Robotic-Assisted Solutions for Invasive Cardiology, Cardiac Surgery and Routine On-Ward Tasks: A Narrative Review
Abstract
:1. Introduction
2. Coronary Interventional Cardiology
3. Electrophysiology
4. Cardiac Surgery
4.1. Robotic System for Cardiac Surgery Procedures
4.2. Coronary Artery Bypass Graft Surgery
4.3. Mitral Valve Repair
4.4. Robotic Aortic Valve Replacement
5. Intracardiac Shunts
6. Other Cardio-Thoracic Procedures
7. Other Robotic Surgical Devices
8. On-Ward Clinical Applications
8.1. Common Tasks Solved by Staff-Assisting Robots
- Operational functions
- Cleaning;
- Data gathering—i.e., counting the number of people, screening tests;
- Disinfection;
- Information spreading;
- Patrolling;
- Reminding;
- Social interaction—i.e., playing with children;
- Telepresence;
- Transport—i.e., drugs, food, other equipment, robotic arm movement, moving patients between beds;
- Vitals monitoring.
- Auxiliary functions
- Simultaneous localization and mapping—required for all moving robots to navigate and move;
- Multi-robot path planning;
- Multi-robot task allocation;
- Patient identification—required for delivery robots;
- Movement;
- Solving inverse kinematic problems—i.e., arm movement into desired location;
- Own diagnostics.
8.2. Challenges to Implement Nurse-Assisting Robots
Name | Type | Specialization | Known Used Technology | Comment |
---|---|---|---|---|
Aethon TUG Door (T2) [109] | Moving | Delivery | 3, 4, 7, 16, 17, 19, 20 | T3 version is a newer platform, T4 version is as of writing the latest |
Aethon TUG Drawer (T2) [109] | Moving | Delivery | 3, 4, 7, 16, 17, 19, 20 | Same platform as Aethon Door, different configuration |
Aethon TUG T3/T3XL [110] | Moving | Delivery | 1, 4, 7, 11, 12, 16, 17, 18, 19, 20 | Actively developed, latest platform for medical purposes |
Digilent Moxi [99] | Moving | Multi-purpose | 11, 13, 16 | Actively developed, no datasheet found. Website does not contain much technical information |
Dinsaw [111] | Stationary | Elderly care | 16, 20 | Website not available in English, does not contain much technical information |
Giraff [112] | Moving | Telepresence | - | No longer available for purchase |
Grace [113] | Moving | Social | - | Mentioned in news, but not on the manufacturer’s website |
Liftware Level [103] | Hand-held | Spoon | - | Sold out |
Paro [114] | Stationary | Elderly care | - | Over 112 sold in US. Recent articles mentioning it were published in 2022 |
Pepper [115] | Moving | Multi-purpose | 2, 4, 6, 7, 10, 13, 14, 16, 17 | Datasheet available, compared to all other robots contains the highest amount of information |
Pudu PuduBot 2 [100] | Moving | Delivery | 1, 9, 11, 16, 20 | In this case 900 MHz refers to LoRa standard of communication and not a GSM band |
Pudu Puductor 2 [100] | Moving | Disinfection | - | Uses millimeter wave motion sensors, contrary to any other of the list |
No. | Technology | Description and Purpose |
---|---|---|
1 | 900 MHz | Frequency of communications used by some robots. Exact protocol and technology are not specified under this name because the frequency is internationally allocated to amateur radio and for 2G GSM voice and basic data communication. May represent LoRa 915 MHz. The name is taken as it was used in the Aethon T2 datasheet |
2 | Android operating system | Main operating system in many telepresence robots |
3 | Biometric access | Some delivery robots can be opened only with biometric identification. This includes fingerprint recognition |
4 | Cloud-hosted control panel | Robots are managed with a cloud-hosted web service, requiring internet connection. Data may be stored outside the hospital |
5 | Gyroscope | Stabilization of cameras, spoons, and telepresence screens |
6 | IMU | Inertial measurement unit for position and orientation tracking |
7 | Infrared proximity sensor | Used for the detection of objects (doors, walls) |
8 | Infrared reflectance sensor | Used for line followers to detect a line |
9 | Li-FePO4 | Battery technology—has smaller energy density than Li-Ion, but it is much less prone to failure, much safer, and has a longer lifespan |
10 | Li-Ion | Battery technology, highest energy density |
11 | LIDAR | Used for detection of objects (doors, walls, people) |
12 | Locally hosted control panel | The robot management panel is hosted locally on the robot itself or on a server inside the hospital. No data should be sent outside. Less support may be provided by the manufacturer |
13 | Robotic arm | Used for feeding patients, drug delivery, small item handling |
14 | Stereoscopic camera | Used for detection or recognition of objects (doors, walls, people) |
15 | Thermal camera | Used for temperature measurements |
16 | Touchscreen | Touchscreen to manage the robot or communicate with patients. Multiple types and technologies are used |
17 | Ultrasonic proximity sensors | Used for the detection of objects (which includes transparent doors) |
18 | Valve-regulated Lead-Acid battery | Older technology batteries used as a main source of energy. Mostly obsolete to Li-Ion and Li-FePO4 due to low energy density |
19 | VPN connection | A secure, encrypted connection to remote servers |
20 | Wi-Fi | Communications technology |
9. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
ASD | atrial septal defect |
BAV | bicuspid aortic valve |
CABG | coronary artery bypass grafting |
CPB | cardiopulmonary bypass |
CTO | chronic total occlusion |
EP | electrophysiology |
ICU | intensive care unit |
M-PCI | manual percutaneous coronary intervention |
MV | mitral valve |
MVP | mitral valve plasty |
PCI | percutaneous coronary intervention |
PAPVR | partial anomalous pulmonary venous return |
PVC | premature ventricular contractions |
R-PCI | robotic percutaneous coronary intervention |
RA | robotic assisted |
RAT | right anterior thoracotomy |
RAVR | robotic aortic valve replacement |
RFA | radiofrequency ablation |
RMN | remote magnetic navigation |
STAR | stereotactic arrhythmia radio ablation |
TAVI | transcatheter aortic valve implantation |
VA | ventricular arrhythmias |
VSD | ventricular septal defect |
VT | ventricular tachycardia |
References
- Grüntzig, A.R.; Senning, A.; Siegenthaler, W.E. Nonoperative dilatation of coronary-artery stenosis: Percutaneous transluminal coronary angioplasty. N. Engl. J. Med. 1979, 301, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Roguin, A.; Goldstein, J.; Bar, O.; Goldstein, J.A. Brain and neck tumors among physicians performing interventional procedures. Am. J. Cardiol. 2013, 111, 1368–1372. [Google Scholar] [CrossRef]
- Ciraj-Bjelac, O.; Rehani, M.M.; Sim, K.H.; Liew, H.B.; Vano, E.; Kleiman, N.J. Risk for radiation-induced cataract for staff in interventional cardiology: Is there reason for concern? Catheter. Cardiovasc. Interv. 2010, 76, 826–834. [Google Scholar] [CrossRef]
- Vano, E.; Kleiman, N.J.; Duran, A.; Rehani, M.M.; Echeverri, D.; Cabrera, M. Radiation cataract risk in interventional cardiology personnel. Radiat. Res. 2010, 174, 490–495. [Google Scholar] [CrossRef]
- Andreassi, M.G.; Piccaluga, E.; Gargani, L.; Sabatino, L.; Borghini, A.; Faita, F.; Bruno, R.M.; Padovani, R.; Guagliumi, G.; Picano, E. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: A genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc. Interv. 2015, 8, 616–627. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Balter, S.; Cowley, M.; Hodgson, J.; Klein, L.W. Occupational hazards of interventional cardiologists: Prevalence of orthopedic health problems in contemporary practice. Catheter. Cardiovasc. Interv. 2004, 63, 407–411. [Google Scholar] [CrossRef]
- Klein, L.W.; Tra, Y.; Garratt, K.N.; Powell, W.; Lopez-Cruz, G.; Chambers, C.; Goldstein, J.A. Occupational health hazards of interventional cardiologists in the current decade: Results of the 2014 SCAI membership survey. Catheter. Cardiovasc. Interv. 2015, 86, 913–924. [Google Scholar] [CrossRef]
- Beyar, R.; Wenderow, T.; Lindner, D.; Kumar, G.; Shofti, R. Concept, design and pre-clinical studies for remote control percutaneous coronary interventions. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2005, 1, 340–345. [Google Scholar]
- Beyar, R.; Gruberg, L.; Deleanu, D.; Roguin, A.; Almagor, Y.; Cohen, S.; Kumar, G.; Wenderow, T. Remote-control percutaneous coronary interventions: Concept, validation, and first-in-humans pilot clinical trial. J. Am. Coll. Cardiol. 2006, 47, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Moses, J.W.; Sosa, F.A.; Lerman, B.; Qureshi, Y.; Dalton, K.E.; Privitera, L.T.; Canone-Weber, D.; Singh, V.; Leon, M.B.; et al. Robotic-Enhanced PCI Compared to the Traditional Manual Approach. J. Invasive Cardiol. 2014, 26, 318–321. [Google Scholar] [PubMed]
- Mahmud, E.; Naghi, J.; Ang, L.; Harrison, J.; Behnamfar, O.; Pourdjabbar, A.; Reeves, R.; Patel, M. Demonstration of the Safety and Feasibility of Robotically Assisted Percutaneous Coronary Intervention in Complex Coronary Lesions: Results of the CORA-PCI Study (Complex Robotically Assisted Percutaneous Coronary Intervention). JACC Cardiovasc. Interv. 2017, 10, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Kearney, K.; Kataruka, A.; Gosch, K.L.; Brandt, H.; Nicholson, W.J.; Lombardi, W.L.; Grantham, J.A.; Salisbury, A.C. Initial report of safety and procedure duration of robotic-assisted chronic total occlusion coronary intervention. Catheter. Cardiovasc. Interv. 2020, 95, 165–169. [Google Scholar] [CrossRef]
- Patel, T.M.; Shah, S.C.; Soni, Y.Y.; Radadiya, R.C.; Patel, G.A.; Tiwari, P.O.; Pancholy, S.B. Comparison of Robotic Percutaneous Coronary Intervention With Traditional Percutaneous Coronary Intervention: A Propensity Score-Matched Analysis of a Large Cohort. Circ. Cardiovasc. Interv. 2020, 13, e008888. [Google Scholar] [CrossRef]
- Durand, E.; Sabatier, R.; Smits, P.C.; Verheye, S.; Pereira, B.; Fajadet, J. Evaluation of the R-One robotic system for percutaneous coronary intervention: The R-EVOLUTION study. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2023, 18, e1339–e1347. [Google Scholar] [CrossRef]
- Zhai, G.Y.; Chen, Z.; Liu, R.F.; Guo, Y.H.; Wang, J.L.; Sun, T.N.; Xie, J.; Huang, T.; Zhou, Y.J. First-in-human evaluation of an independently developed Chinese robot-assisted system for percutaneous coronary intervention. J. Geriatr. Cardiol. JGC 2022, 19, 743–752. [Google Scholar] [CrossRef]
- Furman, S.; Robinson, G. The use of an intracardiac pacemaker in the correction of total heart block. Surg. Forum 1958, 9, 245–248. [Google Scholar]
- Bassil, G.; Markowitz, S.M.; Liu, C.F.; Thomas, G.; Ip, J.E.; Lerman, B.B.; Cheung, J.W. Robotics for catheter ablation of cardiac arrhythmias: Current technologies and practical approaches. J. Cardiovasc. Electrophysiol. 2020, 31, 739–752. [Google Scholar] [CrossRef]
- Bhaskaran, A.; Barry, M.A.; Al Raisi, S.I.; Chik, W.; Nguyen, D.T.; Pouliopoulos, J.; Nalliah, C.; Hendricks, R.; Thomas, S.; McEwan, A.L.; et al. Magnetic guidance versus manual control: Comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom. J. Interv. Card. Electrophysiol. 2015, 44, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pappone, C.; Vicedomini, G.; Frigoli, E.; Giannelli, L.; Ciaccio, C.; Baldi, M.; Zuffada, F.; Saviano, M.; Pappone, A.; Crisà, S.; et al. Irrigated-tip magnetic catheter ablation of AF: A long-term prospective study in 130 patients. Heart Rhythm 2011, 8, 8–15. [Google Scholar] [CrossRef]
- Stereotaxis. Genesis. Available online: https://www.stereotaxis.com/products/ (accessed on 30 August 2023).
- Lin, C.; Pehrson, S.; Jacobsen, P.K.; Chen, X. Initial experience of a novel mapping system combined with remote magnetic navigation in the catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2017, 28, 1387–1392. [Google Scholar] [CrossRef]
- Grace, A.; Willems, S.; Meyer, C.; Verma, A.; Heck, P.; Zhu, M.; Shi, X.; Chou, D.; Dang, L.; Scharf, C.; et al. High-resolution noncontact charge-density mapping of endocardial activation. JCI Insight 2019, 4, e126422. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Holmqvist, F.; Kongstad, O.; Jensen, S.M.; Wang, L.; Ljungström, E.; Hertervig, E.; Borgquist, R. Long-term outcomes of the current remote magnetic catheter navigation technique for ablation of atrial fibrillation. Scand. Cardiovasc. J. SCJ 2017, 51, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Maurer, T.; Sohns, C.; Deiss, S.; Rottner, L.; Wohlmuth, P.; Reißmann, B.; Heeger, C.H.; Lemes, C.; Riedl, J.; Santoro, F.; et al. Significant reduction in procedure duration in remote magnetic-guided catheter ablation of atrial fibrillation using the third-generation magnetic navigation system. J. Interv. Card. Electrophysiol. 2017, 49, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Blandino, A.; Bianchi, F.; Sibona Masi, A.; Mazzanti, A.; D’Ascenzo, F.; Grossi, S.; Musumeci, G. Outcomes of manual versus remote magnetic navigation for catheter ablation of ventricular tachycardia: A systematic review and updated meta-analysis. Pacing Clin. Electrophysiol. PACE 2021, 44, 1102–1114. [Google Scholar] [CrossRef]
- Shauer, A.; De Vries, L.J.; Akca, F.; Palazzolo, J.; Shurrab, M.; Lashevsky, I.; Tiong, I.; Singh, S.M.; Newman, D.; Szili-Torok, T.; et al. Clinical research: Remote magnetic navigation vs. manually controlled catheter ablation of right ventricular outflow tract arrhythmias: A retrospective study. Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol. 2018, 20, ii28–ii32. [Google Scholar] [CrossRef]
- Kawamura, M.; Scheinman, M.M.; Tseng, Z.H.; Lee, B.K.; Marcus, G.M.; Badhwar, N. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation. J. Interv. Card. Electrophysiol. 2017, 48, 35–42. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, N.; Luo, Q.; Liu, A.; Ji, Y.; Ye, J.; Lin, C.; Ling, T.; Chen, K.; Pan, W.; et al. Remote magnetic navigation facilitates the ablations of frequent ventricular premature complexes originating from the outflow tract and the valve annulus as compared to manual control navigation. Int. J. Cardiol. 2018, 267, 94–99. [Google Scholar] [CrossRef]
- Cronin, E.M.; Bogun, F.M.; Maury, P.; Peichl, P.; Chen, M.; Namboodiri, N.; Aguinaga, L.; Leite, L.R.; Al-Khatib, S.M.; Anter, E.; et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 2020, 17, e2–e154. [Google Scholar] [CrossRef]
- Guckel, D.; Niemann, S.; Ditzhaus, M.; Molatta, S.; Bergau, L.; Fink, T.; Sciacca, V.; El Hamriti, M.; Imnadze, G.; Steinhauer, P.; et al. Long-Term Efficacy and Impact on Mortality of Remote Magnetic Navigation Guided Catheter Ablation of Ventricular Arrhythmias. J. Clin. Med. 2021, 10, 4695. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, A.; Jin, Q.; Zhang, N.; Jia, K.; Lin, C.; Ling, T.; Chen, K.; Pan, W.; Wu, L. Novel strategy of remote magnetic navigation-guided ablation for ventricular arrhythmias from right ventricle outflow tract. Sci. Rep. 2020, 10, 17839. [Google Scholar] [CrossRef]
- Dang, S.; Jons, C.; Jacobsen, P.K.; Pehrson, S.; Chen, X. Feasibility of a novel mapping system combined with remote magnetic navigation for catheter ablation of premature ventricular contractions. J. Arrhythmia 2019, 35, 244–251. [Google Scholar] [CrossRef]
- Di Biase, L.; Santangeli, P.; Astudillo, V.; Conti, S.; Mohanty, P.; Mohanty, S.; Sanchez, J.E.; Horton, R.; Thomas, B.; Burkhardt, J.D.; et al. Endo-epicardial ablation of ventricular arrhythmias in the left ventricle with the Remote Magnetic Navigation System and the 3.5-mm open irrigated magnetic catheter: Results from a large single-center case-control series. Heart Rhythm 2010, 7, 1029–1035. [Google Scholar] [CrossRef]
- Burkhardt, J.D.; Di Biase, L.; Horton, R.; Schweikert, R.A.; Natale, A. Remote Navigation and Electroanatomic Mapping in the Pericardial Space. Card. Electrophysiol. Clin. 2010, 2, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Miszczyk, M.; Jadczyk, T.; Gołba, K.; Wojakowski, W.; Wita, K.; Bednarek, J.; Blamek, S. Clinical Evidence behind Stereotactic Radiotherapy for the Treatment of Ventricular Tachycardia (STAR)-A Comprehensive Review. J. Clin. Med. 2021, 10, 1238. [Google Scholar] [CrossRef]
- Zhang, D.M.; Navara, R.; Yin, T.; Szymanski, J.; Goldsztejn, U.; Kenkel, C.; Lang, A.; Mpoy, C.; Lipovsky, C.E.; Qiao, Y.; et al. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat. Commun. 2021, 12, 5558. [Google Scholar] [CrossRef]
- Refaat, M.M.; Ballout, J.A.; Zakka, P.; Hotait, M.; Al Feghali, K.A.; Gheida, I.A.; Saade, C.; Hourani, M.; Geara, F.; Tabbal, M.; et al. Swine Atrioventricular Node Ablation Using Stereotactic Radiosurgery: Methods and In Vivo Feasibility Investigation for Catheter-Free Ablation of Cardiac Arrhythmias. J. Am. Heart Assoc. 2017, 6, e007193. [Google Scholar] [CrossRef]
- Lehmann, H.I.; Graeff, C.; Simoniello, P.; Constantinescu, A.; Takami, M.; Lugenbiel, P.; Richter, D.; Eichhorn, A.; Prall, M.; Kaderka, R.; et al. Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Sci. Rep. 2016, 6, 38895. [Google Scholar] [CrossRef]
- Viani, G.A.; Gouveia, A.G.; Pavoni, J.F.; Louie, A.V.; Detsky, J.; Spratt, D.E.; Moraes, F.Y. A Meta-analysis of the Efficacy and Safety of Stereotactic Arrhythmia Radioablation (STAR) in Patients with Refractory Ventricular Tachycardia. Clin. Oncol. 2023, 35, 611–620. [Google Scholar] [CrossRef]
- A Prospective European Validation Cohort for Stereotactic Therapy of Re-Entrant Tachycardia. Available online: https://cordis.europa.eu/project/id/945119 (accessed on 30 August 2023).
- Ferguson, J.M.; Pitt, B.; Kuntz, A.; Granna, J.; Kavoussi, N.L.; Nimmagadda, N.; Barth, E.J.; Herrell, S.D., 3rd; Webster, R.J., 3rd. Comparing the accuracy of the da Vinci Xi and da Vinci Si for image guidance and automation. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Ojima, T.; Nakamura, M.; Hayata, K.; Kitadani, J.; Takeuchi, A.; Yamaue, H. Comparison of short-term surgical outcomes using da Vinci S, Si and Xi Surgical System for robotic gastric cancer surgery. Sci. Rep. 2021, 11, 11063. [Google Scholar] [CrossRef] [PubMed]
- Healthcare Market Experts. Robotics—The Future of Surgery. Available online: https://healthcaremarketexperts.com/en/news/joanna-szyman-for-pmr-robotics-the-future-of-surgery/ (accessed on 30 August 2023).
- Cavallaro, P.; Rhee, A.J.; Chiang, Y.; Itagaki, S.; Seigerman, M.; Chikwe, J. In-hospital mortality and morbidity after robotic coronary artery surgery. J. Cardiothorac. Vasc. Anesth. 2015, 29, 27–31. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Kuno, T.; Malik, A.; Briasoulis, A. Outcomes of robotic coronary artery bypass versus nonrobotic coronary artery bypass. J. Card. Surg. 2021, 36, 3187–3192. [Google Scholar] [CrossRef]
- Lin, T.H.; Wang, C.W.; Shen, C.H.; Chang, K.H.; Lai, C.H.; Liu, T.J.; Chen, K.J.; Chen, Y.W.; Lee, W.L.; Su, C.S. Clinical outcomes of multivessel coronary artery disease patients revascularized by robot-assisted vs conventional standard coronary artery bypass graft surgeries in real-world practice. Medicine 2021, 100, e23830. [Google Scholar] [CrossRef]
- Spanjersberg, A.; Hoek, L.; Ottervanger, J.P.; Nguyen, T.Y.; Kaplan, E.; Laurens, R.; Singh, S. Early home discharge after robot-assisted coronary artery bypass grafting. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac134. [Google Scholar] [CrossRef]
- Mihaljevic, T.; Jarrett, C.M.; Gillinov, A.M.; Williams, S.J.; DeVilliers, P.A.; Stewart, W.J.; Svensson, L.G.; Sabik, J.F., 3rd; Blackstone, E.H. Robotic repair of posterior mitral valve prolapse versus conventional approaches: Potential realized. J. Thorac. Cardiovasc. Surg. 2011, 141, 72–80.e4. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhang, X.; Cui, H.; Zhang, L.; Gong, Z.; Li, L.; Ren, T.; Gao, C.; Jiang, S. Comparison of clinical outcomes between robotic and thoracoscopic mitral valve repair. Cardiovasc. Diagn. Ther. 2020, 10, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.B.; Mehaffey, J.H.; Mullen, M.G.; Nifong, W.L.; Chitwood, W.R.; Katz, M.R.; Quader, M.A.; Kiser, A.C.; Speir, A.M.; Ailawadi, G. A propensity matched analysis of robotic, minimally invasive, and conventional mitral valve surgery. Heart 2018, 104, 1970–1975. [Google Scholar] [CrossRef]
- Barac, Y.D.; Loungani, R.S.; Sabulsky, R.; Zwischenberger, B.; Gaca, J.; Carr, K.; Glower, D.D. Robotic versus port-access mitral repair: A propensity score analysis. J. Card. Surg. 2021, 36, 1219–1225. [Google Scholar] [CrossRef]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Folliguet, T.A.; Vanhuyse, F.; Magnano, D.; Laborde, F. Robotic aortic valve replacement: Case report. Heart Surg. Forum 2004, 7, E551–E553. [Google Scholar] [CrossRef]
- Folliguet, T.A.; Vanhuyse, F.; Konstantinos, Z.; Laborde, F. Early experience with robotic aortic valve replacement. Eur. J. Cardio Thorac. Surg. 2005, 28, 172–173. [Google Scholar] [CrossRef]
- Balkhy, H.H.; Kitahara, H. First Human Totally Endoscopic Robotic-Assisted Sutureless Aortic Valve Replacement. Ann. Thorac. Surg. 2020, 109, e9–e11. [Google Scholar] [CrossRef]
- Wei, L.M.; Cook, C.C.; Hayanga, J.W.A.; Rankin, J.S.; Mascio, C.E.; Badhwar, V. Robotic Aortic Valve Replacement: First 50 Cases. Ann. Thorac. Surg. 2022, 114, 720–726. [Google Scholar] [CrossRef]
- Badhwar, V.; Wei, L.M.; Cook, C.C.; Hayanga, J.W.A.; Daggubati, R.; Sengupta, P.P.; Rankin, J.S. Robotic aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2021, 161, 1753–1759. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, Y.; Song, Y.; Hu, Y.; Bai, X.; Chen, J.; Zhong, Q. Early results of totally endoscopic robotic aortic valve replacement: Analysis of 4 cases. J. Cardiothorac. Surg. 2022, 17, 155. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Dearani, J.A.; Fuller, S.; Gurvitz, M.; et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e698–e800. [Google Scholar] [CrossRef]
- Kodaira, M.; Kawamura, A.; Okamoto, K.; Kanazawa, H.; Minakata, Y.; Murata, M.; Shimizu, H.; Fukuda, K. Comparison of Clinical Outcomes After Transcatheter vs. Minimally Invasive Cardiac Surgery Closure for Atrial Septal Defect. Circ. J. 2017, 81, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Balkhy, H.H.; Nisivaco, S.; Torregrossa, G.; Kitahara, H.; Patel, B.; Grady, K.; Coleman, C. Multi-spectrum robotic cardiac surgery: Early outcomes. JTCVS Tech. 2022, 13, 74–82. [Google Scholar] [CrossRef]
- Cerny, S.; Oosterlinck, W.; Onan, B.; Singh, S.; Segers, P.; Bolcal, C.; Alhan, C.; Navarra, E.; Pettinari, M.; Van Praet, F.; et al. Corrigendum: Robotic Cardiac Surgery in Europe: Status 2020. Front. Cardiovasc. Med. 2022, 9, 870390. [Google Scholar] [CrossRef]
- Doulamis, I.P.; Spartalis, E.; Machairas, N.; Schizas, D.; Patsouras, D.; Spartalis, M.; Tsilimigras, D.I.; Moris, D.; Iliopoulos, D.C.; Tzani, A.; et al. The role of robotics in cardiac surgery: A systematic review. J. Robot. Surg. 2019, 13, 41–52. [Google Scholar] [CrossRef]
- Yanagawa, F.; Perez, M.; Bell, T.; Grim, R.; Martin, J.; Ahuja, V. Critical Outcomes in Nonrobotic vs Robotic-Assisted Cardiac Surgery. JAMA Surg. 2015, 150, 771–777. [Google Scholar] [CrossRef]
- Morgan, J.A.; Peacock, J.C.; Kohmoto, T.; Garrido, M.J.; Schanzer, B.M.; Kherani, A.R.; Vigilance, D.W.; Cheema, F.H.; Kaplan, S.; Smith, C.R.; et al. Robotic techniques improve quality of life in patients undergoing atrial septal defect repair. Ann. Thorac. Surg. 2004, 77, 1328–1333. [Google Scholar] [CrossRef]
- Deeba, S.; Aggarwal, R.; Sains, P.; Martin, S.; Athanasiou, T.; Casula, R.; Darzi, A. Cardiac robotics: A review and St. Mary’s experience. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2006, 2, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.T.; Bethencourt, D.M.; Stephens, R.L.; Cline, J.L.; Tyndal, C.M. Robotic repair of sinus venosus atrial septal defect with partial anomalous pulmonary venous return and persistent left superior vena cava. Innovations 2014, 9, 388–390. [Google Scholar] [CrossRef]
- Kadan, M.; Erol, G.; Kubat, E.; İnce, M.E.; Akyol, F.B.; Karabacak, K.; Doğancı, S.; Yıldırım, V.; Bolcal, C.; Demirkılıç, U. Robotic repair of atrial septal defect with partial pulmonary venous return anomaly: Our 5 year experience. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2022, 18, e2395. [Google Scholar] [CrossRef]
- Sepúlveda, E.; Ibáñez, A.; Baeza, C.; Espíndola, M.; Sepúlveda, G.; Maureira, M.; Uribe, J.P.; Salas, C. Robotic mitral valve repair and closure of atrial septal defect. Report of 13 procedures. Rev. Medica Chile 2019, 147, 1303–1307. [Google Scholar] [CrossRef]
- Thapmongkol, S.; Sayasathid, J.; Methrujpanont, J.; Namchaisiri, J. Beating heart as an alternative for closure of secundum atrial septal defect. Asian Cardiovasc. Thorac. Ann. 2012, 20, 141–145. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, H.; Mohl, W.; Liu, X.; Si, Z. Totally endoscopic congenital heart surgery compared with the traditional heart operation in children. Wien. Klin. Wochenschr. 2013, 125, 704–708. [Google Scholar] [CrossRef]
- Watanabe, G.; Ishikawa, N. Alternative method for cardioplegia delivery during totally endoscopic robotic intracardiac surgery. Ann. Thorac. Surg. 2014, 98, 1129–1131. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Kim, H.; Sohn, B.; Chang, H.W.; Lim, C.; Park, K.H. Robot-Assisted Repair of Atrial Septal Defect: A Comparison of Beating and Non-Beating Heart Surgery. J. Chest Surg. 2022, 55, 55–60. [Google Scholar] [CrossRef]
- Gao, C.; Yang, M.; Wang, G.; Wang, J.; Xiao, C.; Wu, Y.; Li, J. Totally endoscopic robotic atrial septal defect repair on the beating heart. Heart Surg. Forum 2010, 13, E155–E158. [Google Scholar] [CrossRef] [PubMed]
- Zhe, Z.; Kun, H.; Xuezeng, X.; Yunge, C.; Zengshan, M.; Huiming, G.; Liming, L.; Liang, T.; Zhiwei, W.; Hansong, S.; et al. Totally thoracoscopic versus open surgery for closure of atrial septal defect: Propensity-score matched comparison. Heart Surg. Forum 2014, 17, E227–E231. [Google Scholar] [CrossRef]
- Kitahara, H.; Okamoto, K.; Kudo, M.; Yoshitake, A.; Ito, T.; Hayashi, K.; Inaba, Y.; Akamatsu, Y.; Shimizu, H. Alternative peripheral perfusion strategies for safe cardiopulmonary bypass in atrial septal defect closure via a right minithoracotomy approach. Gen. Thorac. Cardiovasc. Surg. 2016, 64, 131–137. [Google Scholar] [CrossRef]
- Harky, A.; Chaplin, G.; Chan, J.S.K.; Eriksen, P.; MacCarthy-Ofosu, B.; Theologou, T.; Muir, A.D. The Future of Open Heart Surgery in the Era of Robotic and Minimal Surgical Interventions. Heart Lung Circ. 2020, 29, 49–61. [Google Scholar] [CrossRef]
- Du, Z.D.; Hijazi, Z.M.; Kleinman, C.S.; Silverman, N.H.; Larntz, K. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: Results of a multicenter nonrandomized trial. J. Am. Coll. Cardiol. 2002, 39, 1836–1844. [Google Scholar] [CrossRef]
- Crawford, G.B.; Brindis, R.G.; Krucoff, M.W.; Mansalis, B.P.; Carroll, J.D. Percutaneous atrial septal occluder devices and cardiac erosion: A review of the literature. Catheter. Cardiovasc. Interv. 2012, 80, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Tchantchaleishvili, V.; Melvin, A.L.; Ling, F.S.; Knight, P.A. Late erosion of Amplatzer septal occluder device resulting in cardiac tamponade. Interact. Cardiovasc. Thorac. Surg. 2014, 19, 1074–1076. [Google Scholar] [CrossRef]
- Jalal, Z.; Hascoet, S.; Baruteau, A.E.; Iriart, X.; Kreitmann, B.; Boudjemline, Y.; Thambo, J.B. Long-term Complications After Transcatheter Atrial Septal Defect Closure: A Review of the Medical Literature. Can. J. Cardiol. 2016, 32, 1315.e11–1315.e18. [Google Scholar] [CrossRef]
- Kadirogullari, E.; Onan, B.; Timur, B.; Birant, A.; Reyhancan, A.; Basgoze, S.; Aydin, U. Transcatheter closure vs totally endoscopic robotic surgery for atrial septal defect closure: A single-center experience. J. Card. Surg. 2020, 35, 764–771. [Google Scholar] [CrossRef]
- Gao, C.; Yang, M.; Wang, G.; Xiao, C.; Wang, J.; Zhao, Y. Totally endoscopic robotic ventricular septal defect repair in the adult. J. Thorac. Cardiovasc. Surg. 2012, 144, 1404–1407. [Google Scholar] [CrossRef]
- Schilling, J.; Engel, A.M.; Hassan, M.; Smith, J.M. Robotic excision of atrial myxoma. J. Card. Surg. 2012, 27, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.; Cook, R.C.; Chu, M.W.A.; Chitwood, W.R., Jr. Minimally Invasive Bi-Atrial CryoMaze Operation for Atrial Fibrillation. Oper. Tech. Thorac. Cardiovasc. Surg. 2009, 14, 208–223. [Google Scholar] [CrossRef]
- Medtronic. Hugo. Available online: https://www.medtronic.com/covidien/en-us/robotic-assisted-surgery/hugo-ras-system.html (accessed on 30 August 2023).
- Johnson & Johnson. Ottava. Available online: https://www.careers.jnj.com/robotics (accessed on 30 August 2023).
- CMR Surgical. Versius. Available online: https://cmrsurgical.com/ (accessed on 30 August 2023).
- Stryker. MAKO SmartRobotics. Available online: https://www.stryker.com/pl/pl/index.html (accessed on 30 August 2023).
- Medicaroid. Hinotori Surgical Robot System. Available online: https://www.medicaroid.com/en/ (accessed on 30 August 2023).
- Titan Medical. Enos 2.0. Available online: https://titanmedicalinc.com/ (accessed on 30 August 2023).
- Moon Surgical. Maestro system. Available online: https://www.moonsurgical.com/ (accessed on 30 August 2023).
- Virtual Incision. MIRA. Available online: https://virtualincision.com/ (accessed on 30 August 2023).
- The Robot Report. MIRA Surgical Robot to Be Tested in Space in 2024. Available online: https://www.therobotreport.com/virtual-incisions-mira-to-be-sent-to-the-iss-2024/ (accessed on 30 August 2023).
- Nawrat, Z.; Krawczyk, D. Robin heart or how to overcome the distance and use a man as an element of the telemanipulator control system. Med. Robot. Rep. 2019–2020, 8–9, 48–55. [Google Scholar]
- Pittsburgh Business Times. Aethon Launches New Robot, Enters Hospitality Market. Available online: https://www.bizjournals.com/pittsburgh/news/2021/07/13/aethon-launches-new-robot-enters-new-market.html (accessed on 30 August 2023).
- Diligent Robotics. Moxi. Available online: https://www.diligentrobots.com/moxi (accessed on 30 August 2023).
- Pudu Robotics. Available online: https://www.pudurobotics.com/ (accessed on 30 August 2023).
- Robotarm My Spoon. Available online: https://robots.nu/en/robot/my-spoon (accessed on 30 August 2023).
- CareMeal Meal Assist Robot. Available online: https://www.iphoneness.com/smart-robots/caremeal/ (accessed on 30 August 2023).
- Liftware Level. Available online: https://www.liftware.com/level/ (accessed on 30 August 2023).
- Vitestro. Available online: https://vitestro.com/vitestro-unveils-autonomous-blood-drawing-device-combining-artificial-intelligence-ultrasound-imaging-and-robotics/ (accessed on 30 August 2023).
- Leipheimer, J.M.; Balter, M.L.; Chen, A.I.; Pantin, E.J.; Davidovich, A.E.; Labazzo, K.S.; Yarmush, M.L. First-in-human evaluation of a hand-held automated venipuncture device for rapid venous blood draws. Technology 2019, 7, 98–107. [Google Scholar] [CrossRef]
- iRobot. Available online: https://web.archive.org/web/20120103091646/http:/www.irobot.com/sp.cfm?pageid=203 (accessed on 30 August 2023).
- Defi, I.R.; Iskandar, S.; Charismawati, S.; Turnip, A.; Novita, D. Healthcare Workers’ Point of View on Medical Robotics During COVID-19 Pandemic—A Scoping Review. Int. J. Gen. Med. 2022, 15, 3767–3777. [Google Scholar] [CrossRef]
- Five Critical Vulnerabilities Found in Aethon TUG Robots. Available online: https://heimdalsecurity.com/blog/aethon-tug-robots-have-been-found-to-have-critical-vulnerabilities/ (accessed on 30 August 2023).
- Aethon TUG T2. Available online: https://aethon.com/PDF/TUGAccessedsheet.pdf (accessed on 30 August 2023).
- Aethon TUG T3. Available online: https://aethon.com/wp-content/uploads/2018/03/DatasheetT3_V3.pdf (accessed on 30 August 2023).
- Dinsaw. Available online: https://www.dinsaw.com/ (accessed on 30 August 2023).
- Giraff Robot. Available online: https://telepresencerobots.com/robots/giraff-telepresence/ (accessed on 30 August 2023).
- Grace Robot. Available online: https://edition.cnn.com/2021/08/19/asia/grace-hanson-robotics-android-nurse-hnk-spc-intl/ (accessed on 30 August 2023).
- PARO Therapeutic Robot. Available online: http://www.parorobots.com/users.asp (accessed on 30 August 2023).
- Pepper Robot. Available online: https://support.unitedrobotics.group/en/support/solutions/articles/80000958735-pepper-technical-specifications (accessed on 30 August 2023).
- Vañó, E.; González, L.; Guibelalde, E.; Fernández, J.M.; Ten, J.I. Radiation exposure to medical staff in interventional and cardiac radiology. Br. J. Radiol. 1998, 71, 954–960. [Google Scholar] [CrossRef]
- Delichas, M.; Psarrakos, K.; Molyvda-Athanassopoulou, E.; Giannoglou, G.; Sioundas, A.; Hatziioannou, K.; Papanastassiou, E. Radiation exposure to cardiologists performing interventional cardiology procedures. Eur. J. Radiol. 2003, 48, 268–273. [Google Scholar] [CrossRef]
- Roguin, A.; Goldstein, J.; Bar, O. Brain tumours among interventional cardiologists: A cause for alarm? Report of four new cases from two cities and a review of the literature. EuroIntervention 2012, 7, 1081–1086. [Google Scholar] [CrossRef]
- Vano, E.; Kleiman, N.J.; Duran, A.; Romano-Miller, M.; Rehani, M.M. Radiation-associated lens opacities in catheterization personnel: Results of a survey and direct assessments. J. Vasc. Interv. Radiol. JVIR 2013, 24, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.T.; Kruse, K.R.; Kroll, C.R.; Patterson, J.Y.; Esposito, M.J. The impact of precise robotic lesion length measurement on stent length selection: Ramifications for stent savings. Cardiovasc. Revasc. Med. Incl. Mol. Interv. 2015, 16, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, H.G.; Mehanna, E.; Vetrovec, G.W.; Costa, M.A.; Weisz, G. Longitudinal Geographic Miss (LGM) in Robotic Assisted Versus Manual Percutaneous Coronary Interventions. J. Interv. Cardiol. 2015, 28, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Madder, R.D.; VanOosterhout, S.M.; Jacoby, M.E.; Collins, J.S.; Borgman, A.S.; Mulder, A.N.; Elmore, M.A.; Campbell, J.L.; McNamara, R.F.; Wohns, D.H. Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: An early exploration into the feasibility of telestenting (the REMOTE-PCI study). EuroIntervention 2017, 12, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Di Biase, L.; Valderrabano, M.; Lorgat, F.; Mlcochova, H.; Tilz, R.; Meyerfeldt, U.; Hranitzky, P.M.; Wazni, O.; Kanagaratnam, P.; et al. Worldwide experience with the robotic navigation system in catheter ablation of atrial fibrillation: Methodology, efficacy and safety. J. Cardiovasc. Electrophysiol. 2012, 23, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Schachner, T.; Bonaros, N.; Wiedemann, D.; Weidinger, F.; Feuchtner, G.; Friedrich, G.; Laufer, G.; Bonatti, J. Training surgeons to perform robotically assisted totally endoscopic coronary surgery. Ann. Thorac. Surg. 2009, 88, 523–527. [Google Scholar] [CrossRef] [PubMed]
Study | Procedure (min) | Time | p-Value | Fluoroscopy (min) | Time | p-Value | Radiation | p-Value | Contrast (mL) | Volume | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R-PCI | M-PCI | R-PCI | M-PCI | R-PCI | M-PCI | R-PCI | M-PCI | |||||
Smilowitz 2014 [10] | n/a | n/a | 10.1 ± 4.7 | 12.3 ± 7.6 | 0.05 | 1389 ± 599 mGy | 1665 ± 1026 mGy | 0.07 | 121 ± 47 | 137 ± 62 | 0.11 | |
Mahmud 2017 [11] | 44.3 ± 26 | 36.34 ± 23 | 0.002 | 18.2 ± 10.4 | 19.2 ± 11.4 | 0.39 | 12,518 ± 15,970 cGycm2 | 14,048 ± 18,437 cGycm2 | 0.045 | 183.4 ± 78.7 | 202.5 ± 74 | 0.031 |
Hirai 2019 [12] | 89.6 ± 27.1 | 93.4 ± 30.5 | 0.52 | 37.9 ± 17.9 | 48.6 ± 17.1 | <0.01 | 1522 ± 1129 mGy | 2466 ± 1204 mGy | <0.01 | 111 ± 39 | 118 ± 53 | 0.47 |
Patel 2020 [13] | 31 (21–42) | 36 (26–49) | <0.0005 | 6.29 (4.23–9.68) | 5.39 (3.17–9.03) | <0.0005 | 6313 (4049–9574) cGycm2 | 4465 (2644–7389) cGycm2 | <0.0005 | 150 (120–190) | 130 (100–170) | <0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulaouzidis, G.; Charisopoulou, D.; Bomba, P.; Stachura, J.; Gasior, P.; Harpula, J.; Zarifis, J.; Marlicz, W.; Hudziak, D.; Jadczyk, T. Robotic-Assisted Solutions for Invasive Cardiology, Cardiac Surgery and Routine On-Ward Tasks: A Narrative Review. J. Cardiovasc. Dev. Dis. 2023, 10, 399. https://doi.org/10.3390/jcdd10090399
Koulaouzidis G, Charisopoulou D, Bomba P, Stachura J, Gasior P, Harpula J, Zarifis J, Marlicz W, Hudziak D, Jadczyk T. Robotic-Assisted Solutions for Invasive Cardiology, Cardiac Surgery and Routine On-Ward Tasks: A Narrative Review. Journal of Cardiovascular Development and Disease. 2023; 10(9):399. https://doi.org/10.3390/jcdd10090399
Chicago/Turabian StyleKoulaouzidis, George, Dafni Charisopoulou, Piotr Bomba, Jaroslaw Stachura, Pawel Gasior, Jan Harpula, John Zarifis, Wojciech Marlicz, Damian Hudziak, and Tomasz Jadczyk. 2023. "Robotic-Assisted Solutions for Invasive Cardiology, Cardiac Surgery and Routine On-Ward Tasks: A Narrative Review" Journal of Cardiovascular Development and Disease 10, no. 9: 399. https://doi.org/10.3390/jcdd10090399
APA StyleKoulaouzidis, G., Charisopoulou, D., Bomba, P., Stachura, J., Gasior, P., Harpula, J., Zarifis, J., Marlicz, W., Hudziak, D., & Jadczyk, T. (2023). Robotic-Assisted Solutions for Invasive Cardiology, Cardiac Surgery and Routine On-Ward Tasks: A Narrative Review. Journal of Cardiovascular Development and Disease, 10(9), 399. https://doi.org/10.3390/jcdd10090399