Association between Plasma Interleukin-27 Levels and Cardiovascular Events in Patients Undergoing Coronary Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. The Measurements of IL-27 and C-Reactive Protein Levels in Plasma
2.3. Coronary Angiography at Baseline and Clinical Follow-Up
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frostegård, J.; Ulfgren, A.K.; Nyberg, P.; Hedin, U.; Swedenborg, J.; Andersson, U.; Hansson, G.K. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999, 145, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Jafarizade, M.; Kahe, F.; Sharfaei, S.; Momenzadeh, K.; Pitliya, A.; Zahedi, F.; Singh, P.; Chi, G. The role of interleukin-27 in atherosclerosis: A contemporary review. Cardiology 2021, 146, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Taleb, S.; Mallat, Z.; Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Pflanz, S.; Timans, J.C.; Cheung, J.; Rosales, R.; Kanzler, H.; Gilbert, J.; Hibbert, L.; Churakova, T.; Travis, M.; Vaisberg, E.; et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 2002, 16, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Bosmann, M.; Ward, P.A. Modulation of inflammation by interleukin-27. J. Leukoc. Biol. 2013, 94, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Pflanz, S.; Hibbert, L.; Mattson, J.; Rosales, R.; Vaisberg, E.; Bazan, J.F.; Phillips, J.H.; McClanahan, T.K.; de Waal Malefyt, R.; Kastelein, R.A. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 2004, 172, 2225–2231. [Google Scholar] [CrossRef]
- Hirase, T.; Hara, H.; Miyazaki, Y.; Ide, N.; Nishimoto-Hazuku, A.; Fujimoto, H.; Saris, C.J.; Yoshida, H.; Node, K. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H420–H429. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, I.; Sandanger, Ø.; Askevold, E.T.; Sagen, E.L.; Yang, K.; Holm, S.; Pedersen, T.M.; Skjelland, M.; Krohg-Sørensen, K.; Hansen, T.V.; et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS ONE 2017, 12, e0188387. [Google Scholar] [CrossRef]
- Kempe, S.; Heinz, P.; Kokai, E.; Devergne, O.; Marx, N.; Wirth, T. Epstein-barr virus-induced gene-3 is expressed in human atheroma plaques. Am. J. Pathol. 2009, 175, 440–447. [Google Scholar] [CrossRef]
- Yoshida, H.; Nakaya, M.; Miyazaki, Y. Interleukin 27: A double-edged sword for offense and defense. J. Leukoc. Biol. 2009, 86, 1295–1303. [Google Scholar] [CrossRef]
- Guzzo, C.; Che Mat, N.F.; Gee, K. Interleukin-27 induces a STAT1/3- and NF-κB-dependent proinflammatory cytokine profile in human monocytes. J. Biol. Chem. 2010, 285, 24404–24411. [Google Scholar] [CrossRef] [PubMed]
- Petes, C.; Wynick, C.; Guzzo, C.; Mehta, D.; Logan, S.; Banfield, B.W.; Basta, S.; Cooper, A.; Gee, K. IL-27 enhances LPS-induced IL-1β in human monocytes and murine macrophages. J. Leukoc. Biol. 2017, 102, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, T.; Yoshimoto, T.; Yasuda, K.; Mizuguchi, J.; Nakanishi, K. IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: A novel therapeutic way for Th2-mediated allergic inflammation. J. Immunol. 2007, 179, 4415–4423. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.; Carrier, Y.; Peron, J.P.; Bettelli, E.; Kamanaka, M.; Flavell, R.A.; Kuchroo, V.K.; Oukka, M.; Weiner, H.L. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 2007, 8, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Zhao, Y.; Yan, W.; Cao, L.; Zhang, W.; Wang, M.; Zhang, T.; Fu, Q.; Li, Z. Elevated circulating interleukin-27 in patients with coronary artery disease is associated with dendritic cells, oxidized low-density lipoprotein, and severity of coronary artery stenosis. Mediat. Inflamm. 2012, 2012, 506283. [Google Scholar] [CrossRef]
- Qiu, H.N.; Liu, B.; Liu, W.; Liu, S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol. Cell Biochem. 2016, 411, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Owaki, T.; Asakawa, M.; Morishima, N.; Hata, K.; Fukai, F.; Matsui, M.; Mizuguchi, J.; Yoshimoto, T. A role for IL-27 in early regulation of Th1 differentiation. J. Immunol. 2005, 175, 2191–2200. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huang, Y.; Lu, Z.; Luo, C.; Shi, Y.; Zeng, Q.; Cao, Y.; Liu, L.; Wang, X.; Ji, Q. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS ONE 2012, 7, e52490. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, A.; Nemati, M.; Rezayati, M.T. Serum levels of interleukin (IL)-27 in patients with ischemic heart disease. Cytokine 2011, 56, 153–156. [Google Scholar] [CrossRef]
- Grufman, H.; Yndigegn, T.; Gonçalves, I.; Nilsson, J.; Schiopu, A. Elevated IL-27 in patients with acute coronary syndrome is associated with adverse ventricular remodeling and increased risk of recurrent myocardial infarction and cardiovascular death. Cytokine 2019, 122, 154208. [Google Scholar] [CrossRef]
- Miura, K.; Saita, E.; Suzuki-Sugihara, N.; Miyata, K.; Ikemura, N.; Ohmori, R.; Ikegami, Y.; Kishimoto, Y.; Kondo, K.; Momiyama, Y. Plasma interleukin-27 levels in patients with coronary artery disease. Medicine 2017, 96, e8260. [Google Scholar] [CrossRef]
- Hamm, C.W.; Braunwald, E. A classification of unstable angina revisited. Circulation 2000, 102, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhou, X.; Yao, L.; Liu, C.; Jin, F.; Wu, Y. Clinical implications of the interleukin 27 serum level in breast cancer. J. Investig. Med. 2014, 62, 627–631. [Google Scholar] [CrossRef]
- Babadi, A.S.; Kiani, A.; Mortaz, E.; Taghavi, K.; Khosravi, A.; Marjani, M.; Seifi, S.; Emami, H.; Abedini, A. Serum interleukin-27 level in different clinical stages of lung cancer. Open Access Maced J. Med. Sci. 2019, 7, 45–49. [Google Scholar] [CrossRef]
- Momiyama, Y.; Kishimoto, Y.; Saita, E.; Ohmori, R.; Kondo, K. High plasma levels of angiopoietin-like protein 8 and cardiovascular events in patients undergoing coronary angiography. Atherosclerosis 2023, 386, 117309. [Google Scholar] [CrossRef] [PubMed]
- Akobeng, A.K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007, 96, 644–647. [Google Scholar] [CrossRef]
- Arima, H.; Kubo, M.; Yonemoto, K.; Doi, Y.; Ninomiya, T.; Tanizaki, Y.; Hata, J.; Matsumura, K.; Iida, M.; Kiyohara, Y. High-sensitivity C-reactive protein and coronary heart disease in a general population of Japanese: The Hisayama Study. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1385–1391. [Google Scholar] [CrossRef]
- Momiyama, Y.; Kawaguchi, A.; Kajiwara, I.; Ohmori, R.; Okada, K.; Saito, I.; Konishi, M.; Nakamura, M.; Sato, S.; Kokubo, Y.; et al. Prognostic value of plasma high-sensitivity C-reactive protein levels in Japanese patients with stable coronary artery disease: The Japan NCVC-Collaborative Inflammation Cohort Study. Atherosclerosis 2009, 207, 272–276. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, R.; Zhu, Z.; Yu, K.; Wang, Y.; Ding, Y.; Yu, J.; Tang, H.; Zeng, Q.; Zhong, Y. Interleukin-27 ameliorates atherosclerosis in ApoE-/- mice through regulatory T Cell augmentation and dendritic cell tolerance. Mediat. Inflamm. 2022, 2022, 2054879. [Google Scholar] [CrossRef]
- Koltsova, E.K.; Kim, G.; Lloyd, K.M.; Saris, C.J.; von Vietinghoff, S.; Kronenberg, M.; Ley, K. Interleukin-27 receptor limits atherosclerosis in Ldlr-/- mice. Circ. Res. 2012, 111, 1274–1285. [Google Scholar] [CrossRef]
- Peshkova, I.O.; Aghayev, T.; Fatkhullina, A.R.; Makhov, P.; Titerina, E.K.; Eguchi, S.; Tan, Y.F.; Kossenkov, A.V.; Khoreva, M.V.; Gankovskaya, L.V.; et al. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat. Commun. 2019, 10, 5046. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wang, Y.; Wang, Z.; Liu, L.; Yang, Z.; Wang, M.; Xu, Y.; Ye, D.; Zhang, J.; Zhou, Q.; et al. The expression of IL-12 family members in patients with hypertension and its association with the occurrence of carotid atherosclerosis. Mediat. Inflamm. 2020, 2020, 2369279. [Google Scholar] [CrossRef] [PubMed]
- Si, F.; Wu, Y.; Gao, F.; Feng, S.; Liu, R.; Yi, Q. Relationship between IL-27 and coronary arterial lesions in children with Kawasaki disease. Clin. Exp. Med. 2017, 17, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Eric, S.; Zaric, R.Z.; Jevdjic, J.; Drakulic, S.M.; Stanojevic, I.; Vojvodic, D.; Arsenijevic, P.; Stojanovic, B.; Jakovljevic, S.; Markovic, N.; et al. Interleukin 33, soluble suppression of tumorigenicity 2, interleukin 27, and galectin 3 as predictors for outcome in patients admitted to intensive care units. Open Med. 2023, 18, 20230859. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.M.; Cao, P.; Zhang, C.; Feng, C.M.; Zheng, L.; Xu, D.X.; Fu, L.; Zhao, H. Serum IL-27 predicts the severity and prognosis in patients with community-acquired pneumonia: A prospective cohort study. Int. J. Med. Sci. 2022, 19, 74–81. [Google Scholar] [CrossRef]
All | ||||
---|---|---|---|---|
(n = 402) | CHD (−) (n = 193) | (−) vs. (+) | CHD (+) (n = 209) | |
Age (years) | 67 ± 11 | 65 ± 12 | <0.001 | 69 ± 10 |
Sex (men) | 276 (69%) | 116 (60%) | <0.001 | 160 (77%) |
Hypertension | 285 (71%) | 119 (62%) | <0.001 | 166 (79%) |
Hypercholesterolemia | 207 (51%) | 80 (41%) | <0.001 | 127 (61%) |
LDL cholesterol (mg/dL) | 114 ± 31 | 111 ± 29 | NS | 116 ± 33 |
HDL cholesterol (mg/dL) | 54 ± 15 | 58 ± 16 | <0.001 | 51 ± 13 |
Statin | 146 (36%) | 48 (25%) | <0.001 | 98 (47%) |
DM | 100 (25%) | 26 (13%) | <0.001 | 74 (35%) |
Smokers | 171 (43%) | 68 (35%) | <0.01 | 103 (49%) |
LV ejection fraction (%) | 63 ± 10 | 64 ± 9 | NS | 62 ± 10 |
CRP levels (mg/L) | 0.62 [0.30, 1.53] | 0.51 [0.27, 1.24] | <0.005 | 0.80 [0.37, 1.74] |
CRP level > 1.0 mg/L | 145 (36%) | 59 (31%) | <0.05 | 86 (41%) |
IL-27 levels (ng/mL) | 0.23 [0.15, 0.35] | 0.23 [0.14, 0.34] | NS | 0.23 [0.16, 0.35] |
IL-27 level > 0.25 ng/mL | 173 (43%) | 80 (41%) | NS | 93 (44%) |
All | ||||
---|---|---|---|---|
(n = 402) | Event (−) (n = 332) | (−) vs. (+) | Event (+) (n = 70) | |
Age (years) | 67 ± 11 | 66 ± 11 | NS | 69 ± 11 |
Sex (men) | 276 (69%) | 224 (67%) | NS | 52 (74%) |
Hypertension | 285 (71%) | 231 (70%) | NS | 54 (77%) |
Hypercholesterolemia | 207 (51%) | 169 (51%) | NS | 38 (54%) |
LDL cholesterol (mg/dL) | 114 ± 31 | 112 ± 30 | <0.05 | 121 ± 33 |
HDL cholesterol (mg/dL) | 54 ± 15 | 55 ± 15 | <0.02 | 50 ± 14 |
Statin | 146 (36%) | 117 (35%) | NS | 29 (41%) |
DM | 100 (25%) | 80 (24%) | NS | 20 (29%) |
Smokers | 171 (43%) | 139 (42%) | NS | 32 (46%) |
CHD | 209 (52%) | 153 (46%) | <0.001 | 56 (80%) |
Number of stenotic vessels | 1.0 ± 1.1 | 0.8 ± 1.0 | <0.001 | 1.7 ± 1.1 |
LV ejection fraction (%) | 63 ± 10 | 63 ± 9 | NS | 62 ± 12 |
CRP levels (mg/L) | 0.62 [0.30, 1.53] | 0.60 [0.29, 1.50] | NS | 0.85 [0.43, 1.77] |
CRP level > 1.0 mg/L | 145 (36%) | 114 (34%) | NS | 31 (44%) |
IL-27 levels (ng/mL) | 0.23 [0.15, 0.35] | 0.22 [0.15, 0.34] | <0.01 | 0.29 [0.19, 0.40] |
IL-27 level > 0.25 ng/mL | 173 (43%) | 132 (40%) | <0.01 | 41 (59%) |
Hazard Ratio | (95% CI) | p Value | |
---|---|---|---|
CHD | 3.57 | (1.98–6.41) | <0.001 |
IL-27 (>0.25 ng/mL) | 1.82 | (1.13–2.93) | <0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saita, E.; Kishimoto, Y.; Ohmori, R.; Kondo, K.; Momiyama, Y. Association between Plasma Interleukin-27 Levels and Cardiovascular Events in Patients Undergoing Coronary Angiography. J. Cardiovasc. Dev. Dis. 2024, 11, 139. https://doi.org/10.3390/jcdd11050139
Saita E, Kishimoto Y, Ohmori R, Kondo K, Momiyama Y. Association between Plasma Interleukin-27 Levels and Cardiovascular Events in Patients Undergoing Coronary Angiography. Journal of Cardiovascular Development and Disease. 2024; 11(5):139. https://doi.org/10.3390/jcdd11050139
Chicago/Turabian StyleSaita, Emi, Yoshimi Kishimoto, Reiko Ohmori, Kazuo Kondo, and Yukihiko Momiyama. 2024. "Association between Plasma Interleukin-27 Levels and Cardiovascular Events in Patients Undergoing Coronary Angiography" Journal of Cardiovascular Development and Disease 11, no. 5: 139. https://doi.org/10.3390/jcdd11050139
APA StyleSaita, E., Kishimoto, Y., Ohmori, R., Kondo, K., & Momiyama, Y. (2024). Association between Plasma Interleukin-27 Levels and Cardiovascular Events in Patients Undergoing Coronary Angiography. Journal of Cardiovascular Development and Disease, 11(5), 139. https://doi.org/10.3390/jcdd11050139