Photon-Counting Detector Computed Tomography (PCD-CT): A New Era for Cardiovascular Imaging? Current Status and Future Outlooks
Abstract
:1. Introduction
1.1. Technical Principles of Photon-Counting Computed Tomography (PCD-CT)
1.2. Rationale and Knowledge Gap
1.3. Objectives
2. Materials and Methods
3. Results/Discussion
3.1. Does PCD-CT Have Potential to Reduce “Calcium Blooming” and Improve the Accuracy of Coronary Stenosis Grading?
3.2. Is the Evaluation of Coronary Stents More Accurate with PCD-CT?
3.3. Clinical Efficacy Studies
3.3.1. Can PCD-CT Reduce Referrals for Invasive Coronary Angiography (ICA) ?
3.3.2. Is PCD-CT Capable of Decreasing the Amount of Contrast Agent Applied?
3.3.3. Does PCD-CT Permit Lowering Radiation Exposure?
N (Patients) | Specification | |
---|---|---|
VNC calcium removal (PurelumenTM) | ||
Mergen et al. [18] | 30 | * Accuracy in coronary stenosis grading improved * Image quality improved |
Wolf et al. [15] | 33 (+in vitro phantom) | Stenosis severity and blooming artifacts decreased |
STENTS—in vivo studies | ||
Hagar et al. [20] | 44 (n = 5 ISRs) | 5 (100%) ISRs detected vs. ICA |
Contrast agent reduction | ||
Cundari et al. [32] | 100 | 20% |
Higashigaito et al. [33] | 100 | 25% (52.5 mL) |
Radiation dose reduction | ||
Hagen et al. [36] | 40 (obese) | 31% CTDI vol |
Graafen et al. [37] | 32 | 2 times less CTDI vol (p < 0.001) |
Accuracy of stenosis grading (UHR mode) | ||
Koons et al. [21] | 23 patients 34 lesions | * Stenosis severity reduced in PCD-CT (p < 0.001): 11% reduction in percent diameter stenosis (%DS) * 15/34 underwent changes in stenosis severity |
Halfmann et al. [22] | 114 patients (+in vitro phantom) | * Calcified lesions led to more accurate stenosis % * NCP and mixed equal |
3.4. Are There Further Clinical Applications of Spectral Imaging?
3.5. Can the Ultra-High Resolution (UHR) Mode Be Implemented in Clinical Practice?
4. Conclusions
Future Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 144, e368–e454. [Google Scholar] [PubMed]
- DISCHARGE Trial Group; Maurovich-Horvat, P.; Bosserdt, M.; Kofoed, K.F.; Rieckmann, N.; Benedek, T.; Donnelly, P.; Rodriguez-Palomares, J.; Erglis, A.; Štěchovský, C.; et al. CT or Invasive Coronary Angiography in Stable Chest Pain. N. Engl. J. Med. 2022, 386, 1591–1602. [Google Scholar] [PubMed]
- Williams, M.C.; Kwiecinski, J.; Doris, M.; McElhinney, P.; D’Souza, M.S.; Cadet, S.; Adamson, P.D.; Moss, A.J.; Alam, S.; Hunter, A.; et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results from the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 2020, 141, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, R.; Otake, H.; Konishi, A.; Iwasaki, M.; Koo, B.-K.; Fukuya, H.; Shinke, T.; Hirata, K.-I.; Leipsic, J.; Berman, D.S.; et al. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: A comparison to optical coherence tomography. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Maurovich-Horvat, P.; Schlett, C.L.; Alkadhi, H.; Nakano, M.; Otsuka, F.; Stolzmann, P.; Scheffel, H.; Ferencik, M.; Kriegel, M.F.; Seifarth, H.; et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc. Imaging 2012, 5, 1243–1252. [Google Scholar] [CrossRef]
- van Rosendael, A.R.; Hoogen, I.J.v.D.; Lin, F.Y.; Gianni, U.; Lu, Y.; Andreini, D.; Al-Mallah, M.H.; Cademartiri, F.; Chinnaiyan, K.; Chow, B.J.; et al. Age related compositional plaque burden by CT in patients with future ACS. J. Cardiovasc. Comput. Tomogr. 2022, 16, 491–497. [Google Scholar] [CrossRef] [PubMed]
- den Dekker, M.A.; de Smet, K.; de Bock, G.H.; Tio, R.A.; Oudkerk, M.; Vliegenthart, R. Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: Systematic review and meta-analysis. Eur. Radiol. 2012, 22, 2688–2698. [Google Scholar] [CrossRef]
- Douek, P.C.; Boccalini, S.; Oei, E.H.G.; Cormode, D.P.; Pourmorteza, A.; Boussel, L.; Si-Mohamed, S.A.; Budde, R.P.J. Clinical Applications of Photon-counting CT: A Review of Pioneer Studies and a Glimpse into the Future. Radiology 2023, 309, e222432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flohr, T.; Schmidt, B.; Ulzheimer, S.; Alkadhi, H. Cardiac imaging with photon counting CT. Br. J. Radiol. 2023, 96, 20230407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wildberger, J.E.; Alkadhi, H.M. New Horizons in Vascular Imaging With Photon-Counting Detector CT. Investig. Radiol. 2023, 58, 499–504. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Rajendran, K.; Leng, S.; Yu, L.; Fletcher, J.G.; Stierstorfer, K.; Flohr, T.G. The technical development of photon-counting detector CT. Eur. Radiol. 2023, 33, 5321–5330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tortora, M.; Gemini, L.; D’iglio, I.; Ugga, L.; Spadarella, G.; Cuocolo, R. Spectral Photon-Counting Computed Tomography: A Review on Technical Principles and Clinical Applications. J. Imaging 2022, 8, 112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meloni, A.; Cademartiri, F.; Positano, V.; Celi, S.; Berti, S.; Clemente, A.; La Grutta, L.; Saba, L.; Bossone, E.; Cavaliere, C.; et al. Cardiovascular Applications of Photon-Counting CT Technology: A Revolutionary New Diagnostic Step. J. Cardiovasc. Dev. Dis. 2023, 10, 363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolf, E.V.; Halfmann, M.C.; Varga-Szemes, A.; Fink, N.; Kloeckner, R.; Bockius, S.; Allmendinger, T.; Hagenauer, J.; Koehler, T.; Kreitner, K.-F.; et al. Photon-Counting Detector CT Virtual Monoenergetic Images for Coronary Artery Stenosis Quantification: Phantom and In Vivo Evaluation. AJR Am. J. Roentgenol. 2024, 222. [Google Scholar] [CrossRef] [PubMed]
- Allmendinger, T.; Nowak, T.; Flohr, T.; Klotz, E.D.P.; Hagenauer, J.C.M.; Alkadhi, H.M.; Schmidt, B. Photon-Counting Detector CT-Based Vascular Calcium Removal Algorithm: Assessment Using a Cardiac Motion Phantom. Investig. Radiol. 2022, 57, 399–405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishihara, T.; Miyoshi, T.; Nakashima, M.; Akagi, N.; Morimitsu, Y.; Inoue, T.; Miki, T.; Yoshida, M.; Toda, H.; Nakamura, K.; et al. Diagnostic improvements of calcium-removal image reconstruction algorithm using photon-counting detector CT for calcified coronary lesions. Eur. J. Radiol. 2024, 172, 111354. [Google Scholar] [CrossRef] [PubMed]
- Mergen, V.; Rusek, S.; Civaia, F.; Rossi, P.; Rajagopal, R.; Bättig, E.; Manka, R.; Candreva, A.; Eberhard, M.; Alkadhi, H. Virtual calcium removal in calcified coronary arteries with photon-counting detector CT-first in-vivo experience. Front. Cardiovasc. Med. 2024, 11, 1367463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haag, N.P.; Michael, A.E.; Lennartz, S.; Panknin, C.; Niehoff, J.H.; Borggrefe, J.; Shahzadi, I.; Zwanenburg, A.; Kroeger, J.R. Coronary Artery Calcium Scoring Using Virtual Versus True Noncontrast Images from Photon-Counting Coronary CT Angiography. Radiology 2024, 310, e230545. [Google Scholar] [CrossRef] [PubMed]
- Hagar, M.T.; Soschynski, M.; Saffar, R.; Molina-Fuentes, M.F.; Weiss, J.; Rau, A.; Schuppert, C.; Ruile, P.; Faby, S.; Schibilsky, D.; et al. Ultra-high-resolution photon-counting detector CT in evaluating coronary stent patency: A comparison to invasive coronary angiography. Eur. Radiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Koons, E.K.; Rajiah, P.S.; Thorne, J.E.; Weber, N.M.; Kasten, H.J.; Shanblatt, E.R.; McCollough, C.H.; Leng, S. Coronary artery stenosis quantification in patients with dense calcifications using ultra-high-resolution photon-counting-detector computed tomography. J. Cardiovasc. Comput. Tomogr. 2024, 18, 56–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halfmann, M.C.; Bockius, S.; Emrich, T.; Hell, M.; Schoepf, U.J.; Laux, G.S.; Kavermann, L.; Graafen, D.; Gori, T.; Yang, Y.; et al. Ultrahigh-Spatial-Resolution Photon-counting Detector CT Angiography of Coronary Artery Disease for Stenosis Assessment. Radiology 2024, 310, e231956. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Wang, J.-R.; Hu, P.-F. Diagnostic performance of computed tomography angiography in the detection of coronary artery in-stent restenosis: Evidence from an updated meta-analysis. Eur. Radiol. 2018, 28, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.-L.; Tsay, P.-K.; Chen, C.-C.; Juan, Y.-H.; Huang, Y.-C.; Chan, W.-H.; Wen, M.-S.; Hsieh, I.-C. Coronary in-stent restenosis: Predisposing clinical and stent-related factors, diagnostic performance and analyses of inaccuracies in 320-row computed tomography angiography. Int. J. Cardiovasc. Imaging 2016, 32 (Suppl. S1), 105–115. [Google Scholar] [CrossRef] [PubMed]
- Mannil, M.; Hickethier, T.; von Spiczak, J.; Baer, M.; Henning, A.; Hertel, M.; Schmidt, B.; Flohr, T.; Maintz, D.; Alkadhi, H. Photon-Counting CT: High-Resolution Imaging of Coronary Stents. Investig. Radiol. 2018, 53, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Boccalini, S.; Si-Mohamed, S.A.; Lacombe, H.M.; Diaw, A.M.; Varasteh, M.; Rodesch, P.-A.; Villien, M.; Sigovan, M.; Dessouky, R.; Coulon, P.; et al. First In-Human Results of Computed Tomography Angiography for Coronary Stent Assessment with a Spectral Photon Counting Computed Tomography. Investig. Radiol. 2022, 57, 212–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geering, L.; Sartoretti, T.; Mergen, V.; Cundari, G.; Rusek, S.; Civaia, F.; Rossi, P.; Wildberger, J.E.; Templin, C.; Manka, R.; et al. First in-vivo coronary stent imaging with clinical ultra high resolution photon-counting CT. J. Cardiovasc. Comput. Tomogr. 2023, 17, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Mergen, V.; Sartoretti, T.; Cundari, G.; Serifovic, M.; Higashigaito, K.; Allmendinger, T.; Schmidt, B.; Flohr, T.; Manka, R.; Eberhard, M.; et al. The Importance of Temporal Resolution for Ultra-High-Resolution Coronary Angiography: Evidence from Photon-Counting Detector CT. Investig. Radiol. 2023, 58, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Hagar, M.T.; Kluemper, T.; Hein, M.; Muhlen, C.v.Z.; Faby, S.; Capilli, F.; Schuppert, C.; Schmitt, R.; Ruile, P.; Westermann, D.; et al. Photon-counting CT-angiography in pre-TAVR aortic annulus assessment: Effects of retrospective vs. prospective ECG-synchronization on prosthesis valve selection. Int. J. Cardiovasc. Imaging 2024. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.; Hrenkó, Á.; Kerkovits, N.M.; Nagy, K.; Vértes, M.; Balogh, H.; Nagy, N.; Munkácsi, T.; Emrich, T.; Varga-Szemes, A.; et al. Photon-counting detector CT reduces the rate of referrals to invasive coronary angiography as compared to CT with whole heart coverage energy-integrating detector. J. Cardiovasc. Comput. Tomogr. 2024, 18, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Emrich, T.; O’Doherty, J.; Schoepf, U.J.; Suranyi, P.; Aquino, G.; Kloeckner, R.; Halfmann, M.C.; Allmendinger, T.; Schmidt, B.; Flohr, T.; et al. Reduced Iodinated Contrast Media Administration in Coronary CT Angiography on a Clinical Photon-Counting Detector CT System: A Phantom Study Using a Dynamic Circulation Model. Investig. Radiol. 2023, 58, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Cundari, G.; Deilmann, P.; Mergen, V.; Ciric, K.; Eberhard, M.; Jungblut, L.; Alkadhi, H.; Higashigaito, K. Saving Contrast Media in Coronary CT Angiography with Photon-Counting Detector CT. Acad. Radiol. 2024, 31, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Higashigaito, K.; Mergen, V.; Eberhard, M.; Jungblut, L.; Hebeisen, M.; Rätzer, S.; Zanini, B.; Kobe, A.; Martini, K.; Euler, A.; et al. CT Angiography of the Aorta Using Photon-counting Detector CT with Reduced Contrast Media Volume. Radiol. Cardiothorac. Imaging 2023, 5, e220140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Langenbach, I.L.; Langenbach, M.C.; Mayrhofer, T.; Foldyna, B.; Maintz, D.; Klein, K.; Wienemann, H.; Krug, K.B.; Hellmich, M.; Adam, M.; et al. Reduction of contrast medium for transcatheter aortic valve replacement planning using a spectral detector CT: A prospective clinical trial. Eur. Radiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Pinos, D.; Griffith, J.; Emrich, T.; Schoepf, U.J.; O’Doherty, J.; Zsarnoczay, E.; Fink, N.; Vecsey-Nagy, M.; Suranyi, P.; Tesche, C.; et al. Intra-individual comparison of image quality of the coronary arteries between photon-counting detector and energy-integrating detector CT systems. Eur. J. Radiol. 2023, 166, 111008. [Google Scholar] [CrossRef] [PubMed]
- Hagen, F.; Estler, A.; Hofmann, J.; Walder, L.; Faby, S.; Almarie, B.; Nikolaou, K.; Wrazidlo, R.; Horger, M. Reduced versus standard dose contrast volume for contrast-enhanced abdominal CT in overweight and obese patients using photon counting detector technology vs. second-generation dual-source energy integrating detector CT. Eur. J. Radiol. 2023, 169, 111153. [Google Scholar] [CrossRef] [PubMed]
- Graafen, D.; Emrich, T.; Halfmann, M.C.; Mildenberger, P.; Düber, C.; Yang, Y.; Othman, A.E.; Doherty, J.O.; Müller, L.; Kloeckner, R. Dose Reduction and Image Quality in Photon-counting Detector High-resolution Computed Tomography of the Chest: Routine Clinical Data. J. Thorac. Imaging 2022, 37, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Euler, A.; Higashigaito, K.; Mergen, V.; Sartoretti, T.B.; Zanini, B.; Schmidt, B.; Flohr, T.G.; Ulzheimer, S.; Eberhard, M.M.; Alkadhi, H.M. High-Pitch Photon-Counting Detector Computed Tomography Angiography of the Aorta: Intraindividual Comparison to Energy-Integrating Detector Computed Tomography at Equal Radiation Dose. Investig. Radiol. 2022, 57, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Aquino, G.J.; O’doherty, J.; Schoepf, U.J.; Ellison, B.; Byrne, J.; Fink, N.; Zsarnoczay, E.; Wolf, E.V.; Allmendinger, T.; Schmidt, B.; et al. Myocardial Characterization with Extracellular Volume Mapping with a First-Generation Photon-counting Detector CT with MRI Reference. Radiology 2023, 307, e222030. [Google Scholar] [CrossRef] [PubMed]
- Skornitzke, S.; Mergen, V.; Biederer, J.; Alkadhi, H.; Do, T.D.; Stiller, W.; Frauenfelder, T.; Kauczor, H.-U.; Euler, A.M. Metal Artifact Reduction in Photon-Counting Detector CT: Quantitative Evaluation of Artifact Reduction Techniques. Investig. Radiol. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hagar, M.T.; Soschynski, M.; Saffar, R.; Rau, A.; Taron, J.; Weiss, J.; Stein, T.; Faby, S.; Muehlen, C.v.Z.; Ruile, P.; et al. Accuracy of Ultrahigh Resolution Photon-Counting Ct for Detecting Coronary Artery Disease in a High-Risk Population. Radiology 2023, 307, e223305. [Google Scholar] [CrossRef]
- Mergen, V.; Eberhard, M.; Manka, R.; Euler, A.; Alkadhi, H. First in-human quantitative plaque characterization with ultra-high resolution coronary photon-counting CT angiography. Front. Cardiovasc. Med. 2022, 9, 981012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacaita, P.G.; Luger, A.; Troger, F.; Widmann, G.; Feuchtner, G.M. Photon-Counting Detector Computed Tomography (PCD-CT): A New Era for Cardiovascular Imaging? Current Status and Future Outlooks. J. Cardiovasc. Dev. Dis. 2024, 11, 127. https://doi.org/10.3390/jcdd11040127
Lacaita PG, Luger A, Troger F, Widmann G, Feuchtner GM. Photon-Counting Detector Computed Tomography (PCD-CT): A New Era for Cardiovascular Imaging? Current Status and Future Outlooks. Journal of Cardiovascular Development and Disease. 2024; 11(4):127. https://doi.org/10.3390/jcdd11040127
Chicago/Turabian StyleLacaita, Pietro G., Anna Luger, Felix Troger, Gerlig Widmann, and Gudrun M. Feuchtner. 2024. "Photon-Counting Detector Computed Tomography (PCD-CT): A New Era for Cardiovascular Imaging? Current Status and Future Outlooks" Journal of Cardiovascular Development and Disease 11, no. 4: 127. https://doi.org/10.3390/jcdd11040127
APA StyleLacaita, P. G., Luger, A., Troger, F., Widmann, G., & Feuchtner, G. M. (2024). Photon-Counting Detector Computed Tomography (PCD-CT): A New Era for Cardiovascular Imaging? Current Status and Future Outlooks. Journal of Cardiovascular Development and Disease, 11(4), 127. https://doi.org/10.3390/jcdd11040127