Cardiac Allograft Vasculopathy: Challenges and Advances in Invasive and Non-Invasive Diagnostic Modalities
Abstract
:1. Introduction
2. Invasive Modalities
2.1. Invasive Coronary Angiography
2.2. Intravascular Ultrasound
2.3. Optical Coherence Tomography
3. Non-Invasive Modalities
3.1. Anatomical Imaging
3.1.1. Computed Tomography Coronary Angiography/Coronary Artery Calcium Scoring
3.1.2. CT Perfusion Imaging
3.2. Functional Imaging
3.2.1. Echocardiography
3.2.2. Cardiac Magnetic Resonance
3.2.3. Tissue Characterization Parameters
3.2.4. Functional Parameters
3.3. Radionuclide Myocardial Perfusion Imaging
3.3.1. Single-Photon Emission Computed Tomography
3.3.2. Positron Emission Tomography
4. Biomarkers
5. Future Directions
6. Discussion and Clinical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sciaccaluga, C.; Ghionzoli, N.; Mandoli, G.E.; Sisti, N.; D’Ascenzi, F.; Focardi, M.; Bernazzali, S.; Vergaro, G.; Emdin, M.; Valente, S.; et al. The role of non-invasive imaging modalities in cardiac allograft vasculopathy: An updated focus on current evidences. Heart Fail. Rev. 2022, 27, 1235–1246. [Google Scholar] [CrossRef]
- Mehra, M.R. The scourge and enigmatic journey of cardiac allograft vasculopathy. J. Heart Lung Transplant. 2017, 36, 1291–1293. [Google Scholar] [CrossRef]
- Khush, K.K.; Cherikh, W.S.; Chambers, D.C.; Harhay, M.O.; Hayes, D., Jr.; Hsich, E.; Meiser, B.; Potena, L.; Robinson, A.; Rossano, J.W.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report—2019; focus theme: Donor and recipient size match. J. Heart Lung Transplant. 2019, 38, 1056–1066. [Google Scholar] [CrossRef]
- Abrahimi, P.; Liu, R.; Pober, J.S. Blood Vessels in Allotransplantation. Am. J. Transplant. 2015, 15, 1748–1754. [Google Scholar] [CrossRef]
- Chih, S.; Chong, A.Y.; Mielniczuk, L.M.; Bhatt, D.L.; Beanlands, R.S. Allograft Vasculopathy: The Achilles’ Heel of Heart Transplantation. J. Am. Coll. Cardiol. 2016, 68, 80–91. [Google Scholar] [CrossRef]
- Mehra, M.R. Contemporary concepts in prevention and treatment of cardiac allograft vasculopathy. Am. J. Transplant. 2006, 6, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Coutance, G.; Bonnet, G.; Van Keer, J.; Raynaud, M.; Aubert, O.; Bories, M.C.; Racape, M.; Yoo, D.; Van Huyen, J.P.D.; et al. Identification and Characterization of Trajectories of Cardiac Allograft Vasculopathy After Heart Transplantation: A Population-Based Study. Circulation 2020, 141, 1954–1967. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Legaspi, J.M.; Bravo, P.E. Diagnosis and management of cardiac allograft vasculopathy. Heart 2022, 108, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Pober, J.S.; Chih, S.; Kobashigawa, J.; Madsen, J.C.; Tellides, G. Cardiac allograft vasculopathy: Current review and future research directions. Cardiovasc. Res. 2021, 117, 2624–2638. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.; Lee, I.; Rao, S.; Suddath, W.; Rodrigo, M.; Mohammed, S.; Molina, E.; Garcia-Garcia, H.M.; Kenigsberg, B.B. Quantitative flow ratio computed from invasive coronary angiography as a predictor for cardiac allograft vasculopathy after cardiac transplant. Int. J. Cardiovasc. Imaging 2023, 40, 451–458. [Google Scholar] [CrossRef]
- Acharya, D.; Rajapreyar, I. Myocardial perfusion imaging for cardiac allograft vasculopathy assessment: Evidence grows, but questions remain. J. Nucl. Cardiol. 2019, 26, 853–856. [Google Scholar] [CrossRef]
- Olymbios, M.; Kwiecinski, J.; Berman, D.S.; Kobashigawa, J.A. Imaging in Heart Transplant Patients. JACC Cardiovasc. Imaging 2018, 11, 1514–1530. [Google Scholar] [CrossRef]
- Mehra, M.R.; Crespo-Leiro, M.G.; Dipchand, A.; Ensminger, S.M.; Hiemann, N.E.; Kobashigawa, J.A.; Madsen, J.; Parameshwar, J.; Starling, R.C.; Uber, P.A. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J. Heart Lung Transplant. 2010, 29, 717–727. [Google Scholar] [CrossRef]
- Tuzcu, E.M.; Hobbs, R.E.; Rincon, G.; Bott-Silverman, C.; De Franco, A.C.; Robinson, K.; McCarthy, P.M.; Stewart, R.W.; Guyer, S.; Nissen, S.E. Occult and frequent transmission of atherosclerotic coronary disease with cardiac transplantation. Insights from intravascular ultrasound. Circulation 1995, 91, 1706–1713. [Google Scholar] [CrossRef]
- St Goar, F.G.; Pinto, F.J.; Alderman, E.L.; Valantine, H.A.; Schroeder, J.S.; Gao, S.Z.; Stinson, E.B.; Popp, R.L. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation 1992, 85, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Kume, T.; Akasaka, T.; Kawamoto, T.; Watanabe, N.; Toyota, E.; Neishi, Y.; Sukmawan, R.; Sadahira, Y.; Yoshida, K. Assessment of coronary intima--media thickness by optical coherence tomography: Comparison with intravascular ultrasound. Circ. J. 2005, 69, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Nagumo, S.; Gallinoro, E.; Candreva, A.; Mizukami, T.; Monizzi, G.; Kodeboina, M.; Verstreken, S.; Dierckx, R.; Heggermont, W.; Bartunek, J.; et al. Vessel Fractional Flow Reserve and Graft Vasculopathy in Heart Transplant Recipients. J. Interv. Cardiol. 2020, 2020, 9835151. [Google Scholar] [CrossRef] [PubMed]
- Pijls, N.H.; De Bruyne, B.; Peels, K.; Van Der Voort, P.H.; Bonnier, H.J.; Bartunek, J.K.J.J.; Koolen, J.J. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 1996, 334, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Spaan, J.A.; Piek, J.J.; Hoffman, J.I.; Siebes, M. Physiological basis of clinically used coronary hemodynamic indices. Circulation 2006, 113, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Das, B.B.; Deshpande, S.; Hussain, T. Multimodality Imaging to Detect Rejection, and Cardiac Allograft Vasculopathy in Pediatric Heart Transplant Recipients—An Illustrative Review. Transplantology 2022, 3, 241–256. [Google Scholar] [CrossRef]
- Hiraishi, S.; Hirota, H.; Horiguchi, Y.; Takeda, N.; Fujino, N.; Ogawa, N.; Nakahata, Y. Transthoracic Doppler assessment of coronary flow velocity reserve in children with Kawasaki disease: Comparison with coronary angiography and thallium-201 imaging. J. Am. Coll. Cardiol. 2002, 40, 1816–1824. [Google Scholar] [CrossRef]
- Tu, S.; Westra, J.; Adjedj, J.; Ding, D.; Liang, F.; Xu, B.; Holm, N.R.; Reiber, J.H.C.; Wijns, W. Fractional flow reserve in clinical practice: From wire-based invasive measurement to image-based computation. Eur. Heart J. 2020, 41, 3271–3279. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, J.A.; Tobis, J.M.; Starling, R.C.; Tuzcu, E.M.; Smith, A.L.; Valantine, H.A.; Yeung, A.C.; Mehra, M.R.; Anzai, H.; Oeser, B.T.; et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: Outcomes after five years. J. Am. Coll. Cardiol. 2005, 45, 1532–1537. [Google Scholar] [CrossRef]
- Shahandeh, N.; Parikh, R.V. Invasive Intracoronary Imaging of Cardiac Allograft Vasculopathy: Established Modalities and Emerging Technologies. Interv. Cardiol. Clin. 2023, 12, 269–280. [Google Scholar] [CrossRef]
- Mehra, M.R.; Ventura, H.O.; Stapleton, D.D.; Smart, F.W.; Collins, T.C.; Ramee, S.R. Presence of severe intimal thickening by intravascular ultrasonography predicts cardiac events in cardiac allograft vasculopathy. J. Heart Lung Transplant. 1995, 14, 632–639. [Google Scholar] [PubMed]
- Hou, J.; Lv, H.; Jia, H.; Zhang, S.; Xing, L.; Liu, H.; Kong, J.; Zhang, S.; Yu, B.; Jang, I.K. OCT assessment of allograft vasculopathy in heart transplant recipients. JACC Cardiovasc. Imaging 2012, 5, 662–663. [Google Scholar] [CrossRef]
- Garrido, I.P.; Garcia-Lara, J.; Pinar, E.; Pastor-Perez, F.; Sanchez-Mas, J.; Valdes-Chavarri, M.; Pascual-Figal, D.A. Optical coherence tomography and highly sensitivity troponin T for evaluating cardiac allograft vasculopathy. Am. J. Cardiol. 2012, 110, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Loyaga-Rendon, R.Y.; Chatterjee, A.; Rajapreyar, I.; Lee, K. Optical Coherence Tomography in Cardiac Allograft Vasculopathy: State-of-the-Art Review. Circ. Heart Fail. 2021, 14, e008416. [Google Scholar] [CrossRef]
- Abbara, S.; Blanke, P.; Maroules, C.D.; Cheezum, M.; Choi, A.D.; Han, B.K.; Marwan, M.; Naoum, C.; Norgaard, B.L.; Rubinshtein, R.; et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI). J. Cardiovasc. Comput. Tomogr. 2016, 10, 435–449. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Dipchand, A.; Starling, R.; Anderson, A.; Chan, M.; Desai, S.; Fedson, S.; Fisher, P.; Gonzales-Stawinski, G.; Martinelli, L.; et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2010, 29, 914–956. [Google Scholar] [CrossRef]
- Dehmer, G.J.; Weaver, D.; Roe, M.T.; Milford-Beland, S.; Fitzgerald, S.; Hermann, A.; Messenger, J.; Moussa, I.; Garratt, K.; Rumsfeld, J.; et al. A contemporary view of diagnostic cardiac catheterization and percutaneous coronary intervention in the United States: A report from the CathPCI Registry of the National Cardiovascular Data Registry, 2010 through June 2011. J. Am. Coll. Cardiol. 2012, 60, 2017–2031. [Google Scholar] [CrossRef]
- Gunther, A.; Aaberge, L.; Abildgaard, A.; Ragnarsson, A.; Edvardsen, T.; Jakobsen, J.; Andersen, R. Coronary computed tomography in heart transplant patients: Detection of significant stenosis and cardiac allograft vasculopathy, image quality, and radiation dose. Acta Radiol. 2018, 59, 1066–1073. [Google Scholar] [CrossRef]
- Wever-Pinzon, O.; Romero, J.; Kelesidis, I.; Wever-Pinzon, J.; Manrique, C.; Budge, D.; Drakos, S.G.; Pina, I.L.; Kfoury, A.G.; Garcia, M.J.; et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: A meta-analysis of prospective trials. J. Am. Coll. Cardiol. 2014, 63, 1992–2004. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Liu, M.; Zhang, Z.; Zhao, Y.; Yang, X.; Xie, M.; Zhang, L. Artificial Intelligence-Enhanced Echocardiography for Systolic Function Assessment. J. Clin. Med. 2022, 11, 2893. [Google Scholar] [CrossRef]
- Hernandez, J.M.; de Prada, J.A.; Burgos, V.; Laso, F.S.; Valls, M.F.; Vilchez, F.G.; Llano, M.; Ruano, J.; Zueco, J.; Colman, T.; et al. Virtual histology intravascular ultrasound assessment of cardiac allograft vasculopathy from 1 to 20 years after heart transplantation. J. Heart Lung Transplant. 2009, 28, 156–162. [Google Scholar] [CrossRef]
- Ratliff, N.B., 3rd; Jorgensen, C.R.; Gobel, F.L.; Hodges, M.; Knickelbine, T.; Pritzker, M.R. Lack of usefulness of electron beam computed tomography for detecting coronary allograft vasculopathy. Am. J. Cardiol. 2004, 94, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Gunther, A.; Andersen, R.; Gude, E.; Jakobsen, J.; Edvardsen, T.; Sandvik, L.; Abildgaard, A.; Aaberge, L.; Gullestad, L. The predictive value of coronary artery calcium detected by computed tomography in a prospective study on cardiac allograft vasculopathy in heart transplant patients. Transpl. Int. 2018, 31, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.M.; Clerkin, K.J.; Fried, J.A.; Latif, F.; Restaino, S.W.; Bhatt, R.; Colombo, P.C.; Yuzefpolskaya, M.; Uriel, N.; Takeda, K.; et al. Concordance between Coronary Artery Calcium and Coronary Angiography in the Detection of Cardiac Allograft Vasculopathy in Post Heart Transplant Patients. J. Heart Lung Transplant. 2020, 39, S246. [Google Scholar] [CrossRef]
- Miller, C.A.; Chowdhary, S.; Ray, S.G.; Sarma, J.; Williams, S.G.; Yonan, N.; Mittal, T.K.; Schmitt, M. Role of Noninvasive Imaging in the Diagnosis of Cardiac Allograft Vasculopathy. Circ. Cardiovasc. Imaging 2011, 4, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Flohr, T.G.; McCollough, C.H.; Bruder, H.; Petersilka, M.; Gruber, K.; Suss, C.; Grasruck, M.; Stierstorfer, K.; Krauss, B.; Raupach, R.; et al. First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol. 2006, 16, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Manzke, R.; Grass, M.; Nielsen, T.; Shechter, G.; Hawkes, D. Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction. Med. Phys. 2003, 30, 3072–3080. [Google Scholar] [CrossRef]
- Leipsic, J.; Labounty, T.M.; Hague, C.J.; Mancini, G.B.; O’Brien, J.M.; Wood, D.A.; Taylor, C.M.; Cury, R.C.; Earls, J.P.; Heilbron, B.G.; et al. Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J. Cardiovasc. Comput. Tomogr. 2012, 6, 164–171. [Google Scholar] [CrossRef]
- Rossi, A.; Merkus, D.; Klotz, E.; Mollet, N.; de Feyter, P.J.; Krestin, G.P. Stress myocardial perfusion: Imaging with multidetector CT. Radiology 2014, 270, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Nieman, K.; Balla, S. Dynamic CT myocardial perfusion imaging. J. Cardiovasc. Comput. Tomogr. 2020, 14, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wang, S.; Sirajuddin, A.; Arai, A.E.; Zhao, S. Dynamic stress computed tomography myocardial perfusion for detecting myocardial ischemia: A systematic review and meta-analysis. Int. J. Cardiol. 2018, 258, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Koo, H.J.; Hyun, J.; Lee, S.E.; Jung, S.H.; Park, D.-W.; Ahn, J.-M.; Kang, D.-Y.; Park, S.-J.; Hwang, H.S.; et al. CT Coronary Angiography and Dynamic CT Myocardial Perfusion for Detection of Cardiac Allograft Vasculopathy. J. Am. Coll. Cardiol. Cardiovasc. Imaging 2023, 16, 934–947. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uber, P.A.; Uber, W.E.; Park, M.H.; Scott, R.L. Anything but a biopsy: Noninvasive monitoring for cardiac allograft rejection. Curr. Opin. Cardiol. 2002, 17, 131–136. [Google Scholar] [CrossRef]
- Kato, T.S.; Homma, S.; Mancini, D. Novel echocardiographic strategies for rejection diagnosis. Curr. Opin. Organ. Transplant. 2013, 18, 573–580. [Google Scholar] [CrossRef]
- Daud, A.; Xu, D.; Revelo, M.P.; Shah, Z.; Drakos, S.G.; Dranow, E.; Stoddard, G.; Kfoury, A.G.; Hammond, M.E.H.; Nativi-Nicolau, J.; et al. Microvascular Loss and Diastolic Dysfunction in Severe Symptomatic Cardiac Allograft Vasculopathy. Circ. Heart Fail. 2018, 11, e004759. [Google Scholar] [CrossRef]
- Wu, H.A.; Kolias, T.J. Cardiac transplantation: Pretransplant and posttransplant evaluation. In The Practice of Clinical Echocardiography, 4th ed.; Saunders: Philadelphia, PA, USA, 2012; pp. 585–596. [Google Scholar]
- Mondillo, S.; Maccherini, M.; Galderisi, M. Usefulness and limitations of transthoracic echocardiography in heart transplantation recipients. Cardiovasc. Ultrasound 2008, 6, 2. [Google Scholar] [CrossRef]
- Spes, C.H.; Klauss, V.; Mudra, H.; Schnaack, S.D.; Tammen, A.R.; Rieber, J.; Siebert, U.; Henneke, K.H.; Uberfuhr, P.; Reichart, B.; et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: A comparison with coronary angiography and intravascular ultrasound. Circulation 1999, 100, 509–515. [Google Scholar] [CrossRef]
- Elkaryoni, A.; Abu-Sheasha, G.; Altibi, A.M.; Hassan, A.; Ellakany, K.; Nanda, N.C. Diagnostic accuracy of dobutamine stress echocardiography in the detection of cardiac allograft vasculopathy in heart transplant recipients: A systematic review and meta-analysis study. Echocardiography 2019, 36, 528–536. [Google Scholar] [CrossRef]
- Chirakarnjanakorn, S.; Starling, R.C.; Popović, Z.B.; Griffin, B.P.; Desai, M.Y. Dobutamine stress echocardiography during follow-up surveillance in heart transplant patients: Diagnostic accuracy and predictors of outcomes. J. Heart Lung Transplant. 2015, 34, 710–717. [Google Scholar] [CrossRef]
- Eroglu, E.; D’hooge, J.; Sutherland, G.R.; Marciniak, A.; Thijs, D.; Droogne, W.; Herbots, L.; Van Cleemput, J.; Claus, P.; Bijnens, B. Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart 2007, 94, e3. [Google Scholar] [CrossRef] [PubMed]
- Dandel, M.; Hummel, M.; Muller, J.; Wellnhofer, E.; Meyer, R.; Solowjowa, N.; Ewert, R.; Hetzer, R. Reliability of tissue Doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations. Circulation 2001, 104, I184–I191. [Google Scholar] [CrossRef] [PubMed]
- Clemmensen, T.S.; Logstrup, B.B.; Eiskjaer, H.; Poulsen, S.H. Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: Relation to coronary allograft vasculopathy. J. Heart Lung Transplant. 2015, 34, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.A.; Blake, A.M.; Sarnari, R.; Lee, D.; Anderson, A.S.; Ghafourian, K.; Khan, S.S.; Vorovich, E.E.; Rich, J.D.; Wilcox, J.E.; et al. Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy. J. Cardiovasc. Imaging 2022, 30, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Muehling, O.M.; Wilke, N.M.; Panse, P.; Jerosch-Herold, M.; Wilson, B.V.; Wilson, R.F.; Miller, L.W. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J. Am. Coll. Cardiol. 2003, 42, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Korosoglou, G.; Futterer, S.; Humpert, P.M.; Riedle, N.; Lossnitzer, D.; Hoerig, B.; Steen, H.; Giannitsis, E.; Osman, N.F.; Katus, H.A. Strain-encoded cardiac MR during high-dose dobutamine stress testing: Comparison to cine imaging and to myocardial tagging. J. Magn. Reson. Imaging 2009, 29, 1053–1061. [Google Scholar] [CrossRef]
- Lee, J.W. Multiparametric Cardiac Magnetic Resonance Imaging for Diagnosing Cardiac Allograft Vasculopathy. J. Cardiovasc. Imaging 2022, 30, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Chaikriangkrai, K.; Abbasi, M.A.; Sarnari, R.; Dolan, R.; Lee, D.; Anderson, A.S.; Ghafourian, K.; Khan, S.S.; Vorovich, E.E.; Rich, J.D.; et al. Prognostic Value of Myocardial Extracellular Volume Fraction and T2-mapping in Heart Transplant Patients. JACC Cardiovasc. Imaging 2020, 13, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Braggion-Santos, M.; FLossnitzer, D.; Buss, S.; Lehrke, S.; Doesch, A.; Giannitsis, E.; Korosoglou, G.; Katus, H.A.; Steen, H. Late gadolinium enhancement assessed by cardiac magnetic resonance imaging in heart transplant recipients with different stages of cardiac allograft vasculopathy. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Chaikriangkrai, K.; Abbasi, M.A.; Sarnari, R.; Lee, D.; Anderson, A.S.; Ghafourian, K.; Khan, S.S.; Vorovich, E.E.; Rich, J.D.; Wilcox, J.E.; et al. Natural History of Myocardial Late Gadolinium Enhancement Predicts Adverse Clinical Events in Heart Transplant Recipients. JACC Cardiovasc. Imaging 2019, 12, 2092–2094. [Google Scholar] [CrossRef]
- Anthony, C.; Imran, M.; Pouliopoulos, J.; Emmanuel, S.; Iliff, J.; Liu, Z.; Moffat, K.; Qiu, M.R.; McLean, C.A.; Stehning, C.; et al. Cardiovascular Magnetic Resonance for Rejection Surveillance After Cardiac Transplantation. Circulation 2022, 145, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.A.; Sarma, J.; Naish, J.H.; Yonan, N.; Williams, S.G.; Shaw, S.M.; Clark, D.; Pearce, K.; Stout, M.; Potluri, R.; et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J. Am. Coll. Cardiol. 2014, 63, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Erbel, C.; Mukhammadaminova, N.; Gleissner, C.A.; Osman, N.F.; Hofmann, N.P.; Steuer, C.; Akhavanpoor, M.; Wangler, S.; Celik, S.; Doesch, A.O.; et al. Myocardial Perfusion Reserve and Strain-Encoded CMR for Evaluation of Cardiac Allograft Microvasculopathy. JACC Cardiovasc. Imaging 2016, 9, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Narang, A.; Blair, J.E.; Patel, M.B.; Mor-Avi, V.; Fedson, S.E.; Uriel, N.; Lang, R.M.; Patel, A.R. Myocardial perfusion reserve and global longitudinal strain as potential markers of coronary allograft vasculopathy in late-stage orthotopic heart transplantation. Int. J. Cardiovasc. Imaging 2018, 34, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Ajluni, S.C., Jr.; Mously, H.; Chami, T.; Hajjari, J.; Stout, A.; Zacharias, M.; ElAmm, C.; Wilson, D.; Janus, S.E.; Al-Kindi, S.G. Non-invasive Imaging in the Evaluation of Cardiac Allograft Vasculopathy in Heart Transplantation: A Systematic Review. Curr. Probl. Cardiol. 2022, 47, 101103. [Google Scholar] [CrossRef]
- Chih, S.; Ross, H.J.; Alba, A.C.; Fan, C.S.; Manlhiot, C.; Crean, A.M. Perfusion Cardiac Magnetic Resonance Imaging as a Rule-Out Test for Cardiac Allograft Vasculopathy. Am. J. Transplant. 2016, 16, 3007–3015. [Google Scholar] [CrossRef]
- Colvin-Adams, M.; Petros, S.; Raveendran, G.; Missov, E.; Medina, E.; Wilson, R. Qualitative Perfusion Cardiac Magnetic Resonance Imaging Lacks Sensitivity in Detecting Cardiac Allograft Vasculopathy. Cardiol. Res. 2011, 2, 282–287. [Google Scholar] [CrossRef]
- Madamanchi, C.; Konerman, M.C.; Murthy, V.L. Imaging Coronary Allograft Vasculopathy with Cardiac PET and Cardiac MRI. Curr. Cardiol. Rep. 2021, 23, 175. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Rodby, R.A.; Yee, J.; Wang, C.L.; Fine, D.; McDonald, R.J.; Perazella, M.A.; Dillman, J.R.; Davenport, M.S. Use of Intravenous Gadolinium-based Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology 2021, 298, 28–35. [Google Scholar] [CrossRef]
- Iskandrian, A.S. Single-photon emission computed tomographic thallium imaging with adenosine, dipyridamole, and exercise. Am. Heart J. 1991, 122, 279–284; discussion 302–306. [Google Scholar] [CrossRef]
- Patel, J.J.; Alzahranim, T. Myocardial Perfusion Scan; StatPearls: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539772/ (accessed on 1 February 2024).
- Hung, G.U.; Wang, Y.F.; Su, H.Y.; Hsieh, T.C.; Ko, C.L.; Yen, R.F. New Trends in Radionuclide Myocardial Perfusion Imaging. Acta Cardiol. Sin. 2016, 32, 156–166. [Google Scholar] [CrossRef]
- Bergamaschi, L.; Pavon, A.G.; Angeli, F.; Tuttolomondo, D.; Belmonte, M.; Armillotta, M.; Sansonetti, A.; Foa, A.; Paolisso, P.; Baggiano, A.; et al. The Role of Non-Invasive Multimodality Imaging in Chronic Coronary Syndrome: Anatomical and Functional Pathways. Diagnostics 2023, 13, 2083. [Google Scholar] [CrossRef]
- Hacker, M.; Tausig, A.; Romuller, B.; Hoyer, X.; Klauss, V.; Stempfle, U.; Reichart, B.; Hahn, K.; Tiling, R. Dobutamine myocardial scintigraphy for the prediction of cardiac events after heart transplantation. Nucl. Med. Commun. 2005, 26, 607–612. [Google Scholar] [CrossRef]
- Aguilar, J.; Miller, R.J.H.; Otaki, Y.; Tamarappoo, B.; Hayes, S.; Friedman, J.; Slomka, P.J.; Thomson, L.E.J.; Kittleson, M.; Patel, J.K.; et al. Clinical Utility of SPECT in the Heart Transplant Population: Analysis From a Single Large-volume Center. Transplantation 2022, 106, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Payne, G.A.; Hage, F.G.; Acharya, D. Transplant allograft vasculopathy: Role of multimodality imaging in surveillance and diagnosis. J. Nucl. Cardiol. 2016, 23, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, J.; Toft, J.C.; Mortensen, S.A.; Arendrup, H.; Aldershvile, J.; Hesse, B. Myocardial perfusion scintigraphy as a screening method for significant coronary artery stenosis in cardiac transplant recipients. J. Heart Lung Transplant. 2000, 19, 873–878. [Google Scholar] [CrossRef]
- Ciliberto, G.R.; Mangiavacchi, M.; Banfi, F.; Massa, D.; Danzi, G.; Cataldo, G.; Cipriani, M.; Piccalo, G.; Dabala, A.; Gronda, E.; et al. Coronary artery disease after heart transplantation: Non-invasive evaluation with exercise thallium scintigraphy. Eur. Heart J. 1993, 14, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Rodney, R.A.; Johnson, L.L.; Blood, D.K.; Barr, M.L. Myocardial perfusion scintigraphy in heart transplant recipients with and without allograft atherosclerosis: A comparison of thallium-201 and technetium 99m sestamibi. J. Heart Lung Transplant. 1994, 13, 173–180. [Google Scholar]
- Wu, Y.W.; Yen, R.F.; Lee, C.M.; Ho, Y.L.; Chou, N.K.; Wang, S.S.; Huang, P.J. Diagnostic and prognostic value of dobutamine thallium-201 single-photon emission computed tomography after heart transplantation. J. Heart Lung Transplant. 2005, 24, 544–550. [Google Scholar] [CrossRef]
- Elhendy, A.; van Domburg, R.T.; Vantrimpont, P.; Poldermans, D.; Bax, J.J.; van Gelder, T.; Baan, C.C.; Schinkel, A.; Roelandt, J.R.; Balk, A.H. Prediction of mortality in heart transplant recipients by stress technetium-99m tetrofosmin myocardial perfusion imaging. Am. J. Cardiol. 2002, 89, 964–968. [Google Scholar] [CrossRef]
- Veenis, J.F.; Boiten, H.J.; van den Berge, J.C.; Caliskan, K.; Maat, A.; Valkema, R.; Constantinescu, A.A.; Manintveld, O.C.; Zijlstra, F.; van Domburg, R.T.; et al. Prediction of long-term (>10 year) cardiovascular outcomes in heart transplant recipients: Value of stress technetium-99m tetrofosmin myocardial perfusion imaging. J. Nucl. Cardiol. 2019, 26, 845–852. [Google Scholar] [CrossRef]
- Berman, D.S.; Kang, X.; Gransar, H.; Gerlach, J.; Friedman, J.D.; Hayes, S.W.; Thomson, L.E.; Hachamovitch, R.; Shaw, L.J.; Slomka, P.J.; et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J. Nucl. Cardiol. 2009, 16, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Al Badarin, F.J.; Malhotra, S. Diagnosis and Prognosis of Coronary Artery Disease with SPECT and PET. Curr. Cardiol. Rep. 2019, 21, 57. [Google Scholar] [CrossRef]
- Beller, G.A. Underestimation of coronary artery disease with SPECT perfusion imaging. J. Nucl. Cardiol. 2008, 15, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Slomka, P.; Xu, Y.; Berman, D.; Germano, G. Quantitative analysis of perfusion studies: Strengths and pitfalls. J. Nucl. Cardiol. 2012, 19, 338–346. [Google Scholar] [CrossRef]
- Seitun, S.; De Lorenzi, C.; Cademartiri, F.; Buscaglia, A.; Travaglio, N.; Balbi, M.; Bezante, G.P. CT Myocardial Perfusion Imaging: A New Frontier in Cardiac Imaging. BioMed Res. Int. 2018, 2018, 7295460. [Google Scholar] [CrossRef]
- Delso, G.; Voert, E.T.; Veit-Haibach, P. How does PET/MR work? Basic physics for physicians. Abdom. Imaging 2015, 40, 1352–1357. [Google Scholar] [CrossRef]
- Driessen, R.S.; Raijmakers, P.G.; Stuijfzand, W.J.; Knaapen, P. Myocardial perfusion imaging with PET. Int. J. Cardiovasc. Imaging 2017, 33, 1021–1031. [Google Scholar] [CrossRef]
- Allen-Auerbach, M.; Schoder, H.; Johnson, J.; Kofoed, K.; Einhorn, K.; Phelps, M.E.; Kobashigawa, J.; Czernin, J. Relationship between coronary function by positron emission tomography and temporal changes in morphology by intravascular ultrasound (IVUS) in transplant recipients. J. Heart Lung Transplant. 1999, 18, 211–219. [Google Scholar] [CrossRef]
- Chih, S.; Wiefels, C.C.; Beanlands, R.S.B. PET Assessment of Cardiac Allograft Vasculopathy. Semin. Nucl. Med. 2021, 51, 349–356. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Manabe, O.; Tamarappoo, B.; Hayes, S.; Friedman, J.D.; Slomka, P.J.; Patel, J.; Kobashigawa, J.A.; Berman, D.S. Comparative Prognostic and Diagnostic Value of Myocardial Blood Flow and Myocardial Flow Reserve After Cardiac Transplantation. J. Nucl. Med. 2020, 61, 249–255. [Google Scholar] [CrossRef]
- Bravo, P.E.; Bergmark, B.A.; Vita, T.; Taqueti, V.R.; Gupta, A.; Seidelmann, S.; Christensen, T.E.; Osborne, M.T.; Shah, N.R.; Ghosh, N.; et al. Diagnostic and prognostic value of myocardial blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy. Eur. Heart J. 2018, 39, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Chen, Y.H.; Wang, S.S.; Jui, H.Y.; Yen, R.F.; Tzen, K.Y.; Chen, M.F.; Lee, C.M. PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J. Nucl. Med. 2010, 51, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Mc Ardle, B.A.; Davies, R.A.; Chen, L.; Small, G.R.; Ruddy, T.D.; Dwivedi, G.; Yam, Y.; Haddad, H.; Mielniczuk, L.M.; Stadnick, E.; et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ. Cardiovasc. Imaging 2014, 7, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Wiefels, C.; Almufleh, A.; Yao, J.; deKemp, R.A.; Chong, A.Y.; Mielniczuk, L.M.; Stadnick, E.; Davies, R.A.; Beanlands, R.S.; Chih, S. Prognostic utility of longitudinal quantification of PET myocardial blood flow early post heart transplantation. J. Nucl. Cardiol. 2022, 29, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Preumont, N.; Berkenboom, G.; Vachiery, J.; Jansens, J.; Antoine, M.; Wikler, D.; Damhaut, P.; Degre, S.; Lenaers, A.; Goldman, S. Early alterations of myocardial blood flow reserve in heart transplant recipients with angiographically normal coronary arteries. J. Heart Lung Transplant. 2000, 19, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.D. Cardiac SPECT or PET?: Is there still a debate? J. Nucl. Cardiol. 2022, 29, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Habibi, S.; Ghaffarpasand, E.; Shojaei, F.; Alihashemi, M.; Kahe, F.; Tajrishi, F.Z.; Chi, G. Prognostic Value of Biomarkers in Cardiac Allograft Vasculopathy following Heart Transplantation: A Literature Review. Cardiology 2020, 145, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Raichlin, E.R.; McConnell, J.P.; Lerman, A.; Kremers, W.K.; Edwards, B.S.; Kushwaha, S.S.; Clavell, A.L.; Rodeheffer, R.J.; Frantz, R.P. Systemic inflammation and metabolic syndrome in cardiac allograft vasculopathy. J. Heart Lung Transplant. 2007, 26, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Rihal, C.S.; Edwards, B.S.; Kushwaha, S.S.; Mathew, V.; Prasad, A.; Holmes, D.R., Jr.; Lerman, A. Association of angiotensin-converting enzyme inhibitors and serum lipids with plaque regression in cardiac allograft vasculopathy. Transplantation 2006, 82, 1108–1111. [Google Scholar] [CrossRef]
- Escobar, A.; Ventura, H.O.; Stapleton, D.D.; Mehra, M.R.; Ramee, S.R.; Collins, T.J.; Jain, S.P.; Smart, F.W.; White, C.J. Cardiac allograft vasculopathy assessed by intravascular ultrasonography and nonimmunologic risk factors. Am. J. Cardiol. 1994, 74, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Uber, P.A.; Potluri, S.; Ventura, H.O.; Scott, R.L.; Park, M.H. Usefulness of an elevated B-type natriuretic peptide to predict allograft failure, cardiac allograft vasculopathy, and survival after heart transplantation. Am. J. Cardiol. 2004, 94, 454–458. [Google Scholar] [CrossRef]
- Hognestad, A.; Endresen, K.; Wergeland, R.; Stokke, O.; Geiran, O.; Holm, T.; Simonsen, S.; Kjekshus, J.K.; Andreassen, A.K. Plasma C-reactive protein as a marker of cardiac allograft vasculopathy in heart transplant recipients. J. Am. Coll. Cardiol. 2003, 42, 477–482. [Google Scholar] [CrossRef]
- Samman Tahhan, A.; Sandesara, P.; Hayek, S.S.; Hammadah, M.; Alkhoder, A.; Kelli, H.M.; Topel, M.; O’Neal, W.T.; Ghasemzadeh, N.; Ko, Y.A.; et al. High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes. J. Am. Heart Assoc. 2018, 6, e007914. [Google Scholar] [CrossRef]
- Neumann, J.T.; Havulinna, A.S.; Zeller, T.; Appelbaum, S.; Kunnas, T.; Nikkari, S.; Jousilahti, P.; Blankenberg, S.; Sydow, K.; Salomaa, V. Comparison of three troponins as predictors of future cardiovascular events--prospective results from the FINRISK and BiomaCaRE studies. PLoS ONE 2014, 9, e90063. [Google Scholar] [CrossRef]
- Patel, K.; Yadalam, A.; DeStefano, R.; Desai, S.; Almuwaqqat, Z.; Ko, Y.A.; Alras, Z.; Martini, M.A.; Ejaz, K.; Alvi, Z.; et al. High sensitivity troponin I as a biomarker for cardiac allograft vasculopathy: Evaluation of diagnostic potential and clinical utility. Clin. Transplant. 2023, 38, e15168. [Google Scholar] [CrossRef]
- Enriquez Vazquez, D.; Barge-Caballero, E.; Domenech-Garcia, N.; Rodriguez-Vazquez, P.; Formoso-Lavandeira, M.D.; Barge-Caballero, G.; Couto-Mallon, D.; Paniagua-Martin, M.J.; Blanco-Canosa, P.; Grille-Cancela, Z.; et al. Elevated lipoprotein a level in heart transplant patients is associated with cardiac allograft vasculopathy. Eur. Heart J. 2023, 44. [Google Scholar] [CrossRef]
- Bjerre, K.P.; Clemmensen, T.S.; Poulsen, S.H.; Hvas, A.M.; Holm, N.R.; Grove, E.L.; Bouchelouche, K.; Kristensen, S.D.; Eiskjaer, H. Micro- and macrovascular cardiac allograft vasculopathy in relation to 91 cardiovascular biomarkers in heart transplant recipients-An exploratory study. Clin. Transplant. 2021, 35, e14133. [Google Scholar] [CrossRef]
- Almufleh, A.; Zhang, L.; Mielniczuk, L.M.; Stadnick, E.; Davies, R.A.; Du, Q.; Rayner, K.; Liu, P.P.; Chih, S. Biomarker discovery in cardiac allograft vasculopathy using targeted aptamer proteomics. Clin. Transplant. 2020, 34, e13765. [Google Scholar] [CrossRef] [PubMed]
- Aleksova, N.; Zhang, L.; Chong, A.; Džavík, V.; So, D.Y.; Wells, G.A.; Bernick, J.; Overgaard, C.B.; Mielniczuk, L.M.; Stadnick, E.; et al. (446) Serum Biomarker Detection of Early Cardiac Allograft Vasculopathy: ECAV Sub-Study. J. Heart Lung Transplant. 2023, 42, S206. [Google Scholar] [CrossRef]
- Grattan, M.T. Cytomegalovirus Infection Is Associated With Cardiac Allograft Rejection and Atherosclerosis. JAMA J. Am. Med. Assoc. 1989, 261, 3561–3566. [Google Scholar] [CrossRef]
- Johansson, I.; Andersson, R.; Friman, V.; Selimovic, N.; Hanzen, L.; Nasic, S.; Nystrom, U.; Sigurdardottir, V. Cytomegalovirus infection and disease reduce 10-year cardiac allograft vasculopathy-free survival in heart transplant recipients. BMC Infect. Dis. 2015, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Burch, M.; Fenton, M.J.; Whitmore, P.M.; Rees, P.; Elliott, M.; Aurora, P. Positive pretransplantation cytomegalovirus serology is a risk factor for cardiac allograft vasculopathy in children. Circulation 2007, 115, 1798–1805. [Google Scholar] [CrossRef]
- Bravo, J.-B.; Gomez, L.P.; Serrano, C.A.; Perez, F.J.H.; Bueno, M.G.; Sanabria, M.T.; Cubero, J.S. Prospective evaluation of donor-derived cell-free DNA as a potential biomarker for cardiac allograft vasculopathy. Eur. Heart J. 2021, 42. [Google Scholar] [CrossRef]
- Seraphin, T.P.; Luedde, M.; Roderburg, C.; van Treeck, M.; Scheider, P.; Buelow, R.D.; Boor, P.; Loosen, S.H.; Provaznik, Z.; Mendelsohn, D.; et al. Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning. Eur. Heart J. Digit. Health 2023, 4, 265–274. [Google Scholar] [CrossRef]
- Goswami, R. The current state of artificial intelligence in cardiac transplantation. Curr. Opin. Organ. Transplant. 2021, 26, 296–301. [Google Scholar] [CrossRef]
- Yahav, A.; Zurakhov, G.; Adler, O.; Adam, D. Strain Curve Classification Using Supervised Machine Learning Algorithm with Physiologic Constraints. Ultrasound Med. Biol. 2020, 46, 2424–2438. [Google Scholar] [CrossRef]
- Loncaric, F.; Castellote, P.M.M.; Sanchez-Martinez, S.; Fabijanovic, D.; Nunno, L.; Mimbrero, M.; Sanchis, L.; Doltra, A.; Montserrat, S.; Cikes, M.; et al. Automated Pattern Recognition in Whole-Cardiac Cycle Echocardiographic Data: Capturing Functional Phenotypes with Machine Learning. J. Am. Soc. Echocardiogr. 2021, 34, 1170–1183. [Google Scholar] [CrossRef]
- Alskaf, E.; Dutta, U.; Scannell, C.M.; Chiribiri, A. Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis. Inform. Med. Unlocked 2022, 32, 101055. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.O.; Park, E.A.; Park, D.; Lee, W. Deep Learning-Based Automated Quantification of Coronary Artery Calcification for Contrast-Enhanced Coronary Computed Tomographic Angiography. J. Cardiovasc. Dev. Dis. 2023, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Manral, N.; McElhinney, P.; Killekar, A.; Matsumoto, H.; Kwiecinski, J.; Pieszko, K.; Razipour, A.; Grodecki, K.; Park, C.; et al. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: An international multicentre study. Lancet Digit. Health 2022, 4, e256–e265. [Google Scholar] [CrossRef]
- Su, T.Y.; Chen, J.J.; Chen, W.S.; Chang, Y.H.; Lu, H.H. Deep learning for myocardial ischemia auxiliary diagnosis using CZT SPECT myocardial perfusion imaging. J. Chin. Med. Assoc. 2023, 86, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Cassar, A.; Yoshino, S.; Flammer, A.J.; Li, J.; Gulati, R.; Topilsky, Y.; Raichlin, E.; Lennon, R.J.; Lerman, L.O.; et al. Attenuation of cardiac allograft vasculopathy by sirolimus: Relationship to time interval after heart transplantation. J. Heart Lung Transplant. 2013, 32, 784–791. [Google Scholar] [CrossRef]
- Eisen, H.J.; Tuzcu, E.M.; Dorent, R.; Kobashigawa, J.; Mancini, D.; Kaeppler, H.A.V.-V.; Starling, R.C.; Sorensen, K.; Hummel, M.; Lind, J.M.; et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N. Engl. J. Med. 2003, 349, 847–858. [Google Scholar] [CrossRef]
ISHLT CAV Grade | ICA Findings |
---|---|
CAV0 (not significant) | Undetectable stenosis/lesion |
CAV1 (mild) | Left main stenosis < 50%, and/or: |
Primary vessel lesion < 70%, and/or: | |
Secondary or isolated branch stenosis < 70% | |
CAV2 (moderate) | Left main stenosis < 50%, and/or: |
Primary vessel lesion > 70%, and/or: | |
Isolated branch stenosis in two vascular territories > 70% | |
CAV3 (severe) | Left main stenosis ≥ 50%, and/or: |
At least two primary vessel lesions ≥ 70%, and/or: | |
Branch stenoses in all three vascular territories ≥ 70%, and/or: | |
CAV1 or CAV2 with allograft dysfunction (LVEF ≤ 45%) |
Diagnostic Modality | Advantages | Limitations |
---|---|---|
Invasive coronary angiography (ICA) |
|
|
Intravascular ultrasound (IVUS) |
|
|
Optical coherence tomography (OCT) |
|
|
Computed tomography coronary angiography/coronary artery calcium scoring (CTCA/CAC score) |
|
|
CT perfusion imaging |
|
|
Echocardiography/dobutamine stress echocardiography (DSE) |
|
|
Cardiac magnetic resonance (CMR) |
|
|
Single-photon emission computed tomography (SPECT) |
|
|
Positron emission tomography (PET) |
|
|
Biomarkers |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, M.A.; Scalia, I.G.; Badr, A.T.; Baba Ali, N.; Farina, J.M.; Pereyra, M.; Abbas, M.T.; Mahmoud, A.K.; Scott, R.L.; Steidley, D.E.; et al. Cardiac Allograft Vasculopathy: Challenges and Advances in Invasive and Non-Invasive Diagnostic Modalities. J. Cardiovasc. Dev. Dis. 2024, 11, 95. https://doi.org/10.3390/jcdd11030095
Kamel MA, Scalia IG, Badr AT, Baba Ali N, Farina JM, Pereyra M, Abbas MT, Mahmoud AK, Scott RL, Steidley DE, et al. Cardiac Allograft Vasculopathy: Challenges and Advances in Invasive and Non-Invasive Diagnostic Modalities. Journal of Cardiovascular Development and Disease. 2024; 11(3):95. https://doi.org/10.3390/jcdd11030095
Chicago/Turabian StyleKamel, Moaz A., Isabel G. Scalia, Amro T. Badr, Nima Baba Ali, Juan M. Farina, Milagros Pereyra, Mohammed Tiseer Abbas, Ahmed K. Mahmoud, Robert L. Scott, David E. Steidley, and et al. 2024. "Cardiac Allograft Vasculopathy: Challenges and Advances in Invasive and Non-Invasive Diagnostic Modalities" Journal of Cardiovascular Development and Disease 11, no. 3: 95. https://doi.org/10.3390/jcdd11030095
APA StyleKamel, M. A., Scalia, I. G., Badr, A. T., Baba Ali, N., Farina, J. M., Pereyra, M., Abbas, M. T., Mahmoud, A. K., Scott, R. L., Steidley, D. E., Rosenthal, J. L., Lemond, L. M., Sell-Dottin, K. A., Hardaway, B. W., Barry, T., Yang, M., Chao, C. -J., Jokerst, C. E., Ayoub, C., & Arsanjani, R. (2024). Cardiac Allograft Vasculopathy: Challenges and Advances in Invasive and Non-Invasive Diagnostic Modalities. Journal of Cardiovascular Development and Disease, 11(3), 95. https://doi.org/10.3390/jcdd11030095