Lu, H.; Zhang, Y.; Chen, Y. Characteristics of Myocardial Perfusion in Type 2 Diabetes Mellitus and Its Association with Left Ventricular Diastolic Dysfunction: A Study of Myocardial Contrast Echocardiography. Int. J. Gen. Med. 2021, 14, 7533–7543. [Google Scholar] [CrossRef] [PubMed]
- Salerno, M.; Beller, G.A. Noninvasive Assessment of Myocardial Perfusion. Circ. Cardiovasc. Imaging 2009, 2, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Modonesi, E.; Balbi, M.; Bezante, G. Limitations and Potential Clinical Application on Contrast Echocardiography. Curr. Cardiol. Rev. 2010, 6, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Moir, S. Relationship between myocardial perfusion and dysfunction in diabetic cardiomyopathy: A study of quantitative contrast echocardiography and strain rate imaging. Heart 2006, 92, 1414–1419. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Barlocci, E.; Adda, G.; Esposito, V.; Ferrulli, A.; Nicolosi, G.L.; Bianchi, S.; Lombardo, M.; Luzi, L. The impact of short-term hyperglycemia and obesity on biventricular and biatrial myocardial function assessed by speckle tracking echocardiography in a population of women with gestational diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2021, 32, 456–468. [Google Scholar] [CrossRef]
- Nicolosi, G.L. The strain and strain rate imaging paradox in echocardiography: Overabundant literature in the last two decades but still uncertain clinical utility in an individual case. Arch. Med. Sci.—Atheroscler. Dis. 2020, 5, 297–305. [Google Scholar] [CrossRef]
- Acampa, W.; Assante, R.; Zampella, E.; Petretta, M.; Cuocolo, A. Myocardial perfusion imaging for diabetes: Key points from the evidence and clinical questions to be answered. J. Nucl. Cardiol. 2019, 27, 1569–1577. [Google Scholar] [CrossRef]
- Calamante, F. Arterial input function in perfusion MRI: A comprehensive review. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 74, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Antkowiak, P.F.; Nandalur, K.R.; West, A.M.; Salerno, M.; Arora, V.; Christopher, J.; Epstein, F.H.; Kramer, C.M. Assessment of Advanced Coronary Artery Disease: Advantages of Quantitative Cardiac Magnetic Resonance Perfusion Analysis. J. Am. Coll. Cardiol. 2010, 56, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.C.; Bourque, J.M.; Salerno, M.; Kramer, C.M. Cardiovascular Imaging Techniques to Assess Microvascular Dysfunction. JACC Cardiovasc. Imaging 2020, 13, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- von Scholten, B.J.; Hasbak, P.; Christensen, T.E.; Ghotbi, A.A.; Kjaer, A.; Rossing, P.; Hansen, T.W. Cardiac 82Rb PET/CT for fast and non-invasive assessment of microvascular function and structure in asymptomatic patients with type 2 diabetes. Diabetologia 2016, 59, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Marini, C.; Bezante, G.; Gandolfo, P.; Modonesi, E.; Morbelli, S.D.; DePascale, A.; Rollando, D.; Maggi, D.; Albertelli, M.; Armonino, R.; et al. Optimization of flow reserve measurement using SPECT technology to evaluate the determinants of coronary microvascular dysfunction in diabetes. Eur. J. Nucl. Med. 2009, 37, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Karlas, A.; Reber, J.; Liapis, E.; Paul-Yuan, K.; Ntziachristos, V. Multispectral Optoacoustic Tomography of Brown Adipose Tissue. Handb. Exp. Pharmacol. 2019, 251, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Mårin, P.; Andersson, B.; Krotkiewski, M.; Björntorp, P. Muscle Fiber Composition and Capillary Density in Women and Men With NIDDM. Diabetes Care 1994, 17, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.F.; Coffin, G.S.; Barrett, E.J.; Skalak, T.C. Hemodynamic Systems Analysis of Capillary Network Remodeling During the Progression of Type 2 Diabetes. Microcirculation 2011, 18, 63–73. [Google Scholar] [CrossRef]
- Siperstein, M.D.; Unger, R.H.; Madison, L.L. Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. J. Clin. Investig. 1968, 47, 1973–1999. [Google Scholar] [CrossRef]
- Nguyen, T.; Davidson, B.P. Contrast Enhanced Ultrasound Perfusion Imaging in Skeletal Muscle. J. Cardiovasc. Imaging 2019, 27, 163–177. [Google Scholar] [CrossRef]
- Chan, A.; Barrett, E.J.; Anderson, S.M.; Kovatchev, B.P.; Breton, M.D. Muscle microvascular recruitment predicts insulin sensitivity in middle-aged patients with type 1 diabetes mellitus. Diabetologia 2011, 55, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Young, G.M.; Krastins, D.; Chang, D.; Lam, J.; Quah, J.; Stanton, T.; Russell, F.; Greaves, K.; Kriel, Y.; Askew, C.D. The Association Between Contrast-Enhanced Ultrasound and Near-Infrared Spectroscopy-Derived Measures of Calf Muscle Microvascular Responsiveness in Older Adults. Heart Lung Circ. 2021, 30, 1726–1733. [Google Scholar] [CrossRef]
- Karlas, A.; Kallmayer, M.; Fasoula, N.; Liapis, E.; Bariotakis, M.; Krönke, M.; Anastasopoulou, M.; Reber, J.; Eckstein, H.; Ntziachristos, V. Multispectral optoacoustic tomography of muscle perfusion and oxygenation under arterial and venous occlusion: A human pilot study. J. Biophotonics 2020, 13, e201960169. [Google Scholar] [CrossRef] [PubMed]
- Karlas, A.; Fasoula, N.-A.; Katsouli, N.; Kallmayer, M.; Sieber, S.; Schmidt, S.; Liapis, E.; Halle, M.; Eckstein, H.-H.; Ntziachristos, V. Skeletal muscle optoacoustics reveals patterns of circulatory function and oxygen metabolism during exercise. Photoacoustics 2023, 30, 100468. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Watanabe, K.; Fukuda, K.; Moritani, T. Near-infrared Spectroscopy of Vastus Lateralis Muscle during Incremental Cycling Exercise in patients with Type 2 Diabetes. Phys. Ther. Res. 2020, 23, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Tuesta, M.; Yáñez-Sepúlveda, R.; Verdugo-Marchese, H.; Mateluna, C.; Alvear-Ordenes, I. Near-Infrared Spectroscopy Used to Assess Physiological Muscle Adaptations in Exercise Clinical Trials: A Systematic Review. Biology 2022, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Partovi, S.; Karimi, S.; Jacobi, B.; Schulte, A.-C.; Aschwanden, M.; Zipp, L.; Lyo, J.K.; Karmonik, C.; Müller-Eschner, M.; Huegli, R.W.; et al. Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI. Magn. Reson. Mater. Physics. Biol. Med. 2012, 25, 251–261. [Google Scholar] [CrossRef]
- Slade, J.M.; Towse, T.F.; Gossain, V.V.; Meyer, R.A.; Poitras, V.J.; Hudson, R.W.; Tschakovsky, M.E.; Larsen, R.G.; Hirata, R.P.; Madzak, A.; et al. Peripheral microvascular response to muscle contraction is unaltered by early diabetes but decreases with age. J. Appl. Physiol. 2011, 111, 1361–1371. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Liang, S.; Liang, X.; Zhou, W.; He, H.; Jin, R.; Wang, K.; Zhu, Z.; Yan, Z. A novel use of hill function and utility of 99mTc-MIBI scintigraphy to detect earlier lower extremity microvascular perfusion in patients with type 2 diabetes. Medicine 2017, 96, e8038. [Google Scholar] [CrossRef]
- Cohen, P.; Spiegelman, B.M.; Okamura, T.; Shimizu, H.; Nagao, T.; Ueda, R.; Ishii, S.; Tansey, M.E.W.; Wang, F.; Tong, Q.; et al. Cell biology of fat storage. Mol. Biol. Cell 2016, 27, 2523–2527. [Google Scholar] [CrossRef]
- Frayn, K.N.; Karpe, F. Regulation of human subcutaneous adipose tissue blood flow. Int. J. Obes. 2014, 38, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, J.; Dai, H.; Duan, Y.; An, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Ma, Q.; et al. Brown and beige adipose tissue: A novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021, 10, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Pasarica, M.; Sereda, O.R.; Redman, L.M.; Albarado, D.C.; Hymel, D.T.; Roan, L.E.; Rood, J.C.; Burk, D.H.; Smith, S.R. Reduced adipose tissue oxygenation in human obesity: Evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 2009, 58, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Tobin, L.; Simonsen, L.; Bülow, J. The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes. Clin. Physiol. Funct. Imaging 2011, 31, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Remash, D.; Russell, R.D.; Greenaway, T.; Rattigan, S.; Squibb, K.A.; Jones, G.; Premilovac, D.; Richards, S.M.; Keske, M.A. Impairments in Adipose Tissue Microcirculation in Type 2 Diabetes Mellitus Assessed by Real-Time Contrast-Enhanced Ultrasound. Circ. Cardiovasc. Imaging 2018, 11, e007074. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Thirunavukarasu, S.; Jex, N.; Coles, L.; Bowers, C.; Sengupta, A.; Swoboda, P.; Witte, K.; Cubbon, R.; Xue, H.; et al. Coronary microvascular function and visceral adiposity in patients with normal body weight and type 2 diabetes. Obesity 2022, 30, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Weynand, B.; Jonckheere, A.; Frans, A.; Rahier, J. Diabetes mellitus Induces a Thickening of the Pulmonary Basal Lamina. Respiration 1999, 66, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Hara, F. The pulmonary function and histopathological studies of the lung in diabetes mellitus. J. Nippon. Med. Sch. 1991, 58, 528–536. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, R.; Zhong, L.; Gao, Y.; Zheng, J. Technical performance analysis of different types of spirometers. BMC Pulm. Med. 2022, 22, 23. [Google Scholar] [CrossRef]
- Lamb, K.; Theodore, D.; Bhutta, B.S. Spirometry. In Treasure Island; StatPearls: Tampa, FL, USA, 2023. [Google Scholar]
- Irfan, M.; Jabbar, A.; Haque, A.S.; Awan, S.; Hussain, S.F. Pulmonary functions in patients with diabetes mellitus. Lung India 2011, 28, 89–92. [Google Scholar] [CrossRef]
- Davis, W.A.; Knuiman, M.; Kendall, P.; Grange, V.; Davis, T.M. Glycemic Exposure Is Associated with Reduced Pulmonary Function in Type 2 Diabetes: The Fremantle Diabetes Study. Diabetes Care 2004, 27, 752–757. [Google Scholar] [CrossRef] [PubMed]
- McCormack, M.C. Diffusing Capacity for Carbon Monoxide. Stoller, J.K., Hollingsworth, H., Eds.; 2020. Available online: https://www.uptodate.com/contents/diffusing-capacity-for-carbon-monoxide (accessed on 7 August 2020).
- Pawar, S.G.; Santhanam, J.; Ganesan, S.N.; Vidya, T.; Kumarasamy, S.; Sundari, S.M.; Ramya, S. Dynamic diffusion lung capacity of carbon monoxide (DLCO) as a predictor of pulmonary microangiopathy and its association with extra pulmonary microangiopathy in patients with type II diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102360. [Google Scholar] [CrossRef]
- Saler, T.; Cakmak, G.; Saglam, Z.A.; Ataoglu, E.; Erdem, T.Y.; Yenigun, M. The Assessment of Pulmonary Diffusing Capacity in Diabetes Mellitus with Regard to Microalbuminuria. Intern. Med. 2009, 48, 1939–1943. [Google Scholar] [CrossRef]
- Ljubić, S.; Metelko, N.; Car, N.; Roglić, G.; Dražić, Z. Reduction of Diffusion Capacity for Carbon Monoxide in Diabetic Patients. Chest 1998, 114, 1033–1035. [Google Scholar] [CrossRef] [PubMed]
- Kuziemski, K.; Pieńkowska, J.; Słomiński, W.; Jassem, E.; Studniarek, M. Pulmonary capillary permeability and pulmonary microangiopathy in diabetes mellitus. Diabetes Res. Clin. Pract. 2015, 108, e56–e59. [Google Scholar] [CrossRef] [PubMed]
- Kuziemski, K.; Pieńkowska, J.; Słomiński, W.; Specjalski, K.; Dziadziuszko, K.; Jassem, E.; Studniarek, M.; Kalicka, R.; Słomiński, J. Role of quantitative chest perfusion computed tomography in detecting diabetic pulmonary microangiopathy. Diabetes Res. Clin. Pract. 2011, 91, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.J.; Burns, A.T.; MacIsaac, R.J.; MacIsaac, A.I.; Prior, D.L.; La Gerche, A. Diagnosis and Significance of Pulmonary Microvascular Disease in Diabetes. Diabetes Care 2018, 41, 854–861. [Google Scholar] [CrossRef]
Imaging Depth | Spatial Resolution | Structural Information | Functional Information | Dynamic Readouts | Ionizing Radiation | Speed of Scan | Equipment Portability | Equipment Cost | |
---|---|---|---|---|---|---|---|---|---|
US | several cm | medium | yes | yes | yes | no | real-time | medium | low |
MRI | whole body | medium | yes | yes | yes | no | several min | low | high |
CT | whole body | medium | yes | yes | no | yes | several min | low | high |
MSOT | several cm | high | yes | yes | yes | no | real-time | medium | medium |
NIRS | several cm | low | no | yes | yes | no | real-time | high | low |
FP | superficial | high | yes | yes | yes | no | few min | high | low |
OCT | few mm | high | yes | yes | yes | no | few min | medium | medium |
FA | superficial | high | yes | no | yes | no | few min | medium | medium |
CS | superficial | high | yes | no | no | no | real-time | high | low |
LDF | few mm | medium | no | yes | yes | no | real-time | high | low |
LDI | few mm | medium | no | yes | yes | no | few min | medium | low |
LSCI | few mm | high | yes | yes | no | no | few min | medium | medium |
HSI | few mm | medium | yes | yes | no | no | few min | medium | medium |
RSOM | few mm | high | yes | yes | no | no | one min | medium | medium |
PET | whole body | low | yes | yes | no | yes | several min | low | high |
SPECT | whole body | low | yes | yes | no | yes | several min | low | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasoula, N.-A.; Xie, Y.; Katsouli, N.; Reidl, M.; Kallmayer, M.A.; Eckstein, H.-H.; Ntziachristos, V.; Hadjileontiadis, L.; Avgerinos, D.V.; Briasoulis, A.; et al. Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. J. Cardiovasc. Dev. Dis. 2023, 10, 383. https://doi.org/10.3390/jcdd10090383
Fasoula N-A, Xie Y, Katsouli N, Reidl M, Kallmayer MA, Eckstein H-H, Ntziachristos V, Hadjileontiadis L, Avgerinos DV, Briasoulis A, et al. Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. Journal of Cardiovascular Development and Disease. 2023; 10(9):383. https://doi.org/10.3390/jcdd10090383
Chicago/Turabian StyleFasoula, Nikolina-Alexia, Yi Xie, Nikoletta Katsouli, Mario Reidl, Michael A. Kallmayer, Hans-Henning Eckstein, Vasilis Ntziachristos, Leontios Hadjileontiadis, Dimitrios V. Avgerinos, Alexandros Briasoulis, and et al. 2023. "Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review" Journal of Cardiovascular Development and Disease 10, no. 9: 383. https://doi.org/10.3390/jcdd10090383
APA StyleFasoula, N. -A., Xie, Y., Katsouli, N., Reidl, M., Kallmayer, M. A., Eckstein, H. -H., Ntziachristos, V., Hadjileontiadis, L., Avgerinos, D. V., Briasoulis, A., Siasos, G., Hosseini, K., Doulamis, I., Kampaktsis, P. N., & Karlas, A. (2023). Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. Journal of Cardiovascular Development and Disease, 10(9), 383. https://doi.org/10.3390/jcdd10090383