Evaluation of Pulmonary Vein Fibrosis Following Cryoballoon Ablation of Atrial Fibrillation: A Semi-Automatic MRI Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cryoballoon Ablation and Cardiac MRI Acquisition Protocols
- Angio-MRI (non ECG-gated, 4D time-resolved with keyhole 4D-TRAK);
- LGE-MRI (free-breathing navigator and ECG-gated inversion recovery gradient-echo sequence);
2.3. Fibrosis Quantification
- Image selection: For each patient, the available dataset is composed of the following:
- Angio-MRI images, which mainly provide anatomical information. This sequence has been used for 3D reconstruction.
- LGE-MRI sequences that provide the best functional information about fibrosis, thanks to the use of a paramagnetic contrast agent. This sequence has been used for fibrosis quantification.
- Image segmentation: Left Atrium (LA) and Pulmonary Veins (PVs) segmentation are semi-automatically obtained from angio-MRI images by means of ITK-Snap (v. 3.8) software. Segmentation is a crucial step, since the success of the whole analysis depends on its quality. In some cases, a manual correction of the segmentation is required. The operator who performed the segmentations is an expert in medical image processing with anatomical knowledge in the region of interest.
- Image registration: An in-house Python routine is implemented to perform image registrations: patient’s LGE-MRI is used as the fixed image, while angio-MRI and its segmentation are the moving ones. The transformations allows alignment of multiple images acquired from different modalities, and combines them into the same coordinate space. Thus, it is possible to merge together anatomical and functional information to recognize each tissue’s characteristic in a precise locus. The output of the registration step is the LA and PVs segmentation properly located on LGE-MRI. The atrium identification on the functional MRI allows one to start with the fibrosis analysis.
- Blood pool and LA wall identification: Different regions of interest (blood pool and LA wall) are isolated using MITK Workbench (v. 2022.04) software. Starting from the registered atrium segmentation, the area identifying the blood pool is delineated by eroding the segmentation contour of 3 pixels, employing sphere morphology. Following the same method, the atrial wall is extracted. By performing a Boolean subtraction between the dilated and the eroded contour (3 pixels with sphere morphology), an area that likely includes the atrial wall is determined. Masking the LGE-MRI image with both the previously identified regions (blood pool and LA wall), an image with only the pixels included in that area is obtained. This kind of image—exported in .vtp format—is feasible to be analyzed with an in-house-developed ParaView (v. 5.11.0) routine.
- Fibrosis threshold selection: The threshold to discriminate between normal tissue and fibrotic tissue is set on each image as the average gray level value of a 10 mm diameter sphere placed within the blood pool + 2 standard deviation. The choice to use a sphere of a fixed diameter to isolate the pixels with the blood pool is made because of standardization, and to ensure the selection is always in a blood pool region, regardless of the accuracy of the segmentation.
- Fibrosis volume measurement:
- LA and PVs wall: Applying the threshold on the gray levels included in the fictional atrial wall, the amount (volume) of fibrosis on the whole left atrium together with PVs is measured.
- PVs ostia: To isolate the fibrosis volume on each PV (right and left upper pulmonary veins and right and left lower pulmonary veins), the user has to position four disks of 2 mm thickness in correspondence to the four PVs ostia. By isolating the four regions, the amount of fibrosis on each PV ostium can be measured.
- Qualitative evaluation steps: The evaluation steps during the workflow are performed manually by a radiologist. Three evaluation steps are required: the first one is to check the quality of the available image datasets (angio-MRI and LGE-MRI). A second evaluation is needed after registration of the angio-MRI sequence and atrium segmentation on LGE-MRI. The last evaluation step is required to verify the correct position of the marker for the isolation of the PV ostia, with the aim of measuring the localized fibrosis.
- LA total fibrosis indexed on LA surface and/or volume;
- Fibrosis at the ostium of each PV;
- Surface and/or volume of atrial tissue at the ostium of each PV.
2.4. Statistical Analysis
3. Results
3.1. Fibrosis Quantification Using ADAS 3D LA Software
3.2. Fibrosis Quantification Using a Novel Dedicated Image Processing Workflow
4. Discussion
- Evaluation of atrial fibrosis using MRI sequences commonly used in clinical practice is challenging and not routinely feasible;
- Assessment of PVI beyond the acute phase via tissue characterization with MRI does not seem viable at present.
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Saglietto, A.; Gaita, F.; De Ponti, R.; De Ferrari, G.M.; Anselmino, M. Catheter Ablation vs. Anti-Arrhythmic Drugs as First-Line Treatment in Symptomatic Paroxysmal Atrial Fibrillation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Cardiovasc. Med. 2021, 8, 664647. [Google Scholar] [CrossRef]
- Luik, A.; Radzewitz, A.; Kieser, M.; Walter, M.; Bramlage, P.; Hörmann, P.; Schmidt, K.; Horn, N.; Brinkmeier-Theofanopoulou, M.; Kunzmann, K.; et al. Cryoballoon versus Open Irrigated Radiofrequency Ablation in Patients with Paroxysmal Atrial Fibrillation. Circulation 2015, 132, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Wasserlauf, J.; Pelchovitz, D.J.; Rhyner, J.; Verma, N.; Bohn, M.; Li, Z.; Arora, R.; Chicos, A.B.; Goldberger, J.J.; Kim, S.S.; et al. Cryoballoon versus Radiofrequency Catheter Ablation for Paroxysmal Atrial Fibrillation. PACE-Pacing Clin. Electrophysiol. 2015, 38, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Aryana, A.; Singh, S.M.; Kowalski, M.; Pujara, D.K.; Cohen, A.I.; Singh, S.K.; Aleong, R.G.; Banker, R.S.; Fuenzalida, C.E.; Prager, N.A.; et al. Acute and Long-Term Outcomes of Catheter Ablation of Atrial Fibrillation Using the Second-Generation Cryoballoon versus Open-Irrigated Radiofrequency: A Multicenter Experience. J. Cardiovasc. Electrophysiol. 2015, 26, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.J.; Baker, V.; Finlay, M.C.; Duncan, E.R.; Lovell, M.J.; Tayebjee, M.H.; Ullah, W.; Siddiqui, M.S.; McLean, A.; Richmond, L.; et al. Point-by-Point Radiofrequency Ablation Versus the Cryoballoon or a Novel Combined Approach: A Randomized Trial Comparing 3 Methods of Pulmonary Vein Isolation for Paroxysmal Atrial Fibrillation (The Cryo Versus RF Trial). J. Cardiovasc. Electrophysiol. 2015, 26, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Squara, F.; Zhao, A.; Marijon, E.; Latcu, D.G.; Providencia, R.; Di Giovanni, G.; Jauvert, G.; Jourda, F.; Chierchia, G.B.; De Asmundis, C.; et al. Comparison between Radiofrequency with Contact Force-Sensing and Second-Generation Cryoballoon for Paroxysmal Atrial Fibrillation Catheter Ablation: A Multicentre European Evaluation. Europace 2015, 17, 718–724. [Google Scholar] [CrossRef]
- Kuck, K.-H.; Brugada, J.; Fürnkranz, A.; Metzner, A.; Ouyang, F.; Chun, K.R.J.; Elvan, A.; Arentz, T.; Bestehorn, K.; Pocock, S.J.; et al. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2016, 374, 2235–2245. [Google Scholar] [CrossRef]
- Giaretto, V.; Ballatore, A.; Passerone, C.; Desalvo, P.; Matta, M.; Saglietto, A.; De Salve, M.; Gaita, F.; Panella, B.; Anselmino, M. Thermodynamic Properties of Atrial Fibrillation Cryoablation: A Model-Based Approach to Improve Knowledge on Energy Delivery. J. R. Soc. Interface 2019, 16, 20190318. [Google Scholar] [CrossRef]
- Althoff, T.F.; Garre, P.; Caixal, G.; Perea, R.; Prat, S.; Tolosana, J.M.; Guasch, E.; Roca-Luque, I.; Arbelo, E.; Sitges, M.; et al. Late Gadolinium Enhancement-MRI Determines Definite Lesion Formation Most Accurately at 3 Months Post Ablation Compared to Later Time Points. Pacing Clin. Electrophysiol. 2022, 45, 72–82. [Google Scholar] [CrossRef]
- Benito, E.M.; Carlosena-Remirez, A.; Guasch, E.; Prat-González, S.; Perea, R.J.; Figueras, R.; Borràs, R.; Andreu, D.; Arbelo, E.; Tolosana, J.M.; et al. Left Atrial Fibrosis Quantification by Late Gadolinium-Enhanced Magnetic Resonance: A New Method to Standardize the Thresholds for Reproducibility. Europace 2017, 19, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Tore, D.; Faletti, R.; Biondo, A.; Carisio, A.; Giorgino, F.; Landolfi, I.; Rocco, K.; Salto, S.; Santonocito, A.; Ullo, F.; et al. Role of Cardiovascular Magnetic Resonance in the Management of Atrial Fibrillation: A Review. J. Imaging 2022, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Anselmino, M.; Scaglione, M.; Blandino, A.; Beninati, S.; Caponi, D.; Boffano, C.; Montefusco, A.; Cesarani, F.; Gaita, F. Pulmonary Veins Branching Pattern, Assessed by Magnetic Resonance, Does Not Affect Transcatheter Atrial Fibrillation Ablation Outcome. Acta Cardiol. 2010, 65, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Faletti, R.; Gatti, M.; Di Chio, A.; Fronda, M.; Anselmino, M.; Ferraris, F.; Gaita, F.; Fonio, P. Concentrated Pineapple Juice for Visualisation of the Oesophagus during Magnetic Resonance Angiography before Atrial Fibrillation Radiofrequency Catheter Ablation. Eur. Radiol. Exp. 2018, 2, 39. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wazni, O.; McGann, C.; Greene, T.; Dean, J.M.; Dagher, L.; Kholmovski, E.; Mansour, M.; Marchlinski, F.; Wilber, D.; et al. Effect of MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation on Atrial Arrhythmia Recurrence in Patients with Persistent Atrial Fibrillation: The DECAAF II Randomized Clinical Trial. JAMA 2022, 327, 2296–2305. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzo, F.; Corleto, A.; Biondi-Zoccai, G.; Anselmino, M.; Ferraris, F.; Di Biase, L.; Natale, A.; Hunter, R.J.; Schilling, R.J.; Miyazaki, S.; et al. Which Are the Most Reliable Predictors of Recurrence of Atrial Fibrillation after Transcatheter Ablation? A Meta-Analysis. Int. J. Cardiol. 2013, 167, 1984–1989. [Google Scholar] [CrossRef] [PubMed]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation. JAMA 2014, 311, 498. [Google Scholar] [CrossRef]
- Hopman, L.H.G.A.; Bhagirath, P.; Mulder, M.J.; Eggink, I.N.; Van Rossum, A.C.; Allaart, C.P.; Götte, M.J.W. Quantification of Left Atrial Fibrosis by 3D Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Patients with Atrial Fibrillation: Impact of Different Analysis Methods. Eur. Heart J.-Cardiovasc. Imaging 2022, 23, 1182–1190. [Google Scholar] [CrossRef]
- Bisbal, F.; Guiu, E.; Cabanas-Grandío, P.; Berruezo, A.; Prat-Gonzalez, S.; Vidal, B.; Garrido, C.; Andreu, D.; Fernandez-Armenta, J.; Tolosana, J.M.; et al. CMR-Guided Approach to Localize and Ablate Gaps in Repeat AF Ablation Procedure. JACC Cardiovasc. Imaging 2014, 7, 653–663. [Google Scholar] [CrossRef]
- Akoum, N.; Wilber, D.; Hindricks, G.; Jais, P.; Cates, J.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. MRI Assessment of Ablation-Induced Scarring in Atrial Fibrillation: Analysis from the DECAAF Study. J. Cardiovasc. Electrophysiol. 2015, 26, 473–480. [Google Scholar] [CrossRef]
- Spragg, D.D.; Khurram, I.; Zimmerman, S.L.; Yarmohammadi, H.; Barcelon, B.; Needleman, M.; Edwards, D.; Marine, J.E.; Calkins, H.; Nazarian, S. Initial Experience with Magnetic Resonance Imaging of Atrial Scar and Co-Registration with Electroanatomic Voltage Mapping during Atrial Fibrillation: Success and Limitations. Heart Rhythm 2012, 9, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Linhart, M.; Alarcon, F.; Borràs, R.; Benito, E.M.; Chipa, F.; Cozzari, J.; Caixal, G.; Enomoto, N.; Carlosena, A.; Guasch, E.; et al. Delayed Gadolinium Enhancement Magnetic Resonance Imaging Detected Anatomic Gap Length in Wide Circumferential Pulmonary Vein Ablation Lesions Is Associated with Recurrence of Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2018, 11, e006659. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, F.; Cabanelas, N.; Izquierdo, M.; Benito, E.; Figueras Ventura, R.I.; Guasch, E.; Prat-Gonzalez, S.; Perea, R.J.; Borràs, R.; Trotta, O.; et al. Cryoballoon vs. Radiofrequency Lesions as Detected by Late-Enhancement Cardiac Magnetic Resonance after Ablation of Paroxysmal Atrial Fibrillation: A Case-Control Study. Europace 2020, 22, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Kurose, J.; Kiuchi, K.; Fukuzawa, K.; Takami, M.; Mori, S.; Suehiro, H.; Nagamatsu, Y.-i.; Akita, T.; Takemoto, M.; Yatomi, A.; et al. Lesion Characteristics between Cryoballoon Ablation and Radiofrequency Ablation with a Contact Force-Sensing Catheter: Late-Gadolinium Enhancement Magnetic Resonance Imaging Assessment. J. Cardiovasc. Electrophysiol. 2020, 31, 2572–2581. [Google Scholar] [CrossRef] [PubMed]
- Trotta, O.; Alarcón, F.; Guasch, E.; Benito, E.M.; San Antonio, R.; Perea, R.J.; Prat-Gonzalez, S.; Apolo, J.; Sitges, M.; Tolosana, J.M.; et al. Impact of Cryoballoon Applications on Lesion Gaps Detected by Magnetic Resonance after Pulmonary Vein Isolation. J. Cardiovasc. Electrophysiol. 2020, 31, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Rav Acha, M.; Tovia-Brodie, O.; Michowitz, Y.; Bayya, F.; Shaheen, F.F.; Abuhatzera, S.; Medina, A.; Glikson, M.; Wolak, A. Cryoballoon-Induced Circumferential Pulmonary Vein Fibrosis, Assessed by Late Gadolinium-Enhancement Cardiac Magnetic Resonance Imaging, and Its Correlation with Clinical Atrial Fibrillation Recurrence. J. Clin. Med. 2023, 12, 2442. [Google Scholar] [CrossRef]
Variable | General Population | Arrhythmic Recurrence | No Recurrence | p-Value |
---|---|---|---|---|
Age | 60.5 (±9.7) | 58.3 | 61.7 | ns |
Gender (female) | 14 (38.9%) | 5 (41.7%) | 9 (37.5%) | ns |
Paroxysmal AF | 33 (91.7%) | 12 (100%) | 20 (83.3%) | ns |
AF history duration (months) | 78.3 (±85.2) | 114.6 | 61.9 | ns |
AF at the procedure | 9 (25.0%) | 4 (33.3%) | 4 (16.7%) | ns |
Hypertension | 16 (44.4%) | 5 (41.7%) | 11 (45.8%) | ns |
Diabetes | 3 (8.3%) | 2 (16.7%) | 1 (4.2%) | ns |
Previous stroke | 1 (2.7%) | 1 (8.3%) | 0 | ns |
CAD | 1 (2.7%) | 0 | 1 (4.2%) | ns |
Thyroid disorders | 3 (8.3%) | 1 (8.3%) | 2 (8.3%) | ns |
Prior use of AADs | ||||
Amiodarone | 2 (5.6%) | 1 (8.3%) | 1 (4.2%) | ns |
Flecainide | 8 (22.2%) | 1 (8.3%) | 7 (29.2%) | ns |
Propafenone | 12 (33.3%) | 5 (41.7%) | 7 (29.2%) | ns |
Sotalol | 4 (11.1%) | 3 (25%) | 1 (4.2%) | ns |
Beta-blockers | 23 (63.9%) | 2 (16.7%) | 20 (83.3%) | <0.001 |
Digoxin | 0 (0%) | ns | ||
Oral anticoagulants | ||||
VKA | 2 (5.6%) | 0 | 2.3 (8%) | ns |
DOAC | 23 (63.9%) | 7 (58.3%) | 16 (66.7%) | ns |
Indexed LA volume mL/mq | 41.1 (±10.2) | 40.3 | 41.5 | ns |
Variable | Subgroup | p-Value | |
---|---|---|---|
Recurrence | No Recurrence | ||
Analysis based on ADAS | |||
Increase in LA fibrosis after ablation | 1.7 | 1.9 | 0.885 |
Increase in PV fibrosis after ablation | 0.10 | −0.10 | 0.415 |
Number of PVs without an increase of fibrosis after ablation | 1.7 | 2.1 | 0.509 |
Analysis based on the custom study specific workflow | |||
Increase in LA fibrosis after ablation | 10.8 | 1.8 | 0.243 |
Increase in PV fibrosis after ablation | 0.30 | 0.15 | 0.422 |
Number of PVs without an increase of fibrosis after ablation | 1.1 | 1.6 | 0.393 |
Variable | Univariate | Multivariate |
---|---|---|
Analysis based on ADAS | ||
Baseline LA fibrosis | 0.99 (95%CI: 0.93–1.04) | 0.99 (95%CI: 0.91–1.08) |
Increase in LA fibrosis after ablation | 0.99 (95%CI: 0.80–1.17) | 0.90 (95%CI: 0.65–1.16) |
Increase in PV fibrosis after ablation | 1.48 (95%CI: 0.54–4.56) | 1.16 (95%CI: 0.14–10.79) |
Number of PVs without an increase of fibrosis after ablation | 0.83 (95%CI: 0.49–1.40) | 0.75 (95%CI: 0.23–2.23) |
Analysis based on the custom study specific workflow | ||
Baseline LA fibrosis | 1.00 (95%CI: 1.00;1.00) | 1.00 (95%CI: 1.00;1.00) |
Increase in LA fibrosis after ablation | 1.08 (95%CI 1.00–1.28) | 1.05 (95%CI 0.98–1.29) |
Increase in PV fibrosis after ablation | 1.01 (95%CI 0.99–1.03) | 1.00 (95%CI 0.97–1.03) |
Number of PVs without an increase of fibrosis after ablation | 0.76 (95%CI 0.39–1.38) | 1.10 (95%CI 0.39–3.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballatore, A.; Negrello, E.; Gatti, M.; Matta, M.; Desalvo, P.; Marcialis, L.; Marconi, S.; Tore, D.; Magnano, M.; Bissolino, A.; et al. Evaluation of Pulmonary Vein Fibrosis Following Cryoballoon Ablation of Atrial Fibrillation: A Semi-Automatic MRI Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 396. https://doi.org/10.3390/jcdd10090396
Ballatore A, Negrello E, Gatti M, Matta M, Desalvo P, Marcialis L, Marconi S, Tore D, Magnano M, Bissolino A, et al. Evaluation of Pulmonary Vein Fibrosis Following Cryoballoon Ablation of Atrial Fibrillation: A Semi-Automatic MRI Analysis. Journal of Cardiovascular Development and Disease. 2023; 10(9):396. https://doi.org/10.3390/jcdd10090396
Chicago/Turabian StyleBallatore, Andrea, Erika Negrello, Marco Gatti, Mario Matta, Paolo Desalvo, Lorenzo Marcialis, Stefania Marconi, Davide Tore, Massimo Magnano, Arianna Bissolino, and et al. 2023. "Evaluation of Pulmonary Vein Fibrosis Following Cryoballoon Ablation of Atrial Fibrillation: A Semi-Automatic MRI Analysis" Journal of Cardiovascular Development and Disease 10, no. 9: 396. https://doi.org/10.3390/jcdd10090396
APA StyleBallatore, A., Negrello, E., Gatti, M., Matta, M., Desalvo, P., Marcialis, L., Marconi, S., Tore, D., Magnano, M., Bissolino, A., De Lio, G., De Ferrari, G. M., Conti, M., Faletti, R., & Anselmino, M. (2023). Evaluation of Pulmonary Vein Fibrosis Following Cryoballoon Ablation of Atrial Fibrillation: A Semi-Automatic MRI Analysis. Journal of Cardiovascular Development and Disease, 10(9), 396. https://doi.org/10.3390/jcdd10090396