Radiation Exposure and Contrast Agent Use during Endovascular Aortic Repair Using Mobile Versus Fixed Angiography Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Sayed, H.; Ramlawi, B. The current status of endovascular repair of thoracic aortic aneurysms (TEVAR). Methodist Debakey Cardiovasc. J. 2011, 7, 15–19. [Google Scholar] [CrossRef]
- Quatromoni, J.G.; Orlova, K.; Foley III, P.J. Advanced Endovascular Approaches in the Management of Challenging Proximal Aortic Neck Anatomy: Traditional Endografts and the Snorkel Technique. Semin. Interv. Radiol. 2015, 32, 289–303. [Google Scholar] [CrossRef]
- Garabet, W.; Arnautovic, A.; Meurer, L.; Mulorz, J.; Rembe, J.D.; Duran, M.; Süss, J.D.; Schelzig, H.; Wagenhäuser, M.U. Analysis of Determinants for Suture-mediated Closure Device Failure During EVAR Procedures. Vasc. Endovasc. Surg. 2023, 58, 129–135. [Google Scholar] [CrossRef]
- Markar, S.R.; Vidal-Diez, A.; Sounderajah, V.; Mackenzie, H.; Hanna, G.B.; Thompson, M.; Holt, P.; Lagergren, J.; Karthikesalingam, A. A population-based cohort study examining the risk of abdominal cancer after endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 2019, 69, 1776–1785.e2. [Google Scholar] [CrossRef] [PubMed]
- Kawatani, Y.; Kurobe, H.; Nakamura, Y.; Hori, T.; Kitagawa, T. The ratio of contrast medium volume to estimated glomerular filtration rate as a predictor of contrast-induced nephropathy after endovascular aortic repair. J. Med. Investig. 2018, 65, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Assar, A.N.; Zarins, C.K. Ruptured abdominal aortic aneurysm: A surgical emergency with many clinical presentations. Postgrad. Med. J. 2009, 85, 268–273. [Google Scholar] [CrossRef]
- Monastiriotis, S.; Comito, M.; Labropoulos, N. Radiation exposure in endovascular repair of abdominal and thoracic aortic aneurysms. J. Vasc. Surg. 2015, 62, 753–761. [Google Scholar] [CrossRef]
- Peach, G.; Sinha, S.; Black, S.A.; Morgan, R.A.; Loftus, I.M.; Thompson, M.M.; Hinchliffe, R.J. Operator-controlled imaging significantly reduces radiation exposure during EVAR. Eur. J. Vasc. Endovasc. Surg. 2012, 44, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Kakkos, S.K.; Efthymiou, F.O.; Metaxas, V.I.; Dimitroukas, C.P.; Panayiotakis, G.S. Factors affecting radiation exposure in endovascular repair of abdominal aortic aneurysms: A pilot study. Int. Angiol. 2021, 40, 125–130. [Google Scholar] [CrossRef]
- Brulotte, V.; Leblond, F.A.; Elkouri, S.; Thérasse, E.; Pichette, V.; Beaulieu, P. Bicarbonates for the prevention of postoperative renal failure in endovascular aortic aneurysm repair: A randomized pilot trial. Anesthesiol. Res. Pract. 2013, 2013, 467326. [Google Scholar] [CrossRef]
- Boyle, J. Preventing EVAR Associated Acute Kidney Injury: The Optimal Strategy Remains Elusive. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 657. [Google Scholar] [CrossRef]
- Fossaceca, R.; Brambilla, M.; Guzzardi, G.; Cerini, P.; Renghi, A.; Valzano, S.; Brustia, P.; Carriero, A. The impact of radiological equipment on patient radiation exposure during endovascular aortic aneurysm repair. Eur. Radiol. 2012, 22, 2424–2431. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.I.; Esteban, C.; Riera, C.; Altés, P.; Llagostera, S. Endovascular Infrarenal Aortic Aneurysm Repair Performed in a Hybrid Operating Room Versus Conventional Operating Room Using a C-Arm. Ann. Vasc. Surg. 2020, 69, 366–372. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, Q.M.; Moll, F.L.; Gijsberts, C.M.; van Herwaarden, J.A. AlluraClarity Radiation Dose-Reduction Technology in the Hybrid Operating Room During Endovascular Aneurysm Repair. J. Endovasc. Ther. 2016, 23, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Schaefers, J.F.; Wunderle, K.; Usai, M.V.; Torsello, G.F.; Panuccio, G. Radiation doses for endovascular aortic repairs performed on mobile and fixed C-arm fluoroscopes and procedure phase-specific radiation distribution. J. Vasc. Surg. 2018, 68, 1889–1896. [Google Scholar] [CrossRef]
- Maurel, B.; Hertault, A.; Sobocinski, J.; Le Roux, M.; Gonzalez, T.M.; Azzaoui, R.; Saeed Kilani, M.; Midulla, M.; Haulon, S. Techniques to reduce radiation and contrast volume during EVAR. J. Cardiovasc. Surg. 2014, 55, 123–131. [Google Scholar]
- Hertault, A.; Rhee, R.; Antoniou, G.A.; Adam, D.; Tonda, H.; Rousseau, H.; Bianchini, A.; Haulon, S. Radiation Dose Reduction During EVAR: Results from a Prospective Multicentre Study (The REVAR Study). Eur. J. Vasc. Endovasc. Surg. 2018, 56, 426–433. [Google Scholar] [CrossRef]
- Modarai, B.; Haulon, S.; Ainsbury, E.; Böckler, D.; Vano-Carruana, E.; Dawson, J.; Farber, M.; Van Herzeele, I.; Hertault, A.; van Herwaarden, J.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on Radiation Safety. Eur. J. Vasc. Endovasc. Surg. 2023, 65, 171–222. [Google Scholar] [CrossRef]
- Vacirca, A.; Faggioli, G.; Vaccarino, R.; Dias, N.; Austermann, M.; Usai, M.V.; Oberhuber, A.; Schäfers, J.F.; Bisdas, T.; Patelis, N.; et al. The optimal operative protocol to accomplish CO(2)-EVAR resulting from a prospective interventional multicenter study. J. Vasc. Surg. 2023, 77, 1405–1412.e1. [Google Scholar] [CrossRef]
- Heuser, L.J.; Arnold, C.N.; Morhard, D.; Köhler, M.; Gross-Fengels, W.; Bücker, A. Quality report 2011 of the German Society of Interventional Radiology (DeGIR)--part 2. Endovascular treatment of aortic aneurysms (EVAR). Rofo 2013, 185, 709–719. [Google Scholar]
- Rehman, Z.U.; Choksy, S.; Howard, A.; Carter, J.; Kyriakidis, K.; Elizabeth, D.; Mathew, F. Comparison of Patient Radiation Dose and Contrast Use during EVAR in a Dedicated Hybrid Vascular OR and Mobile Imaging. Ann. Vasc. Surg. 2019, 61, 278–283. [Google Scholar] [CrossRef]
- de Ruiter, Q.M.; Reitsma, J.B.; Moll, F.L.; van Herwaarden, J.A. Meta-analysis of Cumulative Radiation Duration and Dose During EVAR Using Mobile, Fixed, or Fixed/3D Fusion C-Arms. J. Endovasc. Ther. 2016, 23, 944–956. [Google Scholar] [CrossRef]
- Ketteler, E.R.; Brown, K.R. Radiation exposure in endovascular procedures. J. Vasc. Surg. 2011, 53 (Suppl. S1), 35s–38s. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.; Ferreira, V.M.; Loureiro, L.; Gonçalves, J.; Oliveira, P.; Almeida, R. Radiation Exposure in Endovascular Infra-Renal Aortic Aneurysm Repair and Factors that Influence It. Braz. J. Cardiovasc. Surg. 2016, 31, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Liu, J. Application of the Hybrid Operating Room in Surgery: A Systematic Review. J. Investig. Surg. 2022, 35, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Morisaki, K.; Yamaoka, T.; Iwasa, K.; Ohmine, T.; Guntani, A. Preoperative risk factors for aneurysm sac expansion caused by type 2 endoleak after endovascular aneurysm repair. Vascular 2017, 25, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Manunga, J.M.; Cragg, A.; Garberich, R.; Urbach, J.A.; Skeik, N.; Alexander, J.; Titus, J.; Stephenson, E.; Alden, P.; Sullivan, T.M. Preoperative Inferior Mesenteric Artery Embolization: A Valid Method to Reduce the Rate of Type II Endoleak after EVAR? Ann. Vasc. Surg. 2017, 39, 40–47. [Google Scholar] [CrossRef]
- Samura, M.; Morikage, N.; Otsuka, R.; Mizoguchi, T.; Takeuchi, Y.; Nagase, T.; Harada, T.; Yamashita, O.; Suehiro, K.; Hamano, K. Endovascular Aneurysm Repair With Inferior Mesenteric Artery Embolization for Preventing Type II Endoleak: A Prospective Randomized Controlled Trial. Ann. Surg. 2020, 271, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Gould, D.A.; McWilliams, R.; Edwards, R.D.; Martin, J.; White, D.; Joekes, E.; Rowlands, P.C.; Brennan, J.; Gilling-Smith, G.; Harris, P.L. Aortic side branch embolization before endovascular aneurysm repair: Incidence of type II endoleak. J. Vasc. Interv. Radiol. 2001, 12, 337–341. [Google Scholar] [CrossRef]
Variable | EVAR (n = 50) | ||
---|---|---|---|
SOR (n = 20) | HOR (n = 30) | p-Value | |
Male | 18 (90) | 24 | 0.35 |
Female | 2 (10) | 6 | |
Age [y] | 73.2 ± 9.6 | 72.3 ± 10.2 | 0.90 |
CHD (n = 50) | 13 (65) | 17 (57) | 0.56 |
T2DM (n = 50) | 3 (15) | 5 (17) | 0.88 |
COPD (n = 50) | 4 (20) | 6 (20) | 1 |
CKI (n = 50) | 5 (25) | 3 (10) | 0.16 |
smoking (n = 20) | 2 (40) | 8 (53) | 0.61 |
HCL (n = 48) | 10 (50) | 10 (35) | 0.03 |
Risk classification | |||
ASA I | 0 | 2 (7) | |
ASA II | 3 (15) | 7 (23) | |
ASA III | 14 (70) | 14 (47) | 0.13 |
ASA IV | 1 (5) | 2 (10) | |
ASA V | 0 | 0 | |
AAA | 12 (60) | 26 (87) | 0.12 |
Juxtarenal AAA | 2 (10) | 0 | |
TAAA | 1 (5) | 1 (3) | |
TAA | 0 | 0 | |
TBAD | 0 | 0 | |
PAU infrarenal | 5 (25) | 3 | |
Aneurysm diameter [mm] | 59.2 ± 11.8 | 53.82 ± 5.26 | 0.38 |
Variable | TEVAR (n = 43) | ||
---|---|---|---|
SOR (n = 22) | HOR (n = 21) | p-Value | |
male | 15 (68) | 11 (52) | 0.29 |
female | 7 (32) | 10 (48) | |
age [y] | 68.7 ± 10.3 | 72.6 ± 8.9 | 0.31 |
CHD (n = 43) | 8 (36) | 15 (71) | 0.02 |
T2DM (n = 43) | 4 (18) | 3 (14) | 0.73 |
COPD (n = 43) | 9 (41) | 8 (38) | 0.90 |
CKI (n = 43) | 6 (27) | 9 (43) | 0.28 |
smoking n = 19 | 4 (57) | 6 (50) | 0.76 |
HCL (n = 43) | 6 (27) | 9 (43) | 0.28 |
Risk classification | |||
ASA I | 1 (5) | 0 | |
ASA II | 2 (9) | 2 (10) | |
ASA III | 14 (64) | 15 (71) | 0.49 |
ASA IV | 1 (5) | 0 | |
ASA V | 0 | 0 | |
AAA | 0 | 0 | 0.83 |
AAA juxtarenal | 1 (5) | 0 | |
TAAA | 12 (55) | 11 (52) | |
TAA | 4 (18) | 3 (14) | |
TBAD | 3 (14) | 4 (19) | |
PAU thoracic | 2 (9) | 3 (14) | |
Aneurysm diameter | 62.4 ± 8.9 | 65.3 ± 14 | 0.51 |
Variable | EVAR (n = 50) | TEVAR (n = 43) | ||||
---|---|---|---|---|---|---|
SOR (n = 20) | HOR (n = 30) | p-Value | SOR (n = 22) | HOR (n = 21) | p-Value | |
DAP (cGy·cm2) | 1.64 × 10 × 103 ± 1.09 × 10 × 103 | 7.8 × 10 × 103 ± 8.9 × 10 × 103 | <0.001 | 8.96 × 10 × 103 ± 3.45 × 10 × 104 | 1.46 × 10 × 103 ± 1.16 × 10 × 104 | <0.001 |
Fluoroscopy time (min) | 7.1 ± 4 | 18.4 ± 11.4 | <0.001 | 6.6 ± 9.6 | 13.90 ± 11.8 | <0.001 |
Procedural time (min) | 127.7 ± 37.3 | 127.5 ± 36.2 | 1 | 118.1 ± 47.1 | 118.00 ± 60.7 | 0.79 |
Contrast agent (mL) | 57.4 ± 23.6 | 33.3 ± 24.6 | <0.001 | 71.5 ± 53.4 | 48.2 ± 27.5 | 0.08 |
No EL | 18 (90) | 27 (90) | 1 | 21 (96) | 19 (86) | 0.59 |
Type I EL | 0 | 0 | 0 | 1 (5) | ||
Type II EL | 2 (10) | 3 (10) | 1 (5) | 1 (5) |
Study | EVAR | ||
---|---|---|---|
SOR | HOR | p-Value | |
Present study (cGy·cm2) | 1.64 × 10 × 103 ± 1.19 × 10 × 103 | 7.82 × 10 × 103 ± 8.93 × 10 × 103 | <0.001 |
Martinez et al. 2020 (cGy·cm2) [13] | 6.15 × 10 × 103 ± 4.24 × 10 × 103 | 1.54 × 10 × 104 ± 1.03 × 10 × 104 | <0.005 |
Schaefers et al. 2018 (cGy·cm2) [15] | 4.99 × 10 × 103 ± 3.81 × 10 × 103 | 1.68 × 10 × 104 ± 1.47 × 10 × 104 | <0.001 |
Rehman et al. 2019 (cGy·cm2) [21] | 1.68 × 10 × 104 | 8.23 × 10 × 103 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnautovic, A.; Garabet, W.; Ziegler, R.T.; Mulorz, J.; Braß, S.M.; Oberhuber, A.; Schelzig, H.; Wagenhäuser, M.U.; Dueppers, P. Radiation Exposure and Contrast Agent Use during Endovascular Aortic Repair Using Mobile Versus Fixed Angiography Systems. J. Cardiovasc. Dev. Dis. 2024, 11, 83. https://doi.org/10.3390/jcdd11030083
Arnautovic A, Garabet W, Ziegler RT, Mulorz J, Braß SM, Oberhuber A, Schelzig H, Wagenhäuser MU, Dueppers P. Radiation Exposure and Contrast Agent Use during Endovascular Aortic Repair Using Mobile Versus Fixed Angiography Systems. Journal of Cardiovascular Development and Disease. 2024; 11(3):83. https://doi.org/10.3390/jcdd11030083
Chicago/Turabian StyleArnautovic, Amir, Waseem Garabet, Reinhold Thomas Ziegler, Joscha Mulorz, Sönke Maximilian Braß, Alexander Oberhuber, Hubert Schelzig, Markus Udo Wagenhäuser, and Philip Dueppers. 2024. "Radiation Exposure and Contrast Agent Use during Endovascular Aortic Repair Using Mobile Versus Fixed Angiography Systems" Journal of Cardiovascular Development and Disease 11, no. 3: 83. https://doi.org/10.3390/jcdd11030083
APA StyleArnautovic, A., Garabet, W., Ziegler, R. T., Mulorz, J., Braß, S. M., Oberhuber, A., Schelzig, H., Wagenhäuser, M. U., & Dueppers, P. (2024). Radiation Exposure and Contrast Agent Use during Endovascular Aortic Repair Using Mobile Versus Fixed Angiography Systems. Journal of Cardiovascular Development and Disease, 11(3), 83. https://doi.org/10.3390/jcdd11030083