The COVID-19 Pandemic Decreases Cardiorespiratory Fitness: A 3-Year Follow-Up Study in Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometrics
2.3. Maximal Oxygen Uptake ()
2.4. Resting Heart Rate (RHR)
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Study Population
3.2. Maximal Oxygen Uptake ()
3.3. Resting Heart Rate (RHR)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Kite, C.; Lagojda, L.; Clark, C.C.T.; Uthman, O.; Denton, F.; McGregor, G.; Harwood, A.E.; Atkinson, L.; Broom, D.R.; Kyrou, I.; et al. Changes in Physical Activity and Sedentary Behaviour Due to Enforced COVID-19-Related Lockdown and Movement Restrictions: A Protocol for a Systematic Review and Meta-Analysis. J. Environ. Res. Public Health 2021, 18, 5251. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Del Pozo Cruz, B.; Green, M.A.; Bauman, A.E. Is the COVID-19 lockdown nudging people to be more active: A big data analysis. Br. J. Sports Med. 2020, 54, 1183–1184. [Google Scholar] [CrossRef] [PubMed]
- Paffenbarger, R.S., Jr.; Hyde, R.T.; Wing, A.L.; Hsieh, C.C. Physical activity, all-cause mortality, and longevity of college alumni. N. Engl. J. Med. 1986, 314, 605–613. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M.; et al. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef] [PubMed]
- Ekblom-Bak, E.; Ekblom, B.; Söderling, J.; Börjesson, M.; Blom, V.; Kallings, L.V.; Hemmingsson, E.; Andersson, G.; Wallin, P.; Ekblom, Ö. Sex- and age-specific associations between cardiorespiratory fitness, CVD morbidity and all-cause mortality in 266.109 adults. Prev. Med. 2019, 127, 105799. [Google Scholar] [CrossRef]
- Skogstad, M.; Aass, H.C.D.; Sirnes, P.A.; Mamen, A.; Skare, Ø.; Matre, D.; Hammer, S.E.; Goffeng, E.; Lunde, L.K. Influence of Shift Work on Arterial Stiffness and Systemic Inflammation: A 3-Year Follow-up Study in Industry. J. Occup. Environ. Med. 2023, 65, 284–291. [Google Scholar] [CrossRef]
- Lunde, L.K.; Skare, O.; Mamen, A.; Sirnes, P.A.; Aass, H.C.D.; Ovstebo, R.; Goffeng, E.; Matre, D.; Nielsen, P.; Heglum, H.S.A.; et al. Cardiovascular Health Effects of Shift Work with Long Working Hours and Night Shifts: Study Protocol for a Three-Year Prospective Follow-Up Study on Industrial Workers. Int. J. Environ. Res. Public Health 2020, 17, 589. [Google Scholar] [CrossRef]
- Mamen, A.; Øvstebø, R.; Sirnes, P.A.; Nielsen, P.; Skogstad, M. High-Intensity Training Reduces CVD Risk Factors among Rotating Shift Workers: An Eight-Week Intervention in Industry. Int. J. Environ. Res. Public Health 2020, 17, 3943. [Google Scholar] [CrossRef]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Casaburi, R.; Whipp, B.J. Principles of Exercise Testing and Interpretation, 3rd ed.; Lippincott Williams & Wilkind: Philadelphia, PA, USA, 1999; p. 131. [Google Scholar]
- Loe, H.; Rognmo, Ø.; Saltin, B.; Wisløff, U. Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLoS ONE 2013, 8, e64319. [Google Scholar] [CrossRef]
- Triantafyllidi, H.; Benas, D.; Birba, D.; Trivilou, P.; Iliodromitis, E. Reference values for aerobic capacity estimated by cardiopulmonary exercise test on a cycle ergometer in a healthy Greek population. Hellenic J. Cardiol. HJC = Hell. Kardiol. Epitheor. 2021, 62, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Astrand, I.; Astrand, P.O.; Hallbäck, I.; Kilbom, A. Reduction in maximal oxygen uptake with age. J. Appl. Physiol. 1973, 35, 649–654. [Google Scholar] [CrossRef]
- Trappe, S.W.; Costill, D.L.; Vukovich, M.D.; Jones, J.; Melham, T. Aging among elite distance runners: A 22-yr longitudinal study. J. Appl. Physiol. 1996, 80, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Eskurza, I.; Donato, A.J.; Moreau, K.L.; Seals, D.R.; Tanaka, H. Changes in maximal aerobic capacity with age in endurance-trained women: 7-yr follow-up. J. Appl. Physiol. 2002, 92, 2303–2308. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Grassi, G. Heart rate as a predictor of cardiovascular risk. Eur. J. Clin. Investig. 2018, 48, e12892. [Google Scholar] [CrossRef]
- Chen, X.J.; Barywani, S.B.; Hansson, P.O.; Östgärd Thunström, E.; Rosengren, A.; Ergatoudes, C.; Mandalenakis, Z.; Caidahl, K.; Fu, M.L. Impact of changes in heart rate with age on all-cause death and cardiovascular events in 50-year-old men from the general population. Open Heart 2019, 6, e000856. [Google Scholar] [CrossRef]
- Saxena, A.; Minton, D.; Lee, D.C.; Sui, X.; Fayad, R.; Lavie, C.J.; Blair, S.N. Protective role of resting heart rate on all-cause and cardiovascular disease mortality. Mayo Clin. Proc. 2013, 88, 1420–1426. [Google Scholar] [CrossRef]
- Fox, K.; Bousser, M.G.; Amarenco, P.; Chamorro, A.; Fisher, M.; Ford, I.; Hennerici, M.G.; Mattle, H.P.; Rothwell, P.M.; PERFORM Study Investigators. Heart rate is a prognostic risk factor for myocardial infarction: A post hoc analysis in the PERFORM (Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history of ischemic stroke or transient ischemic attack) study population. Int. J. Cardiol. 2013, 168, 3500–3505. [Google Scholar]
- Hanssen, H.; Nussbaumer, M.; Moor, C.; Cordes, M.; Schindler, C.; Schmidt-Trucksäss, A. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men. Atherosclerosis 2015, 238, 399–406. [Google Scholar] [CrossRef]
- Olsen, R.H.; Krogh-Madsen, R.; Thomsen, C.; Booth, F.W.; Pedersen, B.K. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA 2008, 299, 1261–1263. [Google Scholar]
- Sallam, N.; Laher, I. Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2016, 2016, 7239639. [Google Scholar] [CrossRef]
- Holtermann, A.; Schnohr, P.; Nordestgaard, B.G.; Marott, J.L. The physical activity paradox in cardiovascular disease and all-cause mortality: The contemporary Copenhagen General Population Study with 104046 adults. Eur. Heart J. 2021, 42, 1499–1511. [Google Scholar] [CrossRef]
- Alonso-Martínez, A.M.; Ramírez-Vélez, R.; García-Alonso, Y.; Izquierdo, M.; García-Hermoso, A. Physical Activity, Sedentary Behavior, Sleep and Self-Regulation in Spanish Preschoolers during the COVID-19 Lockdown. Int. J. Environ. Res. Public Health 2021, 18, 693. [Google Scholar] [CrossRef]
- Swain, P.; James, E.; Laws, J.M.; Strongman, C.; Haw, S.; Barry, G.; Chung, H.C.; Gordon, D. COVID-19: Self-reported reductions in physical activity and increases in sedentary behaviour during the first national lockdown in the United Kingdom. Sport Sci. Health 2022, 19, 139–146. [Google Scholar] [CrossRef]
- Saltin, B.; Blomqvist, G.; Mitchell, J.H.; Johnson, R.L., Jr.; Wildenthal, K.; Chapman, C.B. Response to exercise after bed rest and after training. Circulation 1968, 38 (Suppl. 5), VII1–VII78. [Google Scholar]
- Chambonnière, C.; Fearnbach, N.; Pelissier, L.; Genin, P.; Fillon, A.; Boscaro, A.; Bonjean, L.; Bailly, M.; Siroux, J.; Guirado, T.; et al. Adverse Collateral Effects of COVID-19 Public Health Restrictions on Physical Fitness and Cognitive Performance in Primary School Children. Int. J. Environ. Res. Public Health 2021, 18, 11099. [Google Scholar] [CrossRef]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Connor Gorber, S.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef]
- Kurtze, N.; Rangul, V.; Hustvedt, B.E. Reliability and validity of the international physical activity questionnaire in the Nord-Trøndelag health study (HUNT) population of men. BMC Med. Res. Methodol. 2008, 8, 63. [Google Scholar] [CrossRef]
Variables | No | Min | Max | Mean | SD |
---|---|---|---|---|---|
Age (years) | 21.0 | 62.0 | 42.0 | 11.2 | |
Women (number) | 12 (14%) | ||||
Shift workers (number) | 57 (66%) | ||||
Participants with a 5-month break (number) | 12 (14%) | ||||
BMI (kg/m2) | 18.9 | 39.7 | 27.0 | 4.6 | |
Fat mass (%) a | 9.8 | 44.9 | 26.0 | 7.8 | |
MVPA (min/week) b | 0.0 | 700.0 | 95.6 | 126.0 | |
HF max | 149.0 | 209.0 | 178.6 | 12.6 | |
Smokers (number) | 9 (10%) | ||||
Pack-years c | 0.0 | 43.0 | 7.0 | 9.7 |
Adjustment Includes BL Age | Adjustment Includes Actual Age | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Outcome | Mean BL | Mean FU | Change | Lower | Upper | p-Value | Mean BL | Mean FU | Change | Lower | Upper | p-Value |
O2max (mL/kg/min) * | 39.6 | 34.0 | −5.6 | −7.6 | −3.7 | <0.001 | 39.5 | 34.1 | −5.4 | −7.4 | −3.4 | <0.001 |
sO2 (mL/kg0.67/min) | 170.2 | 146.2 | −24.0 | −52.6 | −9.3 | <0.001 | 169.9 | 146.9 | −23 | −48.2 | −3.2 | <0.001 |
Fat Mass (%) * | 26.2 | 26.2 | 0.0 | −1.2 | 1.2 | 1.0 | 26.3 | 26.0 | −0.3 | −1.5 | 1.0 | 0.67 |
RHR (beats/min) * | 61.3 | 64.4 | 3.1 | 0.8 | 5.4 | 0.0077 | 61.0 | 64.7 | 3.7 | 1.4 | 6.1 | <0.002 |
BMI (kg/m2) * | 27.1 | 27.5 | 0.4 | 0.0 | 0.8 | 0.031 | 27.1 | 27.4 | 0.3 | −0.1 | 0.8 | 0.16 |
MVPA (min/week) ** | 103.8 | 59.9 | −43.9 | −73.5 | −14.4 | 0.0036 | 100.5 | 64.0 | −36.4 | −66.5 | −6.4 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skare, Ø.; Mamen, A.; Skogstad, M. The COVID-19 Pandemic Decreases Cardiorespiratory Fitness: A 3-Year Follow-Up Study in Industry. J. Cardiovasc. Dev. Dis. 2024, 11, 9. https://doi.org/10.3390/jcdd11010009
Skare Ø, Mamen A, Skogstad M. The COVID-19 Pandemic Decreases Cardiorespiratory Fitness: A 3-Year Follow-Up Study in Industry. Journal of Cardiovascular Development and Disease. 2024; 11(1):9. https://doi.org/10.3390/jcdd11010009
Chicago/Turabian StyleSkare, Øivind, Asgeir Mamen, and Marit Skogstad. 2024. "The COVID-19 Pandemic Decreases Cardiorespiratory Fitness: A 3-Year Follow-Up Study in Industry" Journal of Cardiovascular Development and Disease 11, no. 1: 9. https://doi.org/10.3390/jcdd11010009
APA StyleSkare, Ø., Mamen, A., & Skogstad, M. (2024). The COVID-19 Pandemic Decreases Cardiorespiratory Fitness: A 3-Year Follow-Up Study in Industry. Journal of Cardiovascular Development and Disease, 11(1), 9. https://doi.org/10.3390/jcdd11010009