Different Proteins as Biomarkers for Sac Shrinkage After Endovascular Aortic Repair of Abdominal Aortic Aneurysms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Follow-Up Regimen and CT Measurements
2.3. Definition of Aneurysm Sac Behaviour
2.4. Blood Sampling and Protein Isolation
2.5. Proteome Analysis of Plasma Samples
2.6. Statistical Analysis
3. Results
3.1. Patient Clinical Characteristics
3.2. Proteome Analysis of Plasma Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meuli, L.; Menges, A.-L.; Steigmiller, K.; Kuehnl, A.; Reutersberg, B.; Held, U.; Zimmermann, A. Hospital Incidence and Mortality of Patients Treated for Abdominal Aortic Aneurysms in Switzerland—A Secondary Analysis of Swiss DRG Statistics Data. Swiss Med. Wkly. 2022, 152, w30191. [Google Scholar] [CrossRef] [PubMed]
- Lederle, F.A.; Freischlag, J.A.; Kyriakides, T.C.; Matsumura, J.S.; Padberg, F.T.J.; Kohler, T.R.; Kougias, P.; Jean-Claude, J.M.; Cikrit, D.F.; Swanson, K.M. Long-Term Comparison of Endovascular and Open Repair of Abdominal Aortic Aneurysm. N. Engl. J. Med. 2012, 367, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Bastos Gonçalves, F.; Baderkhan, H.; Verhagen, H.J.M.; Wanhainen, A.; Björck, M.; Stolker, R.J.; Hoeks, S.E.; Mani, K. Early Sac Shrinkage Predicts a Low Risk of Late Complications after Endovascular Aortic Aneurysm Repair. Br. J. Surg. 2014, 101, 802–810. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, T.F.X.; Deery, S.E.; Boitano, L.T.; Siracuse, J.J.; Schermerhorn, M.L.; Scali, S.T.; Schanzer, A.; Lancaster, R.T.; Patel, V.I. Aneurysm Sac Failure to Regress after Endovascular Aneurysm Repair Is Associated with Lower Long-Term Survival. J. Vasc. Surg. 2019, 69, 414–422. [Google Scholar] [CrossRef]
- Lalys, F.; Daoudal, A.; Gindre, J.; Göksu, C.; Lucas, A.; Kaladji, A. Influencing Factors of Sac Shrinkage after Endovascular Aneurysm Repair. J. Vasc. Surg. 2017, 65, 1830–1838. [Google Scholar] [CrossRef]
- van Rijswijk, R.E.; Jebbink, E.G.; Zeebregts, C.J.; Reijnen, M.M.P.J. A Systematic Review of Anatomic Predictors of Abdominal Aortic Aneurysm Remodeling after Endovascular Repair. J. Vasc. Surg. 2022, 75, 1777–1785. [Google Scholar] [CrossRef]
- Hellenthal, F.A.M.V.I.; Ten Bosch, J.A.; Pulinx, B.; Wodzig, W.K.W.H.; de Haan, M.W.; Prins, M.H.; Welten, R.J.T.J.; Teijink, J.A.W.; Schurink, G.W.H. Plasma Levels of Matrix Metalloproteinase-9: A Possible Diagnostic Marker of Successful Endovascular Aneurysm Repair. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 171–172. [Google Scholar] [CrossRef]
- Vanmaele, A.; Bouwens, E.; Hoeks, S.E.; Kindt, A.; Lamont, L.; Fioole, B.; Moelker, A.; Ten Raa, S.; Hussain, B.; Oliveira-Pinto, J.; et al. Targeted Proteomics and Metabolomics for Biomarker Discovery in Abdominal Aortic Aneurysm and Post-EVAR Sac Volume. Clin. Chim. Acta 2024, 554, 1177866. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, W.; Niu, L.; Yu, W.; Li, C.; Wang, H. Combined Detection of Plasma Tumor Necrosis Factor-α Converting Enzyme and Notch1 Is Valuable in Screening Endoleak After Endovascular Abdominal Aortic Aneurysms Repair. Ann. Vasc. Surg. 2021, 76, 302–308. [Google Scholar] [CrossRef]
- Menges, A.-L.; Busch, A.; Reutersberg, B.; Trenner, M.; Kath, P.; Chernogubova, E.; Maegdefessel, L.; Eckstein, H.-H.; Zimmermann, A. The Structural Atrophy of the Aneurysm Wall in Secondary Expanding Aortic Aneurysms with Endoleak Type II. J. Vasc. Surg. 2019, 70, 1318–1326. [Google Scholar] [CrossRef]
- Griessbach, A.; Bauer, A.; Jörger Lebet, F.; Grossmann, R. The Concept of General Consent in Switzerland and the Implementation at the University Hospital Zurich, a Cross-Sectional Study. Swiss Med. Wkly. 2022, 152, w30159. [Google Scholar] [CrossRef] [PubMed]
- Chaikof, E.L.; Blankensteijn, J.D.; Harris, P.L.; White, G.H.; Zarins, C.K.; Bernhard, V.M.; Matsumura, J.S.; May, J.; Veith, F.J.; Fillinger, M.F.; et al. Reporting Standards for Endovascular Aortic Aneurysm Repair. J. Vasc. Surg. 2002, 35, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, J.; Roschitzki, B.; Panse, C.; Fortes, C.; Barkow-Oesterreicher, S.; Rutishauser, D.; Schlapbach, R. Implementation and Evaluation of Relative and Absolute Quantification in Shotgun Proteomics with Label-Free Methods. J. Proteom. 2010, 73, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Smyth, G.K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, Article3. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Buth, J.; Harris, P.L.; van Marrewijk, C.; Fransen, G. The Significance and Management of Different Types of Endoleaks. Semin. Vasc. Surg. 2003, 16, 95–102. [Google Scholar] [CrossRef]
- Fransen, G.A.J.; Vallabhaneni, S.R.S.; van Marrewijk, C.J.; Laheij, R.J.F.; Harris, P.L.; Buth, J. Rupture of Infra-Renal Aortic Aneurysm after Endovascular Repair: A Series from EUROSTAR Registry. Eur. J. Vasc. Endovasc. Surg. 2003, 26, 487–493. [Google Scholar] [CrossRef]
- Mavroudis, I.A.; Petridis, F.; Chatzikonstantinou, S.; Kazis, D. A Meta-Analysis on CSF Neurogranin Levels for the Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment. Aging Clin. Exp. Res. 2020, 32, 1639–1646. [Google Scholar] [CrossRef]
- Li, M.; Yang, Y.; Zong, J.; Wang, Z.; Jiang, S.; Fu, X.; He, X.; Li, X.; Xue, Q.; Wang, J.-X.; et al. miR-564: A Potential Regulator of Vascular Smooth Muscle Cells and Therapeutic Target for Aortic Dissection. J. Mol. Cell Cardiol. 2022, 170, 100–114. [Google Scholar] [CrossRef]
- Laudanski, K.; Liu, D.; Okeke, T.; Restrepo, M.; Szeto, W.Y. Persistent Depletion of Neuroprotective Factors Accompanies Neuroinflammatory, Neurodegenerative, and Vascular Remodeling Spectra in Serum Three Months after Non-Emergent Cardiac Surgery. Biomedicines 2022, 10, 2364. [Google Scholar] [CrossRef]
- Brown, I.A.M.; Diederich, L.; Good, M.E.; DeLalio, L.J.; Murphy, S.A.; Cortese-Krott, M.M.; Hall, J.L.; Le, T.H.; Isakson, B.E. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1969–1985. [Google Scholar] [CrossRef] [PubMed]
- Sakalihasan, N.; Michel, J.-B.; Katsargyris, A.; Kuivaniemi, H.; Defraigne, J.-O.; Nchimi, A.; Powell, J.T.; Yoshimura, K.; Hultgren, R. Abdominal Aortic Aneurysms. Nat. Rev. Dis. Primers 2018, 4, 34. [Google Scholar] [CrossRef]
- Hosseini, A.; Sahranavard, T.; Reiner, Ž.; Jamialahmadi, T.; Dhaheri, Y.A.; Eid, A.H.; Sahebkar, A. Effect of Statins on Abdominal Aortic Aneurysm. Eur. J. Pharm. Sci. 2022, 178, 106284. [Google Scholar] [CrossRef] [PubMed]
- Erl, W. Statin-Induced Vascular Smooth Muscle Cell Apoptosis: A Possible Role in the Prevention of Restenosis? Curr. Drug Targets Cardiovasc. Haematol. Disord. 2005, 5, 135–144. [Google Scholar] [CrossRef]
- Aihara, K.; Ishii, H.; Yoshida, M. Casein-Derived Tripeptide, Val-Pro-Pro (VPP), Modulates Monocyte Adhesion to Vascular Endothelium. J. Atheroscler. Thromb. 2009, 16, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Mandujano, G.; Weiss-Steider, B.; Melo, B.; Córdova, Y.; Ledesma-Martínez, E.; Bustos, S.; Silvestre, O.; Aguiñiga, I.; Sosa, N.; Martínez, I.; et al. Alpha-, Beta- and Kappa-Caseins Inhibit the Proliferation of the Myeloid Cell Lines 32D Cl3 and WEHI-3 and Exhibit Different Differentiation Properties. Immunobiology 2008, 213, 133–141. [Google Scholar] [CrossRef]
- Vordenbäumen, S.; Braukmann, A.; Altendorfer, I.; Bleck, E.; Jose, J.; Schneider, M. Human Casein Alpha S1 (CSN1S1) Skews in Vitro Differentiation of Monocytes towards Macrophages. BMC Immunol. 2013, 14, 46. [Google Scholar] [CrossRef]
- Otaegui, D.; Mostafavi, S.; Bernard, C.C.A.; Lopez de Munain, A.; Mousavi, P.; Oksenberg, J.R.; Baranzini, S.E. Increased Transcriptional Activity of Milk-Related Genes Following the Active Phase of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Immunol. 2007, 179, 4074–4082. [Google Scholar] [CrossRef]
- Vordenbäumen, S.; Braukmann, A.; Petermann, K.; Scharf, A.; Bleck, E.; von Mikecz, A.; Jose, J.; Schneider, M. Casein α S1 Is Expressed by Human Monocytes and Upregulates the Production of GM-CSF via P38 MAPK. J. Immunol. 2011, 186, 592–601. [Google Scholar] [CrossRef]
- Werner, I.; Schack, S.; Richter, M.; Stock, U.A.; Ahmad, A.E.-S.; Moritz, A.; Beiras-Fernandez, A. The Role of Extracellular and Intracellular Proteolytic Systems in Aneurysms of the Ascending Aorta. Histol. Histopathol. 2016, 31, 523–534. [Google Scholar]
- Lin, Y.-C.; Sahoo, B.K.; Gau, S.-S.; Yang, R.-B. The Biology of SCUBE. J. Biomed. Sci. 2023, 30, 33. [Google Scholar]
- Ali, H.; Emoto, N.; Yagi, K.; Vignon-Zellweger, N.; Nakayama, K.; Hatakeyama, K.; Asada, Y.; Rikitake, Y.; Hirata, K.-I. Localization and Characterization of a Novel Secreted Protein, SCUBE2, in the Development and Progression of Atherosclerosis. Kobe J. Med. Sci. 2013, 59, E122–E131. [Google Scholar] [PubMed]
- Yang, H.-Y.; Cheng, C.-F.; Djoko, B.; Lian, W.-S.; Tu, C.-F.; Tsai, M.-T.; Chen, Y.-H.; Chen, C.-C.; Cheng, C.-J.; Yang, R.-B. Transgenic Overexpression of the Secreted, Extracellular EGF-CUB Domain-Containing Protein SCUBE3 Induces Cardiac Hypertrophy in Mice. Cardiovasc. Res. 2007, 75, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tang, X.; Qi, X.; Fu, X.; Ghimire, S.; Ma, R.; Li, S.; Zhang, N.; Si, H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int. J. Mol. Sci. 2020, 21, 2894. [Google Scholar] [CrossRef] [PubMed]
- Nandi, D.; Tahiliani, P.; Kumar, A.; Chandu, D. The Ubiquitin-Proteasome System. J. Biosci. 2006, 31, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, Z.; Wu, Z.; Liu, K.; Liang, L.; Wang, C.; Xu, Y.; Liang, Y. The Protective Effect of UBE2G2 Knockdown Against Atherosclerosis in Apolipoprotein E-Deficient Mice and Its Association with miR-204-5p. Mol. Biotechnol. 2022, 64, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Bennick, A. Salivary Proline-Rich Proteins. Mol. Cell Biochem. 1982, 45, 83–99. [Google Scholar] [CrossRef]
- Nithya, S.; Radhika, T.; Jeddy, N. Loricrin—An Overview. J. Oral. Maxillofac. Pathol. 2015, 19, 64–68. [Google Scholar] [CrossRef]
- Ihedioha, O.C.; Shiu, R.P.C.; Uzonna, J.E.; Myal, Y. Prolactin-Inducible Protein: From Breast Cancer Biomarker to Immune Modulator-Novel Insights from Knockout Mice. DNA Cell Biol. 2016, 35, 537–541. [Google Scholar] [CrossRef]
- Carregaro, F.; Stefanini, A.C.B.; Henrique, T.; Tajara, E.H. Study of Small Proline-Rich Proteins (SPRRs) in Health and Disease: A Review of the Literature. Arch. Dermatol. Res. 2013, 305, 857–866. [Google Scholar] [CrossRef]
- Ishida-Yamamoto, A.; Takahashi, H.; Iizuka, H. Loricrin and Human Skin Diseases: Molecular Basis of Loricrin Keratodermas. Histol. Histopathol. 1998, 13, 819–826. [Google Scholar] [PubMed]
- Edqvist, P.-H.D.; Fagerberg, L.; Hallström, B.M.; Danielsson, A.; Edlund, K.; Uhlén, M.; Pontén, F. Expression of Human Skin-Specific Genes Defined by Transcriptomics and Antibody-Based Profiling. J. Histochem. Cytochem. 2015, 63, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Niehaus, J.Z.; Good, M.; Jackson, L.E.; Ozolek, J.A.; Silverman, G.A.; Luke, C.J. Human SERPINB12 Is an Abundant Intracellular Serpin Expressed in Most Surface and Glandular Epithelia. J. Histochem. Cytochem. 2015, 63, 854–865. [Google Scholar] [CrossRef] [PubMed]
Overall | Shrinkage (n = 20) | Stable/Expansion (n = 12) | p-Value * | |
---|---|---|---|---|
Age (years, median (range)) | 73 (56–89) | 74 (56–89) | 71 (57–88) | n.s. |
Sex (male) | 100% | 20 (100%) | 12 (100%) | n.s. |
Time To Blood Sampling (median (range)) | 44 (13–104) | 50 (14–104) | 23 (13–82) | 0.020 |
Comorbidities | ||||
Hypertension | 30 (94%) | 18 (90%) | 12 (100%) | n.s. |
Hyperlipidemia | 26 (81%) | 17 (85%) | 9 (75%) | n.s. |
Smoking | 29 (91%) | 19 (95%) | 10 (83%) | n.s. |
COPD | 8 (25%) | 6 (30%) | 2 (17%) | n.s. |
CKD | 8 (25%) | 5 (25%) | 3 (25%) | n.s. |
CVD | 15 (47%) | 9 (45%) | 6 (50%) | n.s. |
Medication | ||||
Antiplatelet Therapy | 27 (84%) | 18 (90%) | 9 (75%) | n.s. |
Anticoagulation | 10 (31%) | 5 (25%) | 5 (42%) | n.s. |
Beta-Blocker | 14 (44%) | 9 (45%) | 5 (42%) | n.s. |
Statins | 30 (94%) | 19 (95%) | 11 (92%) | n.s. |
Operative Details | ||||
Maximum Diameter OP (mm, median (range)) | 59 (44–91) | 60 (47–91) | 58 (44–73) | n.s. |
Maximum Diameter at last FU (mm, median (range)) | 48 (35–85) | 47 (37–85) | 57 (35–67) | 0.026 |
Stent Grafts | n.s. | |||
Medtronic Endurant II | 10 (31%) | 8 (40%) | 2 (17%) | |
Cook Zenith Alpha | 7 (22%) | 4 (20%) | 3 (25%) | |
Gore Excluder | 10 (31%) | 7 (35%) | 3 (25%) | |
Lombard Minos | 5 (16%) | 1 (5%) | 4 (33%) |
Protein_ID | Q92686 | P02662 | P20810 | Q8IX30 | Q5T749 | P23490 | P12273 | Q96P63 | Q5T750 | Q13404 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Protein Name | NRGN | CSN1S1 | Calpastatin | SCUBE3 | KPRP | Loricrin | PIP | Serpin B12 | C1orf68 | UBE2 | |
Without adjustment | FDR | 0.190 | 0.701 | 0.443 | 0.443 | 0.443 | 0.443 | 0.534 | 0.551 | 0.551 | 0.826 |
p-value | 0.000 | 0.062 | 0.005 | 0.005 | 0.006 | 0.007 | 0.012 | 0.015 | 0.017 | 0.232 | |
fold change | −17.42 | 0.613 | 1.86 | −1.33 | 1.82 | 1.95 | 1.60 | 1.84 | 2.08 | −1.98 | |
Diameter | FDR | 0.164 | 0.203 | 0.050 * | 0.075 * | 0.050 * | 0.050 | 0.050 * | 0.089 * | 0.050 * | 0.050 * |
p-value | 0.004 | 0.006 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | |
fold change | −11.37 | 0.846 | 2.65 | −1.47 | 2.22 | 2.62 | 1.89 | 2.37 | 3.31 | −22.23 | |
Hypertension | FDR | 0.025 * | 0.915 | 0.859 | 0.859 | 0.780 | 0.780 | 0.780 | 0.780 | 0.719 | 0.895 |
p-value | <0.001 | 0.182 | 0.099 | 0.060 | 0.010 | 0.021 | 0.006 | 0.013 | 0.014 | 0.201 | |
fold change | −13.50 | 0.610 | 1.57 | −1.28 | 1.97 | 2.04 | 1.81 | 2.15 | 2.05 | −2.07 | |
CAVK | FDR | 0.023 * | 0.793 | 0.502 | 0.518 | 0.502 | 0.502 | 0.603 | 0.603 | 0.518 | 0.929 |
p-value | <0.001 | 0.052 | 0.006 | 0.008 | 0.004 | 0.006 | 0.017 | 0.016 | 0.008 | 0.408 | |
fold change | −13.50 | 0.644 | 1.83 | −1.32 | 4.72 | 1.96 | 1.51 | 1.79 | −1.32 | −1.60 | |
Smoking | FDR | 0.025 * | 0.952 | 0.755 | 0.888 | 0.952 | 0.755 | 0.952 | 0.952 | 0.796 | 0.952 |
p-value | <0.001 | 0.432 | 0.005 | 0.014 | 0.045 | 0.005 | 0.059 | 0.039 | 0.012 | 0.263 | |
fold change | −13.50 | 0.322 | 2.12 | 0.74 | 1.60 | 2.25 | 1.54 | 1.79 | 2.39 | −1.94 | |
Statins | FDR | 0.025 * | 0.049 * | 0.635 | 0.698 | 1.000 | 0.856 | 0.542 | 1.000 | 1.000 | 0.863 |
p-value | <0.001 | <0.001 | 0.016 | 0.025 | 0.103 | 0.045 | 0.010 | 0.261 | 0.163 | 0.195 | |
fold change | −13.50 | 1.862 | 1.90 | −1.37 | 1.55 | 1.92 | 1.80 | 1.42 | 1.69 | −2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, A.; Reitnauer, D.; Yundung, Y.; Menges, A.-L.; Meuli, L.; Pelisek, J.; Reutersberg, B. Different Proteins as Biomarkers for Sac Shrinkage After Endovascular Aortic Repair of Abdominal Aortic Aneurysms. J. Cardiovasc. Dev. Dis. 2024, 11, 374. https://doi.org/10.3390/jcdd11110374
Zimmermann A, Reitnauer D, Yundung Y, Menges A-L, Meuli L, Pelisek J, Reutersberg B. Different Proteins as Biomarkers for Sac Shrinkage After Endovascular Aortic Repair of Abdominal Aortic Aneurysms. Journal of Cardiovascular Development and Disease. 2024; 11(11):374. https://doi.org/10.3390/jcdd11110374
Chicago/Turabian StyleZimmermann, Alexander, Daniela Reitnauer, Yankey Yundung, Anna-Leonie Menges, Lorenz Meuli, Jaroslav Pelisek, and Benedikt Reutersberg. 2024. "Different Proteins as Biomarkers for Sac Shrinkage After Endovascular Aortic Repair of Abdominal Aortic Aneurysms" Journal of Cardiovascular Development and Disease 11, no. 11: 374. https://doi.org/10.3390/jcdd11110374
APA StyleZimmermann, A., Reitnauer, D., Yundung, Y., Menges, A. -L., Meuli, L., Pelisek, J., & Reutersberg, B. (2024). Different Proteins as Biomarkers for Sac Shrinkage After Endovascular Aortic Repair of Abdominal Aortic Aneurysms. Journal of Cardiovascular Development and Disease, 11(11), 374. https://doi.org/10.3390/jcdd11110374