Prenatal Diagnosis of Congenital Heart Disease: The Crucial Role of Perinatal and Delivery Planning
Abstract
:1. Background
1.1. Fetal Circulation in the Presence of CHDs and Transition at the Time of Birth
1.2. Anticipated Acuity of Postnatal Symptoms in CHDs
2. Models for Risk-Stratification of Perinatal Care in Newborns with CHDs
2.1. CHDs without Predicted Risk of Hemodynamic Instability at Birth
2.2. CHDs with Minimal or Low Risk of Hemodynamic Instability
2.3. CHDs with a Moderate or High Risk of Hemodynamic Instability
3. Delivery Planning Based on CHD Lesion-Specific Risk-Stratification (Table 2)
3.1. Coarctation of the Aorta
3.2. Tetralogy of Fallot
3.3. Hypoplastic Left Heart Syndrome
3.4. Total Anomalous Pulmonary Venous Return (TAPVR)
3.5. D-Transposition of the Great Arteries with Restrictive Atrial Septum
3.6. Ebstein Anomaly and Tricuspid Valve Dysplasia
3.7. Tetralogy of Fallot with Absent Pulmonary Valve (ToF/APV)
3.8. Uncontrolled Tachyarrhythmia
3.9. Congenital Complete Heart Block
4. Other Considerations in Delivery Planning
4.1. Mode of Delivery in CHD Fetuses
4.2. Strategies to Protect the Brain during Transitional Circulation
4.3. Utility of Acute Maternal Hyperoxia Testing in Improving Risk-Stratification
4.4. Cardiovascular Profile Score
4.5. Multidisciplinary Approach for Delivery Planning
5. Conclusions
Predicted Risk of Hemodynamic Instability at Birth | Example of CHD | Suggested Classification System | Suggested Delivery Plan * | DR Recommendations | Anticipated Neonatal Management in the First Few Days of Life |
---|---|---|---|---|---|
None/Minimal | Simple shunt lesions, such as isolated VSD and balanced AVSD, mild valve disease, benign arrhythmias. | LOC 1 | Mode and time of delivery: Based on the level of maternal care. | There is no specialized care in the DR. Notify the primary care provider of the fetal echo findings and cardiology recommendations for postnatal management. | May room in with mother or stay in the newborn nursery, obtain echo prior to discharge, consider cardiology consult **, or arrange outpatient cardiology evaluation. |
Low | Ductal-dependent lesions: HLHS, HRHS variants, tricuspid atresia, interrupted aortic arch, critical aortic stenosis, critical pulmonary stenosis, PA/IVS, ToF with severe RVOTO, non-sustained or controlled tachyarrhythmias or bradyarrhythmias with adequate ventricular rate. | LOC 2 | Mode and time of delivery are based on the level of maternal care. Planned delivery ≥ 39 wks can be considered to coordinate services needed to manage a CHD newborn. | A neonatologist should be present in the DR. Place UA and UV lines, stabilize, start PGE if indicated based on CHD lesion, and transfer to a cardiac center for further management. | Admit to NICU or CICU. Arrange for neonatal cardiac interventions (catheterization or surgery) as needed. |
Moderate | HLHS at risk for RAS, D-TGA at risk for RAS, CHD or arrhythmia with decreased heart function, CHD or arrhythmia with hydrops. | LOC 3 | Mode and time of delivery: Planned delivery ≥ 39 wks should be arranged to coordinate service. | The neonatologist and cardiologist in the DR and cardiac services were alerted. Plan for intervention or urgent transport if indicated. | Transport to cardiac center. Admit to NICU or CICU. Arrange for catheterization or surgery. |
High | HLHS with severe RAS or IAS, TGA with severe RAS or IAS, abnormal DA shunt, obstructed TAPVR tachy- or brady- arrhythmia with hydrops, severe Ebstein anomaly with hydrops, ToF/APV. | LOC 4 | Mode and time of delivery: Planned delivery ≥ 39 wks (or earlier if fetal cardiac dysfunction or hydrops are suspected and GA appropriate) at the cardiac center should be arranged. | The neonatologist, cardiologist, and surgery team in the DR. Plan for intervention (catheterization, surgery, or ECMO). |
CHD Diagnosis | Fetal Echocardiogram Findings | Delivery Room (DR) Recommendations |
---|---|---|
ASD, VSD, or AVSD (shunt lesions); mild valve abnormalities | Isolated ASD or VSD with normal FO and DA flow, normal or minimal flow disturbances at valves, and normal heart function (LOC 1). | Routine care, hospital, or telemedicine consult. Outpatient cardiology follow-up. |
Coarctation, critical (ductal-dependent lesion) | Ductal-dependent coarctation [21] (LOC 2):
| Initiation of prostaglandin infusion through peripheral IV or umbilical line. Intubation with mechanical ventilation only if clinically indicated. Transfer to a cardiac center. |
Pulmonary atresia, HLHS, other single ventricles, or cyanotic ToF (ductal-dependent lesions) | Ductal-dependent pulmonary circulation (LOC 2):
| Initiation of prostaglandin infusion through peripheral IV or umbilical line. Intubation with mechanical ventilation only if clinically indicated. Transfer to a cardiac center. |
HLHS and variants with severely restrictive or intact atrial septum | Pulmonary vein Doppler [42,43]:
| Initiation of prostaglandin infusion through peripheral IV or umbilical line Intubation with mechanical ventilation OR or Cath lab on standby. Plan for immediate intervention to decompress the left atrium. ECMO is available. |
Obstructed TAPVR | Pulmonary vein Doppler [40]:
| Intubation with mechanical ventilation. Peripheral IV and/or umbilical line OR team on standby. Initiation of prostaglandin infusion (may relax the ductus venosus smooth muscle for infra-diaphragmatic TAPVR). Plan for immediate surgical intervention. |
D-TGA and variants with restrictive atrial septum * | Foramen ovale findings [45,46]:
| Initiation of prostaglandin infusion through peripheral IV or umbilical line. Intubation with mechanical ventilation. Cath lab on standby. Plan for immediate balloon atrial septostomy. If ductal flow is abnormal, consider pulmonary hypertension therapy, including intubation, 100% oxygen, and inhaled nitric oxide. |
ToF/APV |
| Specialized cardiac care team in the DR. Specialized ventilation (prone). Peripheral IV or umbilical access. Intubation with mechanical ventilation if needed. Consider 100% oxygen and inhaled nitric oxide to decrease pulmonary resistance. Consider ECMO. |
Severe Ebstein’s anomaly |
| Specialized cardiac care team in the DR. Specialized ventilation (prone). Peripheral IV or umbilical access. Intubation with mechanical ventilation if needed. Consider 100% oxygen and inhaled nitric oxide to decrease pulmonary resistance. Consider ECMO cardioversion or medical therapy in DR as indicated for arrhythmia. |
Unstable tachyarrhythmias |
| Consider early delivery if gestational age-appropriate. Cardioversion and/or medical therapy in DR. |
Complete heart block with low ventricular rate and/or cardiac dysfunction |
| Consider early delivery if gestational age-appropriate. Consider chronotropic agents vs. temporary pacing in DR. |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samanek, M.; Slavik, Z.; Zborilova, B.; Hrobonova, V.; Voriskova, M.; Skovranek, J. Prevalence, treatment, and outcome of heart disease in live-born children: A prospective analysis of 91,823 live-born children. Pediatr. Cardiol. 1989, 10, 205–211. [Google Scholar] [CrossRef]
- Bound, J.P.; Logan, W.F. Incidence of congenital heart disease in Blackpool 1957–1971. Br. Heart J. 1977, 39, 445–450. [Google Scholar] [CrossRef] [PubMed]
- American Institute of Ultrasound in Medicine. AIUM Practice Parameter for the Performance of Fetal Echocardiography. J. Ultrasound Med. 2020, 39, E5–E16. [Google Scholar] [CrossRef]
- Stumpflen, I.; Stumpflen, A.; Wimmer, M.; Bernaschek, G. Effect of detailed fetal echocardiography as part of routine prenatal ultrasonographic screening on detection of congenital heart disease. Lancet 1996, 348, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Yagel, S.; Weissman, A.; Rotstein, Z.; Manor, M.; Hegesh, J.; Anteby, E.; Lipitz, S.; Achiron, R. Congenital heart defects: Natural course and in utero development. Circulation 1997, 96, 550–555. [Google Scholar] [CrossRef]
- Nelle, M.; Raio, L.; Pavlovic, M.; Carrel, T.; Surbek, D.; Meyer-Wittkopf, M. Prenatal diagnosis and treatment planning of congenital heart defects-possibilities and limits. World J. Pediatr. 2009, 5, 18–22. [Google Scholar] [CrossRef]
- Donofrio, M.T.; Skurow-Todd, K.; Berger, J.T.; McCarter, R.; Fulgium, A.; Krishnan, A.; Sable, C.A. Risk-stratified postnatal care of newborns with congenital heart disease determined by fetal echocardiography. J. Am. Soc. Echocardiogr. 2015, 28, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Donofrio, M.T.; Levy, R.J.; Schuette, J.J.; Skurow-Todd, K.; Sten, M.B.; Stallings, C.; Pike, J.I.; Krishnan, A.; Ratnayaka, K.; Sinha, P.; et al. Specialized delivery room planning for fetuses with critical congenital heart disease. Am. J. Cardiol. 2013, 111, 737–747. [Google Scholar] [CrossRef]
- Adams, A.D.; Aggarwal, N.; Fries, M.H.; Donofrio, M.T.; Iqbal, S.N. Neonatal and maternal outcomes of pregnancies with a fetal diagnosis of congenital heart disease using a standardized delivery room management protocol. J. Perinatol. 2020, 40, 316–323. [Google Scholar] [CrossRef]
- Slodki, M.; Respondek-Liberska, M.; Pruetz, J.D.; Donofrio, M.T. Fetal cardiology: Changing the definition of critical heart disease in the newborn. J. Perinatol. 2016, 36, 575–580. [Google Scholar] [CrossRef]
- Berkley, E.M.; Goens, M.B.; Karr, S.; Rappaport, V. Utility of fetal echocardiography in postnatal management of infants with prenatally diagnosed congenital heart disease. Prenat. Diagn. 2009, 29, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.H.; Fahey, J.T. The transition from fetal to neonatal circulation: Normal responses and implications for infants with heart disease. Semin. Perinatol. 1993, 17, 106–121. [Google Scholar]
- Donofrio, M.T.; Moon-Grady, A.J.; Hornberger, L.K.; Copel, J.A.; Sklansky, M.S.; Abuhamad, A.; Cuneo, B.F.; Huhta, J.C.; Jonas, R.A.; Krishnan, A.; et al. Diagnosis and treatment of fetal cardiac disease: A scientific statement from the American Heart Association. Circulation 2014, 129, 2183–2242. [Google Scholar] [CrossRef]
- Menard, M.K.; Kilpatrick, S.; Saade, G.; Hollier, L.M.; Joseph, G.F., Jr.; Barfield, W.; Callaghan, W.; Jennings, J.; Conry, J.; American College of Obstetricians and Gynecologists. Levels of maternal care. Am. J. Obstet. Gynecol. 2015, 212, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.K.; Hanretty, K.; Houston, A.B.; Lilley, S.; Murtagh, E.P. Intermittent ductal patency in healthy newborn infants: Demonstration by colour Doppler flow mapping. Arch. Dis. Child. 1992, 67, 1217–1218. [Google Scholar] [CrossRef]
- Trento, L.U.; Pruetz, J.D.; Chang, R.K.; Detterich, J.; Sklansky, M.S. Prenatal diagnosis of congenital heart disease: Impact of mode of delivery on neonatal outcome. Prenat. Diagn. 2012, 32, 1250–1255. [Google Scholar] [CrossRef]
- Donofrio, M.T. Predicting the Future: Delivery Room Planning of Congenital Heart Disease Diagnosed by Fetal Echocardiography. Am. J. Perinatol. 2018, 35, 549–552. [Google Scholar] [CrossRef]
- Sanapo, L.; Pruetz, J.D.; Slodki, M.; Goens, M.B.; Moon-Grady, A.J.; Donofrio, M.T. Fetal echocardiography for planning perinatal and delivery room care of neonates with congenital heart disease. Echocardiography 2017, 34, 1804–1821. [Google Scholar] [CrossRef]
- Brown, D.L.; Durfee, S.M.; Hornberger, L.K. Ventricular discrepancy as a sonographic sign of coarctation of the fetal aorta: How reliable is it? J. Ultrasound Med. 1997, 16, 95–99. [Google Scholar] [CrossRef]
- Pasquini, L.; Mellander, M.; Seale, A.; Matsui, H.; Roughton, M.; Ho, S.Y.; Gardiner, H.M. Z-scores of the fetal aortic isthmus and duct: An aid to assessing arch hypoplasia. Ultrasound Obstet. Gynecol. 2007, 29, 628–633. [Google Scholar] [CrossRef]
- Villalain, C.; D’Antonio, F.; Flacco, M.E.; Gomez-Montes, E.; Herraiz, I.; Deiros-Bronte, L.; Maskatia, S.A.; Phillips, A.A.; Contro, E.; Fricke, K.; et al. Diagnostic accuracy of prenatal ultrasound in coarctation of aorta: Systematic review and individual participant data meta-analysis. Ultrasound Obstet. Gynecol. 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Arya, B.; Bhat, A.; Vernon, M.; Conwell, J.; Lewin, M. Utility of novel fetal echocardiographic morphometric measures of the aortic arch in the diagnosis of neonatal coarctation of the aorta. Prenat. Diagn. 2016, 36, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; Inamura, N.; Inoue, Y.; Kawazu, Y.; Kayatani, F.; Mitsuda, N. Is retrograde blood flow of aortic isthmus useful for the prenatal screening of coarctation of the aorta by fetal color Doppler echocardiography? A preliminary study. J. Med. Ultrason (2001) 2018, 45, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Familiari, A.; Morlando, M.; Khalil, A.; Sonesson, S.E.; Scala, C.; Rizzo, G.; Del Sordo, G.; Vassallo, C.; Elena Flacco, M.; Manzoli, L.; et al. Risk Factors for Coarctation of the Aorta on Prenatal Ultrasound: A Systematic Review and Meta-Analysis. Circulation 2017, 135, 772–785. [Google Scholar] [CrossRef]
- Maskatia, S.A.; Kwiatkowski, D.; Bhombal, S.; Davis, A.S.; McElhinney, D.B.; Tacy, T.A.; Algaze, C.; Blumenfeld, Y.; Quirin, A.; Punn, R.A.F.; et al. Risk Stratification Pathway for Neonatal Aortic Coarctation Reduces Medical Exposure. J. Pediatr. 2021, 237, 102–108.e103. [Google Scholar] [CrossRef] [PubMed]
- Evers, P.D.; Ranade, D.; Lewin, M.; Arya, B. Diagnostic Approach in Fetal Coarctation of the Aorta: A Cost-Utility Analysis. J. Am. Soc. Echocardiogr. 2017, 30, 589–594. [Google Scholar] [CrossRef]
- Sivanandam, S.; Glickstein, J.S.; Printz, B.F.; Allan, L.D.; Altmann, K.; Solowiejczyk, D.E.; Simpson, L.; Perez-Delboy, A.; Kleinman, C.S. Prenatal diagnosis of conotruncal malformations: Diagnostic accuracy, outcome, chromosomal abnormalities, and extracardiac anomalies. Am. J. Perinatol. 2006, 23, 241–245. [Google Scholar] [CrossRef]
- Arya, B.; Levasseur, S.M.; Woldu, K.; Glickstein, J.S.; Andrews, H.F.; Williams, I.A. Fetal echocardiographic measurements and the need for neonatal surgical intervention in Tetralogy of Fallot. Pediatr. Cardiol. 2014, 35, 810–816. [Google Scholar] [CrossRef]
- Rodenbarger, A.; Thorsson, T.; Stiver, C.; Jantzen, D.; Chevenon, M.; Yu, S.; Lowery, R.; Gelehrter, S. Third trimester predictors of interventional timing and accuracy of fetal anticipatory guidance in tetralogy of Fallot: A multi-center study. Prenat. Diagn. 2020, 40, 870–877. [Google Scholar] [CrossRef]
- Sathanandam, S.K.; Philip, R.; Gamboa, D.; Van Bergen, A.; Ilbawi, M.N.; Knott-Craig, C.; Waller, B.R.; Javois, A.J.; Cuneo, B.F. Management of hypoplastic left heart syndrome with intact atrial septum: A two-centre experience. Cardiol. Young 2016, 26, 1072–1081. [Google Scholar] [CrossRef]
- Vlahos, A.P.; Lock, J.E.; McElhinney, D.B.; van der Velde, M.E. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: Outcome after neonatal transcatheter atrial septostomy. Circulation 2004, 109, 2326–2330. [Google Scholar] [CrossRef] [PubMed]
- Chintala, K.; Tian, Z.; Du, W.; Donaghue, D.; Rychik, J. Fetal pulmonary venous Doppler patterns in hypoplastic left heart syndrome: Relationship to atrial septal restriction. Heart 2008, 94, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Crowe, D.A.; Allan, L.D. Patterns of pulmonary venous flow in the fetus with disease of the left heart. Cardiol. Young 2001, 11, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Better, D.J.; Apfel, H.D.; Zidere, V.; Allan, L.D. Pattern of pulmonary venous blood flow in the hypoplastic left heart syndrome in the fetus. Heart 1999, 81, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Taketazu, M.; Barrea, C.; Smallhorn, J.F.; Wilson, G.J.; Hornberger, L.K. Intrauterine pulmonary venous flow and restrictive foramen ovale in fetal hypoplastic left heart syndrome. J. Am. Coll. Cardiol. 2004, 43, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Michelfelder, E.; Gomez, C.; Border, W.; Gottliebson, W.; Franklin, C. Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial septoplasty in the newborn with hypoplastic left ventricle. Circulation 2005, 112, 2974–2979. [Google Scholar] [CrossRef] [PubMed]
- Divanovic, A.; Hor, K.; Cnota, J.; Hirsch, R.; Kinsel-Ziter, M.; Michelfelder, E. Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: Clinical experience using pulmonary venous Doppler analysis. J. Thorac. Cardiovasc. Surg. 2011, 141, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Gellis, L.; Drogosz, M.; Lu, M.; Sleeper, L.A.; Cheng, H.; Allan, C.; Marshall, A.C.; Tworetzky, W.; Friedman, K.G. Echocardiographic predictors of neonatal illness severity in fetuses with critical left heart obstruction with intact or restrictive atrial septum. Prenat. Diagn. 2018, 38, 788–794. [Google Scholar] [CrossRef]
- Enzensberger, C.; Axt-Fliedner, R.; Degenhardt, J.; Kawecki, A.; Tenzer, A.; Kohl, T.; Krapp, M. Pulmonary Vasoreactivity to Materno-Fetal Hyperoxygenation Testing in Fetuses with Hypoplastic Left Heart. Ultraschall Med. 2016, 37, 195–200. [Google Scholar] [CrossRef]
- Barrera, C.A.; Johnson, A.M.; Rychik, J.; Biko, D.M.; Degenhardt, K.; Moldenhauer, J.S.; Victoria, T. Prognostic value of the nutmeg lung pattern/lymphangiectasia on fetal magnetic resonance imaging. Pediatr. Radiol. 2021, 51, 1809–1817. [Google Scholar] [CrossRef]
- Saul, D.; Degenhardt, K.; Iyoob, S.D.; Surrey, L.F.; Johnson, A.M.; Johnson, M.P.; Rychik, J.; Victoria, T. Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: A cause and effect relationship or prognostic indicator? Pediatr. Radiol. 2016, 46, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.A.; Ethen, M.K.; Penny, D.J.; Canfield, M.A.; Minard, C.G.; Fixler, D.E.; Nembhard, W.N. Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome. Circulation 2014, 129, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.M.; Polito, A.; Brown, D.W.; McElrath, T.F.; Graham, D.A.; Thiagarajan, R.R.; Bacha, E.A.; Allan, C.K.; Cohen, J.N.; Laussen, P.C. Birth before 39 weeks’ gestation is associated with worse outcomes in neonates with heart disease. Pediatrics 2010, 126, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Seale, A.N.; Carvalho, J.S.; Gardiner, H.M.; Mellander, M.; Roughton, M.; Simpson, J.; Tometzki, A.; Uzun, O.; Webber, S.A.; Daubeney, P.E.; et al. Total anomalous pulmonary venous connection: Impact of prenatal diagnosis. Ultrasound Obstet. Gynecol. 2012, 40, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.M.; Pasquali, S.K.; Jacobs, J.P.; He, X.; Hill, K.D.; Cooper, D.S.; Backer, C.L.; Jacobs, M.L. Gestational age at birth and outcomes after neonatal cardiac surgery: An analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Circulation 2014, 129, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Tongsong, T.; Luewan, S.; Jatavan, P.; Tongprasert, F.; Sukpan, K. A Simple Rule for Prenatal Diagnosis of Total Anomalous Pulmonary Venous Return. J. Ultrasound Med. 2016, 35, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Domadia, S.; Kumar, S.R.; Votava-Smith, J.K.; Pruetz, J.D. Neonatal Outcomes in Total Anomalous Pulmonary Venous Return: The Role of Prenatal Diagnosis and Pulmonary Venous Obstruction. Pediatr. Cardiol. 2018, 39, 1346–1354. [Google Scholar] [CrossRef]
- Pruetz, J.D.; Carroll, C.; Trento, L.U.; Chang, R.K.; Detterich, J.; Miller, D.A.; Sklansky, M. Outcomes of critical congenital heart disease requiring emergent neonatal cardiac intervention. Prenat. Diagn. 2014, 34, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.J.; White, B.R.; Rychik, J.; Linder, J.; Faerber, J.A.; Tian, Z.; Cohen, M.S. Fetal Doppler Echocardiographic Assessment Predicts Severe Postnatal Obstruction in Total Anomalous Pulmonary Venous Connection. J. Am. Soc. Echocardiogr. 2022, 35, 1168–1175. [Google Scholar] [CrossRef]
- Itoi, T. Stenting as a possible new therapeutic strategy to the obstructed TAPVC. J. Cardiol. Cases 2013, 8, e93–e94. [Google Scholar] [CrossRef]
- Buca, D.; Winberg, P.; Rizzo, G.; Khalil, A.; Liberati, M.; Makatsariya, A.; Greco, F.; Nappi, L.; Acharya, G.; D’Antonio, F. Prenatal risk factors for urgent atrial septostomy at birth in fetuses with transposition of the great arteries: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2020, 35, 598–606. [Google Scholar] [CrossRef]
- Jouannic, J.M.; Gavard, L.; Fermont, L.; Le Bidois, J.; Parat, S.; Vouhe, P.R.; Dumez, Y.; Sidi, D.; Bonnet, D. Sensitivity and specificity of prenatal features of physiological shunts to predict neonatal clinical status in transposition of the great arteries. Circulation 2004, 110, 1743–1746. [Google Scholar] [CrossRef]
- Nagata, H.; Glick, L.; Lougheed, J.; Grattan, M.; Mondal, T.; Thakur, V.; Schwartz, S.M.; Jaeggi, E. Prenatal Diagnosis of Transposition of the Great Arteries Reduces Postnatal Mortality: A Population-Based Study. Can. J. Cardiol. 2020, 36, 1592–1597. [Google Scholar] [CrossRef]
- Gottschalk, I.; Walter, A.; Menzel, T.; Weber, E.C.; Wendt, S.; Sreeram, N.; Gembruch, U.; Berg, C.; Abel, J.S. D-Transposition of the great arteries with restrictive foramen ovale in the fetus: The dilemma of predicting the need for postnatal urgent balloon atrial septostomy. Arch. Gynecol. Obstet 2024, 309, 1353–1367. [Google Scholar] [CrossRef] [PubMed]
- Cave, D.G.W.; Lillitos, P.J.; Lancaster, R.; Bentham, J.R.; Barwick, S. Out-of-hours versus in-hours delivery of antenatally diagnosed transposition of the great arteries: Outcomes from a United Kingdom Tertiary Centre. Cardiol. Young 2023, 33, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Hornberger, L.K.; Sahn, D.J.; Kleinman, C.S.; Copel, J.A.; Reed, K.L. Tricuspid valve disease with significant tricuspid insufficiency in the fetus: Diagnosis and outcome. J. Am. Coll. Cardiol. 1991, 17, 167–173. [Google Scholar] [CrossRef]
- Freud, L.R.; Escobar-Diaz, M.C.; Kalish, B.T.; Komarlu, R.; Puchalski, M.D.; Jaeggi, E.T.; Szwast, A.L.; Freire, G.; Levasseur, S.M.; Kavanaugh-McHugh, A.; et al. Outcomes and Predictors of Perinatal Mortality in Fetuses with Ebstein Anomaly or Tricuspid Valve Dysplasia in the Current Era: A Multicenter Study. Circulation 2015, 132, 481–489. [Google Scholar] [CrossRef]
- Mustafa, H.J.; Aghajani, F.; Bairmani, Z.A.; Khalil, A. Transplacental non-steroidal anti-inflammatory drugs versus expectant management in fetal Ebstein anomaly with circular shunt: Systematic review and meta-analysis. Prenat. Diagn 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Freud, L.R.; Wilkins-Haug, L.E.; Beroukhim, R.S.; LaFranchi, T.; Phoon, C.K.; Glickstein, J.S.; Cumbermack, K.M.; Makhoul, M.; Morris, S.A.; Sun, H.Y.; et al. Effect of In Utero Non-Steroidal Anti-Inflammatory Drug Therapy for Severe Ebstein Anomaly or Tricuspid Valve Dysplasia (NSAID Therapy for Fetal Ebstein anomaly). Am. J. Cardiol. 2021, 141, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Tsukimori, K.; Morihana, E.; Fusazaki, N.; Takahata, Y.; Oda, S.; Kado, H. Critical Ebstein anomaly in a fetus successfully managed by elective preterm delivery and surgical intervention without delay after birth. Pediatr. Cardiol. 2012, 33, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Wertaschnigg, D.; Jaeggi, M.; Chitayat, D.; Shannon, P.; Ryan, G.; Thompson, M.; Yoo, S.J.; Jaeggi, E. Prenatal diagnosis and outcome of absent pulmonary valve syndrome: Contemporary single-center experience and review of the literature. Ultrasound Obstet. Gynecol. 2013, 41, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Moon-Grady, A.J.; Tacy, T.A.; Brook, M.M.; Hanley, F.L.; Silverman, N.H. Value of clinical and echocardiographic features in predicting outcome in the fetus, infant, and child with tetralogy of Fallot with absent pulmonary valve complex. Am. J. Cardiol. 2002, 89, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Lakier, J.B.; Stanger, P.; Heymann, M.A.; Hoffman, J.I.; Rudolph, A.M. Tetralogy of Fallot with absent pulmonary valve. Natural history and hemodynamic considerations. Circulation 1974, 50, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Emmanoulides, G.C.; Thanopoulos, B.; Siassi, B.; Fishbein, M. “Agenesis” of ductus arteriosus associated with the syndrome of tetralogy of Fallot and absent pulmonary valve. Am. J. Cardiol. 1976, 37, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, A.; Moon-Grady, A.J.; Peyvandi, S.; Chiu, J.S.; Bost, J.E.; Schidlow, D.; Carroll, S.J.; Davey, B.; Divanovic, A.; Hornberger, L.; et al. Contemporary Outcomes in Tetralogy of Fallot with Absent Pulmonary Valve After Fetal Diagnosis. J. Am. Heart Assoc. 2021, 10, e019713. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, A.; Berger, J.T.; Blask, A.; Donofrio, M.T. Clinical utility of fetal magnetic resonance imaging in tetralogy of Fallot with absent pulmonary valve. Circulation 2013, 127, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Y.; Boe, J.; Rubesova, E.; Barth, R.A.; Tacy, T.A. Fetal MRI correlates with postnatal CT angiogram assessment of pulmonary anatomy in tetralogy of Fallot with absent pulmonary valve. Congenit. Heart Dis. 2014, 9, E105–E109. [Google Scholar] [CrossRef] [PubMed]
- Holmes, S.; Hornberger, L.K.; Jaeggi, E.; Howley, L.; Moon-Grady, A.J.; Uzun, O.; Kaizer, A.; Gilicze, O.; Cuneo, B.F. Treatment, not delivery, of the late preterm and term fetus with supraventricular arrhythmia. Ultrasound Obstet. Gynecol. 2023, 62, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Davison, M.B.; Radford, D.J. Fetal and neonatal congenital complete heart block. Med. J. Aust. 1989, 150, 192–198. [Google Scholar] [CrossRef]
- Donofrio, M.T.; Gullquist, S.D.; Mehta, I.D.; Moskowitz, W.B. Congenital complete heart block: Fetal management protocol, review of the literature, and report of the smallest successful pacemaker implantation. J. Perinatol. 2004, 24, 112–117. [Google Scholar] [CrossRef]
- Jaeggi, E.T.; Hornberger, L.K.; Smallhorn, J.F.; Fouron, J.C. Prenatal diagnosis of complete atrioventricular block associated with structural heart disease: Combined experience of two tertiary care centers and review of the literature. Ultrasound Obstet. Gynecol. 2005, 26, 16–21. [Google Scholar] [CrossRef]
- Samples, S.; Fitt, C.; Satzer, M.; Wakai, R.; Strasburger, J.; Patel, S. Fetal Congenital Complete Heart Block: A Rare Case with an Extremely Low Ventricular Rate and Review of Current Management Strategies. Children 2023, 10, 1132. [Google Scholar] [CrossRef]
- Jaeggi, E.T.; Hamilton, R.M.; Silverman, E.D.; Zamora, S.A.; Hornberger, L.K. Outcome of children with fetal, neonatal or childhood diagnosis of isolated congenital atrioventricular block. A single institution’s experience of 30 years. J. Am. Coll. Cardiol. 2002, 39, 130–137. [Google Scholar] [CrossRef]
- Pick, J.; Silka, M.J.; Bar-Cohen, Y.; Hill, A.; Shwayder, M.; Wood, J.; Pruetz, J.D. Third Trimester Fetal Heart Rates in Antibody-Mediated Complete Heart Block Predict Need for Neonatal Pacemaker Placement. Pediatr. Cardiol. 2022, 43, 324–331. [Google Scholar] [CrossRef]
- Adams, A.D.; Aggarwal, N.; Iqbal, S.N.; Tague, L.; Skurow-Todd, K.; McCarter, R.; Donofrio, M.T. Umbilical Cord Blood Gas in Newborns with Prenatal Diagnosis of Congenital Heart Disease: Insight into In-Utero and Delivery Hemodynamics. Pediatr. Cardiol. 2019, 40, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, S.; Donofrio, M.T. Circulatory Changes and Cerebral Blood Flow and Oxygenation During Transition in Newborns with Congenital Heart Disease. Semin. Pediatr. Neurol. 2018, 28, 38–47. [Google Scholar] [CrossRef]
- Szwast, A.; Tian, Z.; McCann, M.; Donaghue, D.; Rychik, J. Vasoreactive response to maternal hyperoxygenation in the fetus with hypoplastic left heart syndrome. Circ. Cardiovasc. Imaging 2010, 3, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Schidlow, D.N.; Donofrio, M.T. Prenatal Maternal Hyperoxygenation Testing and Implications for Critical Care Delivery Planning among Fetuses with Congenital Heart Disease: Early Experience. Am. J. Perinatol. 2018, 35, 16–23. [Google Scholar] [CrossRef]
- Channing, A.; Szwast, A.; Natarajan, S.; Degenhardt, K.; Tian, Z.; Rychik, J. Maternal hyperoxygenation improves left heart filling in fetuses with atrial septal aneurysm causing impediment to left ventricular inflow. Ultrasound Obstet. Gynecol. 2015, 45, 664–669. [Google Scholar] [CrossRef]
- Patel, S.R.; Madan, N.; Jone, P.N.; Donofrio, M.T. Utility of Fetal Echocardiography with Acute Maternal Hyperoxygenation Testing in Assessment of Complex Congenital Heart Defects. Children 2023, 10, 281. [Google Scholar] [CrossRef]
- Rasanen, J.; Wood, D.C.; Debbs, R.H.; Cohen, J.; Weiner, S.; Huhta, J.C. Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: A randomized study. Circulation 1998, 97, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Co-Vu, J.; Lopez-Colon, D.; Vyas, H.V.; Weiner, N.; DeGroff, C. Maternal hyperoxygenation: A potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography 2017, 34, 1822–1833. [Google Scholar] [CrossRef] [PubMed]
- Mardy, C.; Kaplinski, M.; Peng, L.; Blumenfeld, Y.J.; Kwiatkowski, D.M.; Tacy, T.A.; Maskatia, S.A. Maternal Hyperoxygenation Testing in Fetuses with Hypoplastic Left-Heart Syndrome: Association with Postnatal Atrial Septal Restriction. Fetal Diagn. Ther. 2021, 48, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, A.; Hernandez-Robles, J.; Ewing, L.; Leshko, J.; Luther, S.; Huhta, J. Prediction of outcome of fetal congenital heart disease using a cardiovascular profile score. Ultrasound Obstet. Gynecol. 2008, 31, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fang, J.; Zhou, K.; Wang, C.; Hua, Y.; Shi, X.; Mu, D. Prediction of fetal outcome without intrauterine intervention using a cardiovascular profile score: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2015, 28, 1965–1972. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Katsuragi, S.; Neki, R.; Kurosaki, K.I.; Shiraishi, I.; Nakai, M.; Nishimura, K.; Yoshimatsu, J.; Ikeda, T. Cardiovascular profile score as a predictor of acute intrapartum non-reassuring fetal status in infants with congenital heart defects. J. Matern. Fetal Neonatal Med. 2017, 30, 2831–2837. [Google Scholar] [CrossRef]
- Sanapo, L.; Moon-Grady, A.J.; Donofrio, M.T. Perinatal and Delivery Management of Infants with Congenital Heart Disease. Clin. Perinatol. 2016, 43, 55–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.R.; Michelfelder, E. Prenatal Diagnosis of Congenital Heart Disease: The Crucial Role of Perinatal and Delivery Planning. J. Cardiovasc. Dev. Dis. 2024, 11, 108. https://doi.org/10.3390/jcdd11040108
Patel SR, Michelfelder E. Prenatal Diagnosis of Congenital Heart Disease: The Crucial Role of Perinatal and Delivery Planning. Journal of Cardiovascular Development and Disease. 2024; 11(4):108. https://doi.org/10.3390/jcdd11040108
Chicago/Turabian StylePatel, Sheetal R., and Erik Michelfelder. 2024. "Prenatal Diagnosis of Congenital Heart Disease: The Crucial Role of Perinatal and Delivery Planning" Journal of Cardiovascular Development and Disease 11, no. 4: 108. https://doi.org/10.3390/jcdd11040108
APA StylePatel, S. R., & Michelfelder, E. (2024). Prenatal Diagnosis of Congenital Heart Disease: The Crucial Role of Perinatal and Delivery Planning. Journal of Cardiovascular Development and Disease, 11(4), 108. https://doi.org/10.3390/jcdd11040108