Association of Alkaline Phosphatase with Cardiovascular Disease in Patients with Dyslipidemia: A 6-Year Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Packard, C.J.; Ference, B.A.; Santos, R.D.; Kastelein, J.J.P.; Stein, E.A.; Catapano, A.L.; Pedersen, T.R.; Watts, G.F.; Ray, K.K. LDL-cholesterol lowering and clinical outcomes in hypercholesterolemic subjects with and without a familial hypercholesterolemia phenotype: Analysis from the secondary prevention 4S trial. Atherosclerosis 2021, 320, 1–9. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Ballantyne, C.M. Residual Cardiovascular Risk at Low LDL: Remnants, Lipoprotein(a), and Inflammation. Clin. Chem. 2021, 67, 143–153. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Apekey, T.A.; Khan, H. Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies. Atherosclerosis 2014, 236, 7–17. [Google Scholar] [CrossRef]
- Li, J.W.; Xu, C.; Fan, Y.; Wang, Y.; Xiao, Y. Bin Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS ONE 2014, 9, e102276. [Google Scholar] [CrossRef]
- Haarhaus, M.; Brandenburg, V.; Kalantar-Zadeh, K.; Stenvinkel, P.; Magnusson, P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 2017, 13, 429–442. [Google Scholar] [CrossRef]
- Rahmani, J.; Miri, A.; Namjoo, I.; Zamaninour, N.; Maljaei, M.B.; Zhou, K.; Cerneviciute, R.; Mousavi, S.M.; Varkaneh, H.K.; Salehisahlabadi, A.; et al. Elevated liver enzymes and cardiovascular mortality: A systematic review and dose-response meta-analysis of more than one million participants. Eur. J. Gastroenterol. Hepatol. 2019, 31, 555–562. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Bakker, S.J.L.; Kootstra-Ros, J.E.; Gansevoort, R.T.; Gregson, J.; Dullaart, R.P.F. Serum Alkaline Phosphatase and Risk of Incident Cardiovascular Disease: Interrelationship with High Sensitivity C-Reactive Protein. PLoS ONE 2015, 10, e0132822. [Google Scholar] [CrossRef]
- Haarhaus, M.; Ray, K.K.; Nicholls, S.J.; Schwartz, G.G.; Kulikowski, E.; Johansson, J.O.; Sweeney, M.; Halliday, C.; Lebioda, K.; Wong, N.; et al. Apabetalone lowers serum alkaline phosphatase and improves cardiovascular risk in patients with cardiovascular disease. Atherosclerosis 2019, 290, 59–65. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Webber, M.; Krishnan, A.; Thomas, N.G.; Cheung, B.M.Y. Association between serum alkaline phosphatase and C-reactive protein in the United States National Health and Nutrition Examination Survey 2005–2006. Clin. Chem. Lab. Med. 2010, 48, 167–173. [Google Scholar] [CrossRef]
- Kerner, A.; Avizohar, O.; Sella, R.; Bartha, P.; Zinder, O.; Markiewicz, W.; Levy, Y.; Brook, G.J.; Aronson, D. Association between elevated liver enzymes and C-reactive protein: Possible hepatic contribution to systemic inflammation in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 193–197. [Google Scholar] [CrossRef]
- Hanley, A.J.G.; Williams, K.; Festa, A.; Wagenknecht, L.E.; D’Agostino, R.B.; Haffner, S.M. Liver markers and development of the metabolic syndrome: The insulin resistance atherosclerosis study. Diabetes 2005, 54, 3140–3147. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Sattar, N.; Papcosta, O.; Lennon, L.; Whincup, P.H. Alkaline phosphatase, serum phosphate, and incident cardiovascular disease and total mortality in older men. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1070–1076. [Google Scholar] [CrossRef]
- Manghat, P.; Souleimanova, I.; Cheung, J.; Wierzbicki, A.S.; Harrington, D.J.; Shearer, M.J.; Chowiencki, P.; Fogelman, I.; Nerlander, M.; Goldsmith, D.; et al. Association of bone turnover markers and arterial stiffness in pre-dialysis chronic kidney disease (CKD). Bone 2011, 48, 1127–1132. [Google Scholar] [CrossRef]
- Mody, N.; Parhami, F.; Sarafian, T.A.; Demer, L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 2001, 31, 509–519. [Google Scholar] [CrossRef]
- Muteliefu, G.; Enomoto, A.; Jiang, P.; Takahashi, M.; Niwa, T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol. Dial. Transpl. 2009, 24, 2051–2058. [Google Scholar] [CrossRef]
- Watanabe, H.; Miyamoto, Y.; Enoki, Y.; Ishima, Y.; Kadowaki, D.; Kotani, S.; Nakajima, M.; Tanaka, M.; Matsushita, K.; Mori, Y.; et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol. Res. Perspect. 2015, 3, e00092. [Google Scholar] [CrossRef]
- Raghuraman, G.; Hsiung, J.; Zuniga, M.C.; Baughman, B.D.; Hitchner, E.; Guzman, R.J.; Zhou, W. Eotaxin Augments Calcification in Vascular Smooth Muscle Cells. J. Cell. Biochem. 2017, 118, 647–654. [Google Scholar] [CrossRef]
- Shioi, A.; Katagi, M.; Okuno, Y.; Mori, K.; Jono, S.; Koyama, H.; Nishizawa, Y. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: Roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages. Circ. Res. 2002, 91, 9–16. [Google Scholar] [CrossRef]
- Filipowicz, R.; Greene, T.; Wei, G.; Cheung, A.K.; Raphael, K.L.; Baird, B.C.; Beddhu, S. Associations of Serum Skeletal Alkaline Phosphatase with Elevated C-Reactive Protein and Mortality. Clin. J. Am. Soc. Nephrol. 2013, 8, 26. [Google Scholar] [CrossRef]
- New, S.E.; Goettsch, C.; Aikawa, M.; Marchini, J.F.; Shibasaki, M.; Yabusaki, K.; Libby, P.; Shanahan, C.M.; Croce, K.; Aikawa, E. Macrophage-derived matrix vesicles: An alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ. Res. 2013, 113, 72–77. [Google Scholar] [CrossRef]
- Roudsari, J.M.; Mahjoub, S. Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and paget’s specimens. Casp. J. Intern. Med. 2012, 3, 478. [Google Scholar]
- Picaud, S.; Wells, C.; Felletar, I.; Brotherton, D.; Martin, S.; Savitsky, P.; Diez-Dacal, B.; Philpott, M.; Bountra, C.; Lingard, H.; et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. USA 2013, 110, 19754–19759. [Google Scholar] [CrossRef]
- Kizu, A.; Shioi, A.; Jono, S.; Koyama, H.; Okuno, Y.; Nishizawa, Y. Statins inhibit in vitro calcification of human vascular smooth muscle cells induced by inflammatory mediators. J. Cell. Biochem. 2004, 93, 1011–1019. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Tangney, C.C.; Langman, C.B.; Parker, T.S.; Levine, D.M.; Gordon, B.R. Short-term reductioidin bone markers with high-dose simvastatin. Osteoporos. Int. 2005, 16, 1272–1276. [Google Scholar] [CrossRef]
- Chamani, S.; Liberale, L.; Mobasheri, L.; Montecucco, F.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. The role of statins in the differentiation and function of bone cells. Eur. J. Clin. Investig. 2021, 51, e13534. [Google Scholar] [CrossRef]
- Rejnmark, L.; Buus, N.H.; Vestergaard, P.; Andreasen, F.; Larsen, M.L.; Mosekilde, L. Statins decrease bone turnover in postmenopausal women: A cross-sectional study. Eur. J. Clin. Investig. 2002, 32, 581–589. [Google Scholar] [CrossRef]
- Raggi, P.; Takyar, F.M.; Gadiyaram, V.; Zhang, C.; Stillman, A.E.; Davarpanah, A.H. Differential effect of atorvastatin and pravastatin on thoracic spine attenuation: A sub-analysis of a randomized clinical trial. Atherosclerosis 2024, 388, 117425. [Google Scholar] [CrossRef]
Tertiles of Alkaline Phosphatase | |||||
---|---|---|---|---|---|
Total Sample | Low | Middle | High | p | |
N | 1178 | 383 | 398 | 397 | |
Sex (male), % | 44 | 49 | 42 | 43 | NS |
Age, yrs | 57 (49–65) | 55 (47–64) | 57 (51–66) | 58 (49–66) | 0.01 |
Follow-up, years | 6 (4–9) | 5 (3–8) | 5 (4–8) | 8 (5–12) | <0.001 |
Smoking, % | 32 | 40 | 27 | 29 | <0.001 |
Hypertension, % | 61 | 59 | 59 | 64 | NS |
Diabetes, % | 11 | 9 | 11 | 12 | NS |
Atherosclerotic Cardiovascular Diseaser, % | 16 | 15 | 15 | 18 | NS |
Chronic kidney disease, % | 10 | 9 | 10 | 10 | NS |
Systolic blood pressure, mmHg | 140 (125–150) | 134 (120–150) | 138 (126.5–150) | 140 (130–160) | <0.001 |
Diastolic blood pressure, mmHg | 85 (80–93) | 83 (78–91) | 84 (78–90) | 90 (80–95) | <0.001 |
Fasting plasma glucose, mg/dL | 96 (88–106) | 93 (87–103) | 96 (88–106) | 97 (89–109) | <0.001 |
Total cholesterol, mg/dL | 250 (212–286) | 246 (205–271) | 248 (212–289) | 257 (222–301) | <0.001 |
Triglycerides, mg/dL | 129 (94–186) | 121 (89–171) | 130.5 (92–189.5) | 137 (100–194) | <0.01 |
High-density lipoprotein cholesterol, mg/dL | 52 (44–62) | 52 (45–63) | 54 (45.5–65) | 50 (42–60) | <0.001 |
Low-density lipoprotein cholesterol, mg/dL | 166.2 (131.8–195.4) | 161 (125.5–187.7) | 164.3 (130–193.2) | 173 (141–207.6) | <0.001 |
Alkaline Phosphatase, IU/L | 67 (54–90) | 50 (44–54) | 67 (63–72) | 112 (90–169) | <0.001 |
Lipid-lowering therapy, % | 23 | 26 | 24 | 18 | <0.05 |
Statin Therapy, % | 21 | 23 | 23 | 17 | 0.053 |
Moderate Intensity, % | 13 | 13 | 15 | 11 | NS |
High Intensity, % | 8 | 10 | 8 | 5 | NS |
Ezetimibe, % | 1 | 1 | 2 | 1 | NS |
Fibrates, % | 2 | 3 | 1 | 1 | NS |
Omega-3 fatty acids, % | 1 | 2 | 1 | 1 | NS |
Antihypertensive therapy, % | 46 | 44 | 45 | 48 | NS |
Antidiabetic therapy, % | 7 | 8 | 9 | 8 | NS |
Total Study Participants | |||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
Alkaline Phosphatase (continuous variable) * Alkaline Phosphatase tertiles | 8.67 (3.21–23.38), p <0.001 | 9.10 (3.22–25.75), p <0.001 | 6.99 (2.29–21.03), p = 0.001 |
Low | Reference | Reference | Reference |
Middle | 1.15 (0.58–2.27), p = 0.687 | 1.13 (0.57–2.25), p = 0.725 | 1.19 (0.59–2.39), p = 0.621 |
High | 2.79 (1.54–5.04), p = 0.001 | 2.72 (1.49–4.98), p = 0.001 | 2.35 (1.24–4.41), p = 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamidis, P.S.; Florentin, M.; Liberopoulos, E.; Koutsogianni, A.D.; Anastasiou, G.; Liamis, G.; Milionis, H.; Barkas, F. Association of Alkaline Phosphatase with Cardiovascular Disease in Patients with Dyslipidemia: A 6-Year Retrospective Study. J. Cardiovasc. Dev. Dis. 2024, 11, 60. https://doi.org/10.3390/jcdd11020060
Adamidis PS, Florentin M, Liberopoulos E, Koutsogianni AD, Anastasiou G, Liamis G, Milionis H, Barkas F. Association of Alkaline Phosphatase with Cardiovascular Disease in Patients with Dyslipidemia: A 6-Year Retrospective Study. Journal of Cardiovascular Development and Disease. 2024; 11(2):60. https://doi.org/10.3390/jcdd11020060
Chicago/Turabian StyleAdamidis, Petros Spyridonas, Matilda Florentin, Evangelos Liberopoulos, Amalia Despoina Koutsogianni, Georgia Anastasiou, George Liamis, Haralampos Milionis, and Fotios Barkas. 2024. "Association of Alkaline Phosphatase with Cardiovascular Disease in Patients with Dyslipidemia: A 6-Year Retrospective Study" Journal of Cardiovascular Development and Disease 11, no. 2: 60. https://doi.org/10.3390/jcdd11020060
APA StyleAdamidis, P. S., Florentin, M., Liberopoulos, E., Koutsogianni, A. D., Anastasiou, G., Liamis, G., Milionis, H., & Barkas, F. (2024). Association of Alkaline Phosphatase with Cardiovascular Disease in Patients with Dyslipidemia: A 6-Year Retrospective Study. Journal of Cardiovascular Development and Disease, 11(2), 60. https://doi.org/10.3390/jcdd11020060