A Simple Strategy to Reduce Contrast Media Use and Risk of Contrast-Induced Renal Injury during PCI: Introduction of an “Optimal Contrast Volume Protocol” to Daily Clinical Practice
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Study limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azzalini, L.; Spagnoli, V.; Ly, H.Q. Contrast-Induced Nephropathy: From Pathophysiology to Preventive Strategies. Can. J. Cardiol. 2016, 32, 247–255. [Google Scholar] [CrossRef]
- Tsai, T.T.; Patel, U.D.; Chang, T.I.; Kennedy, K.F.; Masoudi, F.A.; Matheny, M.E.; Kosiborod, M.; Amin, A.P.; Messenger, J.C.; Rumsfeld, J.S.; et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the NCDR Cath-PCI registry. JACC Cardiovasc. Interv. 2014, 7, 1–9. [Google Scholar] [CrossRef]
- Rihal, C.S.; Textor, S.C.; Grill, D.E.; Berger, P.B.; Ting, H.H.; Best, P.J.; Singh, M.; Bell, M.R.; Barsness, G.W.; Mathew, V.; et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 2002, 105, 2259–2264. [Google Scholar] [CrossRef]
- Parikh, P.B.; Jeremias, A.; Naidu, S.S.; Brener, S.J.; Lima, F.; Shlofmitz, R.A.; Pappas, T.; Marzo, K.P.; Gruberg, L. Impact of severity of renal dysfunction on determinants of in-hospital mortality among patients undergoing percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2012, 80, 352–357. [Google Scholar] [CrossRef]
- Gruberg, L.; Mintz, G.S.; Mehran, R.; Dangas, G.; Lansky, A.J.; Kent, K.M.; Pichard, A.D.; Satler, L.F.; Leon, M.B. The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J. Am. Coll. Cardiol. 2000, 36, 1542–1548. [Google Scholar] [CrossRef]
- Gruberg, L.; Mehran, R.; Dangas, G.; Mintz, G.S.; Waksman, R.; Kent, K.M.; Pichard, A.D.; Satler, L.F.; Wu, H.; Leon, M.B. Acute renal failure requiring dialysis after percutaneous coronary interventions. Catheter. Cardiovasc. Interv. 2001, 52, 409–416. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef]
- Laskey, W.K.; Jenkins, C.; Selzer, F.; Marroquin, O.C.; Wilensky, R.L.; Glaser, R.; Cohen, H.A.; Holmes, D.R. Volume-to-Creatinine Clearance Ratio. A Pharmacokinetically Based Risk Factor for Prediction of Early Creatinine Increase After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2007, 50, 584–590. [Google Scholar] [CrossRef]
- Gurm, H.S.; Dixon, S.R.; Smith, D.E.; Share, D.; Lalonde, T.; Greenbaum, A.; Moscucci, M. Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J. Am. Coll. Cardiol. 2011, 58, 907–914. [Google Scholar] [CrossRef]
- Chertow, G.M.; Normand, S.L.T.; McNeil, B.J. “Renalism”: Inappropriately low rates of coronary angiography in elderly individuals with renal insufficiency. J. Am. Soc. Nephrol. 2004, 15, 2462–2468. [Google Scholar] [CrossRef]
- Wong, J.A.; Goodman, S.G.; Yan, R.T.; Wald, R.; Bagnall, A.J.; Welsh, R.C.; Wong, G.C.; Kornder, J.; Eagle, K.A.; Steg, P.G.; et al. Temporal management patterns and outcomes of non-ST elevation acute coronary syndromes in patients with kidney dysfunction. Eur. Heart J. 2009, 30, 549–557. [Google Scholar] [CrossRef]
- Medi, C.; Montalescot, G.; Budaj, A.; Fox, K.A.A.; López-Sendón, J.; FitzGerald, G.; Brieger, D.B. Reperfusion in patients with renal dysfunction after presentation with ST-segment elevation or left bundle branch block: GRACE (Global Registry of Acute Coronary Events). JACC Cardiovasc. Interv. 2009, 2, 26–33. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Bagga, A.; Bakkaloglu, A.; Bonventre, J.V.; et al. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef]
- Bartholomew, B.A.; Harjai, K.J.; Dukkipati, S.; Boura, J.A.; Yerkey, M.W.; Glazier, S.; Grines, C.L.; O’Neill, W.W. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am. J. Cardiol. 2004, 93, 1515–1519. [Google Scholar] [CrossRef]
- Brown, J.R.; DeVries, J.T.; Piper, W.D.; Robb, J.F.; Hearne, M.J.; Ver Lee, P.M.; Kellet, M.A.; Watkins, M.W.; Ryan, T.J.; Silver, M.T.; et al. Serious renal dysfunction after percutaneous coronary interventions can be predicted. Am. Heart J. 2008, 155, 260–266. [Google Scholar] [CrossRef]
- Freeman, R.V.; O’Donnell, M.; Share, D.; Meengs, W.L.; Kline-Rogers, E.; Clark, V.L.; DeFranco, A.C.; Eagle, K.A.; McGinnity, J.G.; Patel, K.; et al. Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose. Am. J. Cardiol. 2002, 90, 1068–1073. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Tsutsui, H.; Tsuchihashi, M.; Masumoto, A.; Takeshita, A. The incidence and risk factors of cholesterol embolization syndrome, a complication of cardiac catheterization: A prospective study. J. Am. Coll. Cardiol. 2003, 42, 211–216. [Google Scholar] [CrossRef]
- Lindsay, J.; Apple, S.; Pinnow, E.E.; Gevorkian, N.; Gruberg, L.; Satler, L.F.; Pichard, A.D.; Kent, K.M.; Suddath, W.; Waksman, R. Percutaneous coronary intervention-associated nephropathy foreshadows increased risk of late adverse events in patients with normal baseline serum creatinine. Catheter. Cardiovasc. Interv. 2003, 59, 338–343. [Google Scholar] [CrossRef]
- McCullough, P.A.; Wolyn, R.; Rocher, L.L.; Levin, R.N.; O’Neill, W.W. Acute renal failure after coronary intervention: Incidence, risk factors, and relationship to mortality. Am. J. Med. 1997, 103, 368–375. [Google Scholar] [CrossRef]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [CrossRef]
- Iakovou, I.; Dangas, G.; Mehran, R.; Lansky, A.J.; Ashby, D.T.; Fahy, M.; Mintz, G.S.; Kent, K.M.; Pichard, A.D.; Satler, L.F.; et al. Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention. J. Invasive Cardiol. 2003, 15, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Scharnweber, T.; Alhilali, L.; Fakhran, S. Contrast-Induced Acute Kidney Injury: Pathophysiology, Manifestations, Prevention, and Management. Magn. Reson. Imaging Clin. N. Am. 2017, 25, 743–753. [Google Scholar] [CrossRef]
- El-Khoury, J.M.; Hoenig, M.P.; Jones, G.R.D.; Lamb, E.J.; Parikh, C.R.; Tolan, N.V.; Wilson, F.P. AACC Guidance Document on Laboratory Investigation of Acute Kidney Injury. J. Appl. Lab. Med. 2021, 6, 1316–1337. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, D.B.; Hurrell, C.; Costa, A.F.; McInnes, M.D.F.; O’Malley, M.E.; Barrett, B.; Brown, P.A.; Clark, E.G.; Hadjivassiliou, A.; Kirkpatrick, I.D.C.; et al. Canadian Association of Radiologists Guidance on Contrast Associated Acute Kidney Injury. Can. J. Kidney Health Dis. 2022, 73, 499–514. [Google Scholar] [CrossRef]
- Wong-You-Cheong, J.J.; Nikolaidis, P.; Khatri, G.; Dogra, V.S.; Ganeshan, D.; Goldfarb, S.; Gore, J.L.; Gupta, R.T.; Heilbrun, M.E.; Lyshchik, A.; et al. ACR appropriateness criteria: Renal Failure. J. Am. Coll. Radiol. 2021, 18, S174–S188. [Google Scholar] [CrossRef] [PubMed]
- Akrawinthawong, K.; Ricci, J.; Cannon, L.; Dixon, S.; Kupfer, K.; Stivers, D.; Alexander, P.; David, S.; Mccullough, P.A. Renal Failure Subclinical and clinical contrast-induced acute kidney injury: Data from a novel blood marker for determining the risk of developing contrast-induced nephropathy (ENCINO), a prospective study. Ren. Fail. 2014, 37, 187–191. [Google Scholar] [CrossRef]
- McCullough, P.A.; Choi, J.P.; Feghali, G.A.; Schussler, J.M.; Stoler, R.M.; Vallabahn, R.C.; Mehta, A. Contrast-Induced Acute Kidney Injury. J. Am. Coll. Cardiol. 2016, 68, 1465–1473. [Google Scholar] [CrossRef]
- Akdeniz, D.; Celik, H.T.; Kazanci, F.; Yilmaz, H.; Yalcin, S.; Bilgic, M.A.; Ruzgaresen, N.; Akcay, A.; Eryonucu, B. Is Kidney Injury Molecule 1 a Valuable Tool for the Early Diagnosis of Contrast-Induced Nephropathy? J. Investig. Med. 2015, 63, 930–934. [Google Scholar] [CrossRef]
- Kafkas, N.; Liakos, C.; Zoubouloglou, F.; Dagadaki, O.; Dragasis, S.; Makris, K. Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Contrast-Induced Nephropathy after Elective Invasive Cardiac Procedures. Clin. Cardiol. 2016, 39, 464–470. [Google Scholar] [CrossRef]
- Lu, Z.; Cheng, D.; Yin, J.; Wu, R.; Zhang, G.; Zhao, Q.; Wang, N.; Wang, F.; Liang, M. Antithrombin III Protects Against Contrast-Induced Nephropathy. EBioMedicine 2017, 17, 101–107. [Google Scholar] [CrossRef]
- Lacquaniti, A.; Ceresa, F.; Campo, S.; Barbera, G.; Caruso, D.; Palazzo, E.; Patanè, F.; Monardo, P. Acute Kidney Injury and Sepsis after Cardiac Surgery: The Roles of Tissue Inhibitor Metalloproteinase-2, Insulin-like Growth Factor Binding Protein-7, and Mid-Regional Pro-Adrenomedullin. J. Clin. Med. 2023, 12, 5193. [Google Scholar] [CrossRef] [PubMed]
- Sgura, F.A.; Bertelli, L.; Monopoli, D.; Leuzzi, C.; Guerri, E.; Spartà, I.; Politi, L.; Aprile, A.; Amato, A.; Rossi, R.; et al. Mehran contrast-induced nephropathy risk score predicts short- and long-term clinical outcomes in patients with ST-elevation-myocardial infarction. Circ. Cardiovasc. Interv. 2010, 3, 491–498. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Adam, A.; Becker, C.R.; Davidson, C.; Lameire, N.; Stacul, F.; Tumlin, J. Risk prediction of contrast-induced nephropathy. Am. J. Cardiol. 2006, 98, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, M.R.; Goldfarb, S.; Wexler, L.; Ludbrook, P.A.; Murphy, M.J.; Halpern, E.F.; Hill, J.A.; Winniford, M.; Cohen, M.B.; VanFossen, D.B. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: A randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995, 47, 254–261. [Google Scholar] [CrossRef]
- Mueller, C.; Buerkle, G.; Buettner, H.J.; Petersen, J.; Perruchoud, A.P.; Eriksson, U.; Marsch, S.; Roskamm, H. Prevention of contrast media-associated nephropathy: Randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch. Intern. Med. 2002, 162, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Merten, G.J.; Burgess, W.P.; Gray, L.V.; Holleman, J.H.; Roush, T.S.; Kowalchuk, G.J.; Bersin, R.M.; Van Moore, A.; Simonton, C.A.; Rittase, R.A.; et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: A randomized controlled trial. JAMA 2004, 291, 2328–2334. [Google Scholar] [CrossRef]
- Marenzi, G.; Assanelli, E.; Campodonico, J.; Lauri, G.; Marana, I.; De Metrio, M.; Moltrasio, M.; Grazi, M.; Rubino, M.; Veglia, F.; et al. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann. Intern. Med. 2009, 150, 170–177. [Google Scholar] [CrossRef]
- Giacoppo, D.; Gargiulo, G.; Buccheri, S.; Aruta, P.; Byrne, R.A.; Cassese, S.; Dangas, G.; Kastrati, A.; Mehran, R.; Tamburino, C.; et al. Preventive Strategies for Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Procedures: Evidence from a Hierarchical Bayesian Network Meta-Analysis of 124 Trials and 28 240 Patients. Circ. Cardiovasc. Interv. 2017, 10, e004383. [Google Scholar] [CrossRef]
- Azzalini, L.; Vilca, L.M.; Lombardo, F.; Poletti, E.; Laricchia, A.; Beneduce, A.; Maccagni, D.; Demir, O.M.; Slavich, M.; Giannini, F.; et al. Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: Comparison of five contrast media. Int. J. Cardiol. 2018, 273, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, A.; Scalise, R.F.M.; Ceresa, F.; Bagnato, G.; Versace, A.G.; Licordari, R.; Perfetti, S.; Lofrumento, F.; Irrera, N.; Santoro, D.; et al. Optimizing the Outcomes of Percutaneous Coronary Intervention in Patients with Chronic Kidney Disease. J. Clin. Med. 2022, 11, 2380. [Google Scholar] [CrossRef] [PubMed]
- Cigarroa, R.G.; Lange, R.A.; Williams, R.H.; Hillis, D. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am. J. Med. 1989, 86, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Robb, J.F.; Block, C.A.; Schoolwerth, A.C.; Kaplan, A.V.; O’Connor, G.T.; Solomon, R.J.; Malenka, D.J. Does safe dosing of iodinated contrast prevent contrast-induced acute kidney injury? Circ. Cardiovasc. Interv. 2010, 3, 346–350. [Google Scholar] [CrossRef]
- Ogata, N.; Ikari, Y.; Nanasato, M.; Okutsu, M.; Kametani, R.; Abe, M.; Uehara, Y.; Sumitsuji, S. Safety margin of minimized contrast volume during percutaneous coronary intervention in patients with chronic kidney disease. Cardiovasc. Interv. Ther. 2014, 29, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Gurm, H.S.; Seth, M.; Dixon, S.R.; Michael Grossman, P.; Sukul, D.; Lalonde, T.; Cannon, L.; West, D.; Madder, R.D.; Adam Lauver, D. Contemporary use of and outcomes associated with ultra-low contrast volume in patients undergoing percutaneous coronary interventions. Catheter. Cardiovasc. Interv. 2019, 93, 222–230. [Google Scholar] [CrossRef]
- Azzalini, L.; Alessandra Laricchia, M.D.; Damiano Regazzoli, M.D.; Satoru Mitomo, M.D.; Daisuke Hachinohe, M.D.; Barbara Bellini, M.D.; Demir, O.M.; Enrico Poletti, M.D.; Davide Maccagni, R.T.; Antonio Colombo, M.D. Ultra-Low Contrast Percutaneous Coronary Intervention to Minimize the Risk for Contrast-Induced Acute Kidney Injury in Patients with Severe Chronic Kidney Disease. J. Invasive Cardiol. 2019, 31, 176–182. [Google Scholar] [CrossRef]
Characteristic | Optimal Contrast Volume Protocol | p | |
---|---|---|---|
Not Applied n = 312 | Applied n = 207 | ||
Demographics | |||
Age, mean ± SD, years | 71.00 ± 12.13 | 68.20 ± 10.95 | 0.080 |
BMI, mean ± SD, kg/m2 | 28.37 ± 4.97 | 29.14 ± 5.35 | 0.098 |
Sex, n (%) | |||
Male | 210 (67.3) | 121 (58.5) | 0.040 |
Female | 102 (32.7) | 86 (41.5) | |
Comorbidities, n (%) | |||
AH | 291 (93.3) | 199 (96.1) | 0.164 |
Dyslipidemia | 286 (91.7) | 184 (88.9) | 0.289 |
CAD | 303 (97.1) | 206 (99.5) | 0.051 |
DM | 57 (18.3) | 41 (19.8) | 0.661 |
CKD | 58 (18.6) | 28 (13.6) | 0.306 |
Baseline renal function | |||
Baseline serum creatinine, mean ± SD, μmol/L | 107.27 ± 76.57 | 92.27 ± 29.06 | 0.826 |
Normal (CrCl ≥ 60 mL/min) n (%) | 195 (62.5) | 143 (69.1) | 0.123 |
Mild CKD (CrCl 46–59 mL/min), n (%) | 61 (19.6) | 38 (18.4) | 0.734 |
Moderate CKD (CrCl 30–45 mL/min), n (%) | 35 (11.2) | 23 (11.1) | 0.972 |
Severe CKD (CrCl < 30 mL/min), n (%) | 21 (6.7) | 3 (1.4) | 0.005 |
Procedure performed, n (%) | |||
Diagnostic angiogram | 40 (12.8) | 60 (29.0) | <0.001 |
PCI | 31 (10.0) | 30 (14.5) | 0.112 |
Diagnostic angiogram and PCI | 241 (77.2) | 117 (56.5) | <0.001 |
CM volume, mean ± SD, mL | |||
Total | 192.46 ± 71.88 | 104.59 ± 51.57 | <0.001 |
Diagnostic angiogram | 93.75 ± 36.56 | 61.67 ± 29.02 | <0.001 |
PCI | 183.87 ± 52.13 | 102.17 ± 36.85 | <0.001 |
Diagnostic angiogram and PCI | 209.95 ± 64.79 | 127.22 ± 49.83 | <0.001 |
Characteristic | CIN after the Procedure | p | |
---|---|---|---|
No n = 450 | Yes n = 69 | ||
Optimal Contrast Volume Protocol, n (%) | <0.001 | ||
Not applied | 253 (56.2) | 59 (85.5) | |
Applied | 197 (43.8) | 10 (14.5) | |
Sex, n (%) | 0.592 | ||
Male | 285 (63.3) | 46 (66.7) | |
Female | 165 (36.7) | 23 (33.3) | |
AH | 428 (95.1) | 62 (89.9) | 0.077 |
Dyslipidemia | 412 (91.6) | 58 (84.1) | 0.047 |
CAD | 440 (97.8) | 69 (100) | 0.090 |
DM | 89 (19.8) | 9 (13.0) | 0.183 |
CKD | 81 (18.0) | 28 (40.6) | <0.001 |
Baseline renal function, n (%) | |||
Normal (CrCl ≥ 60 mL/min) | 306 (68.0) | 32 (46.4) | <0.001 |
Mild CKD (CrCl 46–59 mL/min) | 84 (18.7) | 15 (21.7) | 0.555 |
Moderate CKD (CrCl 30–45 mL/min) | 44 (9.8) | 14 (20.3) | 0.010 |
Severe CKD (CrCl < 30 mL/min) | 16 (3.6) | 8 (11.6) | 0.003 |
Age, mean ± SD, years | 68.99 ± 11.66 | 75.72 ± 10.58 | <0.001 |
BMI, mean ± SD, kg/m2 | 28.79 ± 5.20 | 27.88 ± 4.59 | 0.133 |
Baseline serum creatinine, mean ± SD, μmol/L | 95.35 ± 44.48 | 117.28 ± 80.79 | 0.020 |
Baseline CrCl, mean ± SD, mL/min | 78.38 ± 31.89 | 63.98 ± 30.99 | <0.001 |
Variable | B | SE | Wald | p | OR | 95% CI |
---|---|---|---|---|---|---|
Age | −0.251 | 0.297 | 0.715 | 0.398 | 0.778 | 0.434–1.393 |
Sex | 0.049 | 0.013 | 14.084 | <0.001 | 1.050 | 1.023–1.077 |
Baseline creatinine | 0.004 | 0.002 | 4.237 | 0.040 | 1.004 | 1.000–1.008 |
CM volume | 0.001 | 0.002 | 0.067 | 0.795 | 1.001 | 0.997–1.005 |
Protocol not applied | 1.298 | 0.405 | 10.280 | 0.001 | 3.663 | 1.656–8.101 |
Constant | −6.526 | 1.058 | 38.061 | <0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zebrauskaite, A.; Ziubryte, G.; Mackus, L.; Lieponyte, A.; Kairyte, E.; Unikas, R.; Jarusevicius, G. A Simple Strategy to Reduce Contrast Media Use and Risk of Contrast-Induced Renal Injury during PCI: Introduction of an “Optimal Contrast Volume Protocol” to Daily Clinical Practice. J. Cardiovasc. Dev. Dis. 2023, 10, 402. https://doi.org/10.3390/jcdd10090402
Zebrauskaite A, Ziubryte G, Mackus L, Lieponyte A, Kairyte E, Unikas R, Jarusevicius G. A Simple Strategy to Reduce Contrast Media Use and Risk of Contrast-Induced Renal Injury during PCI: Introduction of an “Optimal Contrast Volume Protocol” to Daily Clinical Practice. Journal of Cardiovascular Development and Disease. 2023; 10(9):402. https://doi.org/10.3390/jcdd10090402
Chicago/Turabian StyleZebrauskaite, Aiste, Greta Ziubryte, Lukas Mackus, Austeja Lieponyte, Evelina Kairyte, Ramunas Unikas, and Gediminas Jarusevicius. 2023. "A Simple Strategy to Reduce Contrast Media Use and Risk of Contrast-Induced Renal Injury during PCI: Introduction of an “Optimal Contrast Volume Protocol” to Daily Clinical Practice" Journal of Cardiovascular Development and Disease 10, no. 9: 402. https://doi.org/10.3390/jcdd10090402
APA StyleZebrauskaite, A., Ziubryte, G., Mackus, L., Lieponyte, A., Kairyte, E., Unikas, R., & Jarusevicius, G. (2023). A Simple Strategy to Reduce Contrast Media Use and Risk of Contrast-Induced Renal Injury during PCI: Introduction of an “Optimal Contrast Volume Protocol” to Daily Clinical Practice. Journal of Cardiovascular Development and Disease, 10(9), 402. https://doi.org/10.3390/jcdd10090402