Pre-Stroke Loop Diuretics and Anemia in Elderly Patients Are Associated Factors of Severe Renal Dysfunction at the Time of Acute Stroke Onset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Materials
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coresh, J.; Wei, G.L.; McQuillan, G.; Brancati, F.L.; Levey, A.S.; Jones, C.; Klag, M.J. Prevalence of high blood pressure and elevated serum creatinine level in the United States: Findings from the third National Health and Nutrition Examination Survey (1988–1994). Arch. Intern. Med. 2001, 161, 1207–1216. [Google Scholar] [CrossRef]
- Kazancioglu, R. Risk factors for chronic kidney disease: An update. Kidney Int. Suppl. 2013, 3, 368–371. [Google Scholar] [CrossRef]
- Nazzal, Z.; Hamdan, Z.; Masri, D.; Abu-Kaf, O.; Hamad, M. Prevalence and risk factors of chronic kidney disease among Palestinian type 2 diabetic patients: A cross-sectional study. BMC Nephrol. 2020, 21, 484. [Google Scholar] [CrossRef]
- Kelly, D.M.; Rothwell, P.M. Does Chronic Kidney Disease Predict Stroke Risk Independent of Blood Pressure?: A systematic review and meta-regression. Stroke 2019, 50, 3085–3092. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef]
- Nakayama, M.; Metoki, H.; Terawaki, H.; Ohkubo, T.; Kikuya, M.; Sato, T.; Nakayama, K.; Asayama, K.; Inoue, R.; Hashimoto, J.; et al. Kidney dysfunction as a risk factor for first symptomatic stroke events in a general Japanese population—the Ohasama study. Nephrol. Dial. Transplant. 2007, 22, 1910–1915. [Google Scholar] [CrossRef]
- Iseki, K. Chronic kidney disease in Japan. Intern. Med. 2008, 47, 681–689. [Google Scholar] [CrossRef]
- Lou Arnal, L.M.; Campos Gutierrez, B.; Cuberes Izquierdo, M.; Gracia Garcia, O.; Turon Alcaine, J.M.; Bielsa Garcia, S.; Gimeno Orna, J.A.; Boned Juliani, B.; Sanjuan Hernandez-French, A. Grupo de Investigacion ERCA. Prevalence of chronic kidney disease in patients with type 2 diabetes mellitus treated in primary care. Nefrologia 2010, 30, 552–556. [Google Scholar] [CrossRef]
- Inaguma, D.; Imai, E.; Takeuchi, A.; Ohashi, Y.; Watanabe, T.; Nitta, K.; Akizawa, T.; Matsuo, S.; Makino, H.; Hishida, A.; et al. Risk factors for CKD progression in Japanese patients: Findings from the Chronic Kidney Disease Japan Cohort (CKD-JAC) study. Clin. Exp. Nephrol. 2017, 21, 446–456. [Google Scholar] [CrossRef]
- Pugh, D.; Gallacher, P.J.; Dhaun, N. Management of hypertension in chronic kidney disease. Drugs 2019, 79, 365–379. [Google Scholar] [CrossRef]
- Takeuchi, M.; Shinkawa, K.; Yanagita, M.; Kawakami, K. Prevalence, recognition and management of chronic kidney disease in Japan: Population-based estimate using a healthcare database with routine health checkup data. Clin. Kidney J. 2021, 14, 2197–2202. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Bohm, M.; Marx, N. Cardiovascular disease in chronic kidney disease: Pathophysiological insights and therapeutic options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Januivia Highlights of Prescribing Information. 2006. Available online: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=f85a48d0-0407-4c50-b0fa-7673a160bf01&type=display (accessed on 6 August 2023).
- Report on the Deliberation Results. RADICUT Injection 30 mg. 2015. Available online: https://www.pmda.go.jp/files/000212453.pdf (accessed on 6 August 2023).
- Zaid, A.H.; Sapru, S.; Costello, J.; Boradia, C. Sulfonylurea induced severe hypoglycemia in a diabetic with renal failure—A case report. J. Biosci. Med. 2015, 3, 68–70. [Google Scholar] [CrossRef]
- Ibrahim, H.; Rao, S.V. Oral antiplatelet drugs in patients with chronic kidney disease (CKD): A review. J. Thromb. Thrombolysis 2017, 43, 519–527. [Google Scholar] [CrossRef]
- Aursulesei, V.; Costache, I.I. Anticoagulation in chronic kidney disease: From guidelines to clinical practice. Clin. Cardiol. 2019, 42, 774–782. [Google Scholar] [CrossRef]
- Sinha, A.D.; Agarwal, R. Clinical pharmacology of antihypertensive therapy for the treatment of hypertension in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 757–764. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Huang, W.; Lobanova, I.; Hanley, D.F.; Hsu, C.Y.; Malhotra, K.; Steiner, T.; Suarez, J.I.; Toyoda, K.; Yamamoto, H.; et al. Systolic blood pressure reduction and acute kidney injury in intracerebral hemorrhage. Stroke 2020, 51, 3030–3038. [Google Scholar] [CrossRef]
- Ponchia, P.I.; Ahmed, R.; Farag, M.; Alkhalil, M. Antiplatelet therapy in end-stage renal disease patients on maintenance dialysis: A state-of-the-art review. Cardiovasc. Drugs Ther. 2022. [Google Scholar] [CrossRef]
- Rao, Z.Z.; Gu, H.Q.; Wang, X.W.; Xie, X.W.; Yang, X.; Wang, C.J.; Zhao, X.; Xian, Y.; Wang, Y.L.; Li, Z.X.; et al. Renal dysfunction and in-hospital outcomes in patients with acute ischemic stroke after intravenous thrombolytic therapy. J. Am. Heart Assoc. 2019, 8, e012052. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Kattah, A.G.; Garovic, V.D. Understanding sex differences in progression and prognosis of chronic kidney disease. Ann. Transl. Med. 2020, 8, 897. [Google Scholar] [CrossRef]
- Franco-Acevedo, A.; Echavarria, R.; Melo, Z. Sex differences in renal function: Participation of gonadal hormones and prolactin. Endocrines 2021, 2, 185–202. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO controversies conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, D.; Wexler, D.; Blum, M.; Wollman, Y.; Iaina, A. The cardio-renal anaemia syndrome: Does it exist? Nephrol. Dial. Transplant. 2003, 18 (Suppl. S8), viii7–viii12. [Google Scholar] [CrossRef]
- Adelborg, K.; Szepligeti, S.; Sundboll, J.; Horvath-Puho, E.; Henderson, V.W.; Ording, A.; Pedersen, L.; Sorensen, H.T. Risk of stroke in patients with heart failure: A population-based 30-year cohort study. Stroke 2017, 48, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Mohanram, A.; Zhang, Z.; Shahinfar, S.; Keane, W.F.; Brenner, B.M.; Toto, R.D. Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy. Kidney Int. 2004, 66, 1131–1138. [Google Scholar] [CrossRef]
- Iseki, K.; Ikemiya, Y.; Iseki, C.; Takishita, S. Haematocrit and the risk of developing end-stage renal disease. Nephrol. Dial. Transplant. 2003, 18, 899–905. [Google Scholar] [CrossRef]
- Gouva, C.; Nikolopoulos, P.; Ioannidis, J.P.; Siamopoulos, K.C. Treating anemia early in renal failure patients slows the decline of renal function: A randomized controlled trial. Kidney Int. 2004, 66, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Gandra, S.R.; Finkelstein, F.O.; Bennett, A.V.; Lewis, E.F.; Brazg, T.; Martin, M.L. Impact of erythropoiesis-stimulating agents on energy and physical function in nondialysis CKD patients with anemia: A systematic review. Am. J. Kidney Dis. 2010, 55, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Tsubakihara, Y.; Gejyo, F.; Nishi, S.; Iino, Y.; Watanabe, Y.; Suzuki, M.; Saito, A.; Akiba, T.; Hirakata, H.; Akizawa, T. High target hemoglobin with erythropoiesis-stimulating agents has advantages in the renal function of non-dialysis chronic kidney disease patients. Ther. Apher. Dial. 2012, 16, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Szczech, L.; Tang, K.L.; Barnhart, H.; Sapp, S.; Wolfson, M.; Reddan, D. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 2006, 355, 2085–2098. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Burdmann, E.A.; Chen, C.Y.; Cooper, M.E.; de Zeeuw, D.; Eckardt, K.U.; Feyzi, J.M.; Ivanovich, P.; Kewalramani, R.; Levey, A.S.; et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 2009, 361, 2019–2032. [Google Scholar] [CrossRef] [PubMed]
- Drüeke, T.B.; Locatelli, F.; Clyne, N.; Eckardt, K.U.; Macdougall, I.C.; Tsakiris, D.; Burger, H.U.; Scherhag, A. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 2006, 355, 2071–2084. [Google Scholar] [CrossRef]
- Iseki, K.; Yamagata, K. A practical approach of salt and protein restriction for CKD patients in Japan. BMC Nephrol. 2016, 17, 87. [Google Scholar] [CrossRef]
- Nakajima, T.; Murata, M.; Nitta, S.; Shitara, T.; Kazama, H.; Satoh, Y.; Takizawa, M.; Mori, A.; Kobayashi, Y.; Adachi, H. Sodium Restriction Counseling Reduces Cardiac Events in Patients with Heart Failure. Circ. J. 2021, 85, 1555–1562. [Google Scholar] [CrossRef]
- El-Refai, M.; Krivospitskaya, O.; Peterson, E.L.; Wells, K.; Williams, L.K.; Lanfear, D.E. Relationship of loop diuretic dosing and acute changes in renal function during hospitalization for heart failure. J. Clin. Exp. Cardiol. 2011, 2, 1000164. [Google Scholar] [CrossRef]
- Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000, 288, 2981–2997. [CrossRef]
- Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). ALLHAT collaborative research group. JAMA 2000, 283, 1967–1975. [CrossRef]
- Moore, K.H.; Clemmer, J.S. Questioning the renoprotective role of L-type calcium channel blockers in chronic kidney disease using physiological modeling. Am. J. Physiol. Renal Physiol. 2021, 321, F548–F557. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Z.; Pan, Z.; Ma, S.; Chang, M.; Fan, J.; Xue, S.; Wang, Y.; Qu, H.; Zhang, Y. N-/T-Type vs. L-Type calcium channel blocker in treating chronic kidney disease: A systematic review and meta-analysis. Pharmaceuticals 2023, 16, 338. [Google Scholar] [CrossRef]
- Thomas, M.C. Diuretics, ACE inhibitors and NSAIDs–The triple whammy. Med. J. Aust. 2000, 172, 184–185. [Google Scholar] [CrossRef]
- Dreischulte, T.; Morales, D.R.; Bell, S.; Guthrie, B. Combined use of nonsteroidal anti-inflammatory drugs with diuretics and/or renin-angiotensin system inhibitors in the community increases the risk of acute kidney injury. Kidney Int. 2015, 88, 396–403. [Google Scholar] [CrossRef]
- Wozniak, E.; Broncel, M.; Bukowska, B.; Gorzelak-Pabis, P. The Protective Effect of Dabigatran and Rivaroxaban on DNA oxidative changes in a model of vascular endothelial damage with oxidized cholesterol. Int. J. Mol. Sci. 2020, 21, 1953. [Google Scholar] [CrossRef] [PubMed]
- Rogula, S.; Gasecka, A.; Mazurek, T.; Navarese, E.P.; Szarpak, L.; Filipiak, K.J. Safety and Efficacy of DOACs in patients with advanced and end-stage renal disease. Int. J. Environ. Res. Public Health 2022, 19, 1436. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Bohm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- The, E.-K.C.G.; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
Variables | Male Sex | Female Sex |
---|---|---|
n = 1905 | n = 1567 | |
Ccr < 30 mL/min upon admission, n (%) | 185 (9.7%) | 293 (18.7%) |
Age, years | 75, 66.5–82 | 81, 72–87 |
Modified Rankin Scale before the acute stroke | 0, 0–2 | 0, 0–3 |
Ischemia, n (%) | 1517 (79.6%) | 1218 (77.7%) |
Body mass index, kg/m2 | 22.9, 20.8–25.0 | 20.9, 18.7–23.6 |
Height, cm | 165, 161–170 | 151.4, 148–156 |
Body weight, kg | 62.9, 55.9–70 | 48.4, 41.5–55 |
Albumin, g/L | 40, 37–43 | 40, 36–43 |
Hemoglobin, g/L | 141, 128–152 | 129, 117–1139 |
Glucose, mmol/L | 6.88, 5.83–8.66 | 6.61, 5.77–8.27 |
Glycated hemoglobin A1c, % | 5.8, 5.5–6.4 | 5.8, 5.5–6.2 |
Low-density lipoprotein cholesterol, mmol/L | 2.81, 2.22–3.40 | 3.19, 2.58–3.86 |
High-density lipoprotein cholesterol, mmol/L | 1.35, 1.11–1.66 | 1.56, 1.29–1.90 |
Triglycerides, mmol/L | 1.12, 0.78–1.76 | 1.04, 0.77–1.48 |
Creatinine, µmol/L | 82.2, 70.7–100.3 | 61.9, 53.0–73.4 |
C-reactive protein, µg/L | 1200, 500–3900 | 1200, 500–4700 |
Variables | OR 95% CI | p-Value | AUC |
---|---|---|---|
<0.0001 | 0.884 | ||
Hemoglobin, g/L | 0.95, 0.94–0.96 | <0.0001 | |
Loop diuretics (1 for use, 0 for no use) | 3.57, 2.21–5.76 | <0.0001 | |
Modified Rankin scale before the acute stroke | 1.21, 1.07–1.36 | 0.0021 | |
Alpha blockers (1 for use, 0 for no use) | 3.93, 1.48–9.93 | 0.0046 | |
Albumin, g/L | 0.95, 0.91–0.99 | 0.0123 | |
Aspirin (1 for use, 0 for no use) | 1.66, 1.01–2.49 | 0.0150 | |
L-type CCBs (1 for use, 0 for no use) | 1.61, 1.07–2.40 | 0.0209 | |
Alpha–beta blockers (1 for use, 0 for no use) | 1.77, 1.04–2.97 | 0.0318 | |
Beta blockers (1 for use, 0 for no use) | 1.70, 0.90–3.09 | 0.0902 | |
C-reactive protein, μg/L | 1.00, 0.99–1.00 | >0.100 | |
Biguanides (1 for use, 0 for no use) | 1.77, 0.79–3.86 | >0.100 | |
Alpha-glucosidase inhibitors (1 for use, 0 for no use) | 1.60, 0.68–3.53 | >0.100 | |
Low-density lipoprotein cholesterol, mmol/L | 1.13, 0.90–1.40 | >0.100 | |
Antiplatelets other than aspirin (1 for use, 0 for no use) | 0.86, 0.51–1.42 | >0.100 | |
DPP4is (1 for use, 0 for no use) | 0.85, 0.45–1.53 | >0.100 | |
Triglycerides, mmol/L | 1.05, 0.84–1.28 | >0.100 | |
ARB (1 for use, 0 for no use) | 1.09, 0.72–1.63 | >0.100 | |
Warfarin (1 for use, 0 for no use) | 0.90, 0.47–1.65 | >0.100 | |
High-density lipoprotein cholesterol, mmol/L | 1.03, 0.64–1.64 | >0.100 | |
Verapamil (1 for use, 0 for no use) | 1.02, 0.27–3.40 | >0.100 |
Variables | OR 95% CI | p-Value | AUC |
---|---|---|---|
<0.0001 | 0.809 | ||
Hemoglobin, g/L | 0.96, 0.95–0.97 | <0.0001 | |
Loop diuretics (1 for use, 0 for no use) | 4.05, 2.67–6.17 | <0.0001 | |
Modified Rankin scale before the acute stroke | 1.26, 1.15–1.38 | <0.0001 | |
DOACs (1 for use, 0 for no use) | 0.28, 0.09–0.67 | 0.0031 | |
MRAs (1 for use, 0 for no use) | 1.72, 1.01–2.90 | 0.0440 | |
ARBs (1 for use, 0 for no use) | 1.40, 1.00–1.95 | 0.0496 | |
Alpha–beta blockers (1 for use, 0 for no use) | 1.48, 0.87–2.55 | >0.100 | |
Glycated hemoglobin A1c, % | 0.91, 0.80–1.04 | >0.100 | |
Low-density lipoprotein cholesterol, mmol/L | 0.89, 0.75–1.04 | >0.100 | |
High-density lipoprotein cholesterol, mmol/L | 1.26, 0.89–1.78 | >0.100 | |
Albumin, g/L | 0.98, 0.94–1.01 | >0.100 | |
Verapamil (1 for use, 0 for no use) | 0.53, 0.18–1.39 | >0.100 | |
Beta blockers (1 for use, 0 for no use) | 1.34, 0.77–2.29 | >0.100 | |
Aspirin (1 for use, 0 for no use) | 1.18, 0.78–1.77 | >0.100 | |
Warfarin (1 for use, 0 for no use) | 1.10, 0.64–1.87 | >0.100 | |
Alpha blockers (1 for use, 0 for no use) | 1.31, 0.44–3.55 | >0.100 | |
C-reactive protein, μg/L | 0.99, 0.99–1.00 | >0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, T.; Yano, T.; Yoshioka, K.; Miyazaki, Y. Pre-Stroke Loop Diuretics and Anemia in Elderly Patients Are Associated Factors of Severe Renal Dysfunction at the Time of Acute Stroke Onset. J. Cardiovasc. Dev. Dis. 2023, 10, 405. https://doi.org/10.3390/jcdd10090405
Mori T, Yano T, Yoshioka K, Miyazaki Y. Pre-Stroke Loop Diuretics and Anemia in Elderly Patients Are Associated Factors of Severe Renal Dysfunction at the Time of Acute Stroke Onset. Journal of Cardiovascular Development and Disease. 2023; 10(9):405. https://doi.org/10.3390/jcdd10090405
Chicago/Turabian StyleMori, Takahisa, Tetsundo Yano, Kazuhiro Yoshioka, and Yuichi Miyazaki. 2023. "Pre-Stroke Loop Diuretics and Anemia in Elderly Patients Are Associated Factors of Severe Renal Dysfunction at the Time of Acute Stroke Onset" Journal of Cardiovascular Development and Disease 10, no. 9: 405. https://doi.org/10.3390/jcdd10090405
APA StyleMori, T., Yano, T., Yoshioka, K., & Miyazaki, Y. (2023). Pre-Stroke Loop Diuretics and Anemia in Elderly Patients Are Associated Factors of Severe Renal Dysfunction at the Time of Acute Stroke Onset. Journal of Cardiovascular Development and Disease, 10(9), 405. https://doi.org/10.3390/jcdd10090405