Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment and Statistical Analysis
3. Results
3.1. Literature Search Results
3.2. Baseline Characteristics
3.3. Results of the Meta Analysis
3.3.1. Major Adverse Cardiovascular Events (MACEs)
3.3.2. Cardiovascular Disease (CVD) Mortality
3.3.3. All-Cause Mortality
3.3.4. Myocardial Infarction (MI)
3.3.5. Stroke
3.3.6. Hospitalization Due to Acute Coronary Syndrome
3.3.7. Revascularization
3.4. Results of Previous RCTs
Drug | Dose (mg) | Trial | Patients | HDL-C (mmol/L)% Change from Baseline | LDL-C (mmol/L)% Change from Baseline | Endpoints | Side Effects (Increases in) | Target Toxic Effects, Other | Termination, Reason | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Torcetrapib + atorvastatin | 90 | High CVS risk | +40.2 | −18.9 | MACE, NS | SBP, DBP in some patients | NS | 8 weeks, NS | [45] | |
Torcetrapib + atorvastatin | 60 | ILLUMINATE | High CVS risk | +72.1 | −24.9 | Time to 1st MACE | SBP, sodium, bicarbonate, aldosterone, decreased potassium | Risk of CVS events, death from any cause | 12 months, incr. risk of death and CVS events | [41] |
Dalcetrapib | 600 | dal-OUTCOMES | Acute coronary syndrome | +40 | Minimal | ASCVD death, NS | SBP, C-reactive protein | Improved endothelial function | 31 months, futility | [37] |
Dalcetrapib | 900 | Mild hyperlipidemia | +34 | −7 | Phase II | Phase II | None | 4 weeks | [46] | |
Dalcetrapib | 600 | dal-VESSEL | CHD | +31 | NA | %FMD, ABPM | NA | NA | 36 weeks | [38] |
Dalcetrapib | 100 | REALIZE | Hyper-cholesterolaemia, high CVS risk | NA | −40 | %LDL-C | NS | Increased CVS events | 52 weeks, additional F/U 12 weeks | [36] |
Anacetrapib | 100 | HPS3/TIMI55– REVEAL | ASCVD | +104 | −23.4 | MACEs Decreased ASCVD, plasma non-HDL-C, new onset diabetes | SBP, DBP | No safety issues | 4 years, not approved due to high lipophicity and accumulation in adipose tissue | [26] |
Anacetrapib | 100 | DEFINE | CHD | +138.1 | −39.8 | CVS events, deaths | Acceptable | NS | 76 weeks, did not result in adverse CVS effects | [10] |
Anacetrapib | 100 | Hyper- cholesterolemia | +118 | −37 | %HDL-C, %LDL-C, safety profile of anacetrapib | NS | NS | 24 weeks | [33] | |
Anacetrapib | 100 | Dylipidemia, history of CHD | +149 | −38 | %LDL-C, safety profile of anacetrapib | None | None | 24 weeks, F/U 52 weeks | ||
Evacetrapib | 130 | ACCELERATE | High CVS risk | +94.6 | −22.3 | MACE, NS | None | None | 26 months, lack of efficacy | [29] |
Evacetrapib | 100 | Dyslipidemia | +128.8 | −35.9 | NS | None | None | 12 weeks, Lack of efficacy | [47] | |
Evacetrapib | 100 | ACCELERATE | Diabetes mellitus | +131 | −32 | Time to 1st MACE | NS | NS | 26 months | [48] |
Obicetrapib | 5 | TULIP | Mild dyslipidemia | +157.1 | −45.3 | Phase II | None | None | 12 weeks | [43] |
Obicetrapib +ezetimibe | 10 | ROSE2 | Patients with elevated LDL-C | NA | −63 | Phase II | Lipid concentrations, safety, and tolerability. | None | 12 weeks | [44] |
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACCELERATE | Assessment of Clinical Effects of Cholesteryl Ester Transfer Protein Inhibition with Evacetrapib in Patients at a High-Risk for Vascular Outcomes |
ApoB | Apolipoprotein B |
ASCVD | Atherosclerotic cardiovascular disease |
BROADWAY | The Randomized Study to Evaluate the Effect of Obicetrapib on top of Maximum Tolerated Lipid-Modifying Therapies |
BROOKLYN | Evaluate the Effect Of Obicetrapib in Patients with Heterozygous Familial Hypercholesterolemia on top of Maximum Tolerated Lipid-Modifying Therapies |
CVD | Cardiovascular disease |
CETP | Cholesteryl Ester Transfer Protein |
Dal-OUTCOMES | Dalcetrapib on Cardiovascular Mortality and Morbidity in Clinically Stable Patients with a Recent Acute Coronary Syndrome |
Dal-PLAQUE | Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging; |
Dal-VESSEL | A Study Assessing the Effect of Dalcetrapib on Vascular Function in Patients with Coronary Heart Disease (CHD) or CHD-Risk Equivalent Patients |
HDL | High-density lipoprotein |
HDL-C | High-density lipoprotein cholesterol |
HPS | Heart protection study |
ILLUMINATE | Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events |
LDL | Low-density lipoprotein |
LDL-C | Low-density lipoprotein cholesterol |
MACE | Major adverse cardiovascular events |
MI | Myocardial infarction |
OCEAN | Randomized Study of Obicetrapib in Combination with Ezetimibe |
PREVAIL | Cardiovascular Outcome Study to Evaluate the Effect Of Obicetrapib in Patients with Cardiovascular Disease |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RCTs | Randomized controlled trials |
REALIZE | Anacetrapib as Lipid-Modifying Therapy in Patients with Heterozygous Familial Hypercholesterolaemia |
REVEAL | Evaluation of the Effects of Anacetrapib Through Lipid Modification |
ROSE | Randomized Study of Obicetrapib as an Adjunct to Statin Therapy |
ROSE2 | Study to Evaluate the Effect of Obicetrapib in Combination with Ezetimibe as an Adjunct to High-Intensity Statin Therapy |
TIMI | Thrombolysis In Myocardial Infarction |
TULIP | TA-8995 (obicetrapib): Its Use in Patients with Mild Dyslipidaemia |
VLDL | Very low-density lipoprotein |
References
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [PubMed]
- Nurmohamed, N.S.; Navar, A.M.; Kastelein, J.J.P. New and Emerging Therapies for Reduction of LDL-Cholesterol and Apolipoprotein B: JACC Focus Seminar 1/4. J. Am. Coll. Cardiol. 2021, 77, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Gotto, A.M. Low High-Density Lipoprotein Cholesterol as a Risk Factor in Coronary Heart Disease. Circulation 2001, 103, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Zhang, M.; Liu, J.; Wang, J.; Ren, G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr. Atheroscler. Rep. 2023, 25, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Fujita, M.; Ikewaki, K. HDL Functions—Current Status and Future Perspectives. Biomolecules 2023, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Mistry, A.; Ammirati, M.J.; Chrunyk, B.A.; Clark, R.W.; Cong, Y.; Culp, J.S.; Danley, D.E.; Freeman, T.B.; Geoghegan, K.F.; et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat. Struct. Mol. Biol. 2007, 14, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Hesler, C.B.; Swenson, T.L.; Tall, A.R. Purification and characterization of a human plasma cholesteryl ester transfer protein. J. Biol. Chem. 1987, 262, 2275–2282. [Google Scholar] [PubMed]
- Drayna, D.; Jarnagin, A.S.; McLean, J.; Henzel, W.; Kohr, W.; Fielding, C.; Lawn, R. Cloning and sequencing of human cholesteryl ester transfer protein cDNA. Nature 1987, 327, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Hopkins, G.J.; Calvert, G.D. Transfers and exchanges of esterified cholesterol between plasma lipoproteins. Biochem. J. 1982, 208, 1–7. [Google Scholar] [CrossRef]
- Cannon, C.P.; Shah, S.; Dansky, H.M.; Davidson, M.; Brinton, E.A.; Gotto, A.M.; Stepanavage, M.; Liu, S.X.; Gibbons, P.; Ashraf, T.B.; et al. Safety of Anacetrapib in Patients with or at High Risk for Coronary Heart Disease. N. Engl. J. Med. 2010, 363, 2406–2415. [Google Scholar] [CrossRef]
- Haa, Y.C.; Barter, P.J. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp. Biochem. Physiol. Part B Comp. Biochem. 1982, 71, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Nurmohamed, N.S.; Ditmarsch, M.; Kastelein, J.J.P. Cholesteryl ester transfer protein inhibitors: From high-density lipoprotein cholesterol to low-density lipoprotein cholesterol lowering agents? Cardiovasc. Res. 2022, 118, 2919–2931. [Google Scholar] [CrossRef] [PubMed]
- Inazu, A.; Brown, M.L.; Hesler, C.B.; Agellon, L.B.; Koizumi, J.; Takata, K.; Maruhama, Y.; Mabuchi, H.; Tall, A.R. Increased High-Density Lipoprotein Levels Caused by a Common Cholesteryl-Ester Transfer Protein Gene Mutation. N. Engl. J. Med. 1990, 323, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Inazu, A.; Jiang, X.C.; Haraki, T.; Yagi, K.; Kamon, N.; Koizumi, J.; Mabuchi, H.; Takeda, R.; Takata, K.; Moriyama, Y. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J. Clin. Investig. 1994, 94, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.L.; Inazu, A.; Hesler, C.B.; Agellon, L.B.; Mann, C.; Whitlock, M.E.; Marcel, Y.L.; Milne, R.W.; Koizumi, J.; Mabuchi, H.; et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989, 342, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Curb, J.D.; Abbott, R.D.; Rodriguez, B.L.; Masaki, K.; Chen, R.; Sharp, D.S.; Tall, A.R. A prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J. Lipid Res. 2004, 45, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Sharp, D.S.; Grove, J.S.; Bruce, C.; Yano, K.; Curb, J.D.; Tall, A.R. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Investig. 1996, 97, 2917–2923. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A. Association of Cholesteryl Ester Transfer Protein Genotypes with CETP Mass and Activity, Lipid Levels, and Coronary Risk. JAMA 2008, 299, 2777. [Google Scholar] [CrossRef] [PubMed]
- Armitage, J.; Holmes, M.V.; Preiss, D. Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events. J. Am. Coll. Cardiol. 2019, 73, 477–487. [Google Scholar] [CrossRef]
- Després, J.-P.; Lemieux, I.; Dagenais, G.-R.; Cantin, B.; Lamarche, B. HDL-cholesterol as a marker of coronary heart disease risk: The Québec cardiovascular study. Atherosclerosis 2000, 153, 263–272. [Google Scholar] [CrossRef]
- Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease. Am. J. Med. 1977, 62, 707–714. [Google Scholar] [CrossRef]
- Rubins, H.B.; Robins, S.J.; Collins, D.; Fye, C.L.; Anderson, J.W.; Elam, M.B.; Faas, F.H.; Linares, E.; Schaefer, E.J.; Schectman, G.; et al. Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men with Low Levels of High-Density Lipoprotein Cholesterol. N. Engl. J. Med. 1999, 341, 410–418. [Google Scholar] [CrossRef]
- Manninen, V. Lipid Alterations and Decline in the Incidence of Coronary Heart Disease in the Helsinki Heart Study. JAMA J. Am. Med. Assoc. 1988, 260, 641. [Google Scholar] [CrossRef]
- Kastelein, J.J.P.; Hsieh, A.; Dicklin, M.R.; Ditmarsch, M.; Davidson, M.H. Obicetrapib: Reversing the Tide of CETP Inhibitor Disappointments. Curr. Atheroscler. Rep. 2023, 26, 35–44. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Klouras, E.; Barkas, F.; Elisaf, M. Cholesteryl ester transfer protein inhibitors: Challenges and perspectives. Expert Rev. Cardiovasc. Ther. 2016, 14, 953–962. [Google Scholar] [CrossRef]
- The HPS3/TIMI55–REVEAL Collaborative Group; Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; et al. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N. Engl. J. Med. 2017, 377, 1217–1227. [Google Scholar] [CrossRef]
- The HPS3/TIMI55-REVEAL Collaborative Group; Writing Committee; Sammons, E.; Hopewell, J.C.; Chen, F.; Stevens, W.; Wallendszus, K.; Valdes-Marquez, E.; Dayanandan, R.; Knott, C.; et al. Long-term safety and efficacy of anacetrapib in patients with atherosclerotic vascular disease. Eur. Heart J. 2022, 43, 1416–1424. [Google Scholar]
- Davidson, M.; Liu, S.X.; Barter, P.; Brinton, E.A.; Cannon, C.P.; Gotto, A.M.; Leary, E.T.; Shah, S.; Stepanavage, M.; Mitchel, Y.; et al. Measurement of LDL-C after treatment with the CETP inhibitor anacetrapib. J. Lipid Res. 2013, 54, 467–472. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N. Engl. J. Med. 2017, 376, 1933–1942. [Google Scholar] [CrossRef]
- Mohammadpour, A.H.; Akhlaghi, F. Future of Cholesteryl Ester Transfer Protein (CETP) Inhibitors: A Pharmacological Perspective. Clin. Pharmacokinet. 2013, 52, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, F.; Zhan, S. Risk on bias assessment: (2) Revised Cochrane risk of bias tool for individually randomized, parallel group trials (RoB2.0). Zhonghua Liu Xing Bing Xue Za Zhi 2017, 38, 1285–1291. [Google Scholar]
- Ballantyne, C.M.; Shah, S.; Sapre, A.; Ashraf, T.B.; Tobias, S.C.; Sahin, T.; Ye, P.; Dong, Y.; Sheu, W.H.-H.; Kang, D.-H.; et al. A Multiregional, Randomized Evaluation of the Lipid-Modifying Efficacy and Tolerability of Anacetrapib Added to Ongoing Statin Therapy in Patients with Hypercholesterolemia or Low High-Density Lipoprotein Cholesterol. Am. J. Cardiol. 2017, 120, 569–576. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Shah, S.; Kher, U.; Hunter, J.A.; Gill, G.G.; Cressman, M.D.; Ashraf, T.B.; Johnson-Levonas, A.O.; Mitchel, Y.B. Lipid-Modifying Efficacy and Tolerability of Anacetrapib Added to Ongoing Statin Therapy in Patients with Hypercholesterolemia or Low High-Density Lipoprotein Cholesterol. Am. J. Cardiol. 2017, 119, 388–396. [Google Scholar] [CrossRef]
- Teramoto, T.; Daida, H.; Ikewaki, K.; Arai, H.; Maeda, Y.; Nakagomi, M.; Shirakawa, M.; Watanabe, Y.; Kakikawa, T.; Numaguchi, H.; et al. Lipid-modifying efficacy and tolerability of anacetrapib added to ongoing statin therapy in Japanese patients with dyslipidemia. Atherosclerosis 2017, 261, 69–77. [Google Scholar] [CrossRef]
- Kastelein, J.J.P.; Besseling, J.; Shah, S.; Bergeron, J.; Langslet, G.; Hovingh, G.K.; Al-Saady, N.; Koeijvoets, M.; Hunter, J.; Johnson-Levonas, A.O.; et al. Anacetrapib as lipid-modifying therapy in patients with heterozygous familial hypercholesterolaemia (REALIZE): A randomised, double-blind, placebo-controlled, phase 3 study. Lancet 2015, 385, 2153–2161. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 2012, 367, 2089–2099. [Google Scholar] [CrossRef]
- Lüscher, T.F.; Taddei, S.; Kaski, J.-C.; Jukema, J.W.; Kallend, D.; Münzel, T.; Kastelein, J.J.P.; Deanfield, J.E.; dal-VESSEL Investigators. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: The dal-VESSEL randomized clinical trial. Eur. Heart J. 2012, 33, 857–865. [Google Scholar] [CrossRef]
- Fayad, Z.A.; Mani, V.; Woodward, M.; Kallend, D.; Abt, M.; Burgess, T.; Fuster, V.; Ballantyne, C.M.; Stein, E.A.; Tardif, J.-C.; et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): A randomised clinical trial. Lancet 2011, 378, 1547–1559. [Google Scholar] [PubMed]
- Stein, E.A.; Stroes, E.S.G.; Steiner, G.; Buckley, B.M.; Capponi, A.M.; Burgess, T.; Niesor, E.J.; Kallend, D.; Kastelein, J.J.P. Safety and tolerability of dalcetrapib. Am. J. Cardiol. 2009, 104, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.P.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.-C.; Waters, D.D.; et al. Effects of Torcetrapib in Patients at High Risk for Coronary Events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Beyer, T.P.; Zhang, Y.; Schmidt, R.J.; Chen, Y.Q.; Cockerham, S.L.; Zimmerman, K.M.; Karathanasis, S.K.; Cannady, E.A.; Fields, T.; et al. Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure. J. Lipid Res. 2011, 52, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- Hovingh, G.K.; Kastelein, J.J.P.; van Deventer, S.J.H.; Round, P.; Ford, J.; Saleheen, D.; Rader, D.J.; Brewer, H.B.; Barter, P.J. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet 2015, 386, 452–460. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Ditmarsch, M.; Kastelein, J.J.; Nelson, A.J.; Kling, D.; Hsieh, A.; Curcio, D.L.; Maki, K.C.; Davidson, M.H.; Nicholls, S.J. Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: A randomized phase 2 trial. J. Clin. Lipidol. 2023, 17, 491–503. [Google Scholar] [CrossRef] [PubMed]
- McKenney, J.M.; Davidson, M.H.; Shear, C.L.; Revkin, J.H. Efficacy and Safety of Torcetrapib, a Novel Cholesteryl Ester Transfer Protein Inhibitor, in Individuals With Below-Average High-Density Lipoprotein Cholesterol Levelsona Background of Atorvastatin. J. Am. Coll. Cardiol. 2006, 48, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- de Grooth, G.J.; Kuivenhoven, J.A.; Stalenhoef, A.F.H.; de Graaf, J.; Zwinderman, A.H.; Posma, J.L.; van Tol, A.; Kastelein, J.J.P. Efficacy and Safety of a Novel Cholesteryl Ester Transfer Protein Inhibitor, JTT-705, in Humans: A Randomized Phase II Dose-Response Study. Circulation 2002, 105, 2159–2165. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Brewer, H.B.; Kastelein, J.J.P.; Krueger, K.A.; Wang, M.-D.; Shao, M.; Hu, B.; McErlean, E.; Nissen, S.E. Effects of the CETP Inhibitor Evacetrapib Administered as Monotherapy or in Combination With Statins on HDL and LDL Cholesterol: A Randomized Controlled Trial. JAMA 2011, 306, 2099–2109. [Google Scholar] [CrossRef]
- Menon, V.; Kumar, A.; Patel, D.R.; John, J.S.; Riesmeyer, J.; Weerakkody, G.; Ruotolo, G.; Wolski, K.E.; McErlean, E.; Cremer, P.C.; et al. Effect of CETP inhibition with evacetrapib in patients with diabetes mellitus enrolled in the ACCELERATE trial. BMJ Open Diabetes Res. Care 2020, 8, e000943. [Google Scholar] [CrossRef]
- Keene, D.; Price, C.; Shun-Shin, M.J.; Francis, D.P. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: Meta-analysis of randomised controlled trials including 117,411 patients. BMJ 2014, 349, g4379. [Google Scholar] [CrossRef]
- Verdoia, M.; Schaffer, A.; Suryapranata, H.; De Luca, G. Effects of HDL-modifiers on cardiovascular outcomes: A meta-analysis of randomized trials. Nutr. Metab. Cardiovasc. Dis. Nmcd. 2015, 25, 9–23. [Google Scholar] [CrossRef]
- Taheri, H.; Filion, K.B.; Windle, S.B.; Reynier, P.; Eisenberg, M.J. Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cardiology 2020, 145, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Simic, B.; Hermann, M.; Shaw, S.G.; Bigler, L.; Stalder, U.; Dörries, C.; Besler, C.; Lüscher, T.F.; Ruschitzka, F. Torcetrapib impairs endothelial function in hypertension. Eur. Heart J. 2012, 33, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Johns, D.G.; Duffy, J.; Fisher, T.; Hubbard, B.K.; Forrest, M.J. On- and Off-Target Pharmacology of Torcetrapib: Current Understanding and Implications for the Structure Activity Relationships (SAR), Discovery and Development of Cholesteryl Ester-Transfer Protein (CETP) Inhibitors. Drugs 2012, 72, 491–507. [Google Scholar] [CrossRef]
- Ford, J.; Lawson, M.; Fowler, D.; Maruyama, N.; Mito, S.; Tomiyasu, K.; Kinoshita, S.; Suzuki, C.; Kawaguchi, A.; Round, P.; et al. Tolerability pharmacokinetics and pharmacodynamics of TA-8995, a selective cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Br. J. Clin. Pharmacol. 2014, 78, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, G.; Kumar, S.; Johns, D.; Gheyas, F.; Gutstein, D.; Shen, X.; Burton, A.; Lederman, H.; Lutz, R.; Jackson, T.; et al. Disposition into Adipose Tissue Determines Accumulation and Elimination Kinetics of the Cholesteryl Ester Transfer Protein Inhibitor Anacetrapib in Mice. Drug Metab. Dispos. 2016, 44, 428–434. [Google Scholar] [CrossRef]
- Gotto, A.M.; Cannon, C.P.; Li, X.S.; Vaidya, S.; Kher, U.; Brinton, E.A.; Davidson, M.; Moon, J.E.; Shah, S.; Dansky, H.M.; et al. Evaluation of Lipids, Drug Concentration, and Safety Parameters following Cessation of Treatment with the Cholesteryl Ester Transfer Protein Inhibitor Anacetrapib in Patients With or at High Risk for Coronary Heart Disease. Am. J. Cardiol. 2014, 113, 76–834. [Google Scholar] [CrossRef] [PubMed]
- Johns, D.G.; Wang, S.; Rosa, R.; Hubert, J.; Xu, S.; Chen, Y.; Bateman, T.; Blaustein, R.O. Impact of drug distribution into adipose on tissue function: The cholesteryl ester transfer protein (CETP) inhibitor anacetrapib as a test case. Pharmacol. Res. Perspect. 2019, 7, e00543. [Google Scholar] [CrossRef]
- Merck Provides Update on Anacetrapib Development Program. Merck.com. Available online: https://www.merck.com/news/merck-provides-update-on-anacetrapib-development-program/ (accessed on 11 January 2024).
- Krishna, R.; Gheyas, F.; Liu, Y.; Hagen, D.; Walker, B.; Chawla, A.; Cote, J.; Blaustein, R.; Gutstein, D. Chronic Administration of Anacetrapib Is Associated With Accumulation in Adipose and Slow Elimination. Clin. Pharmacol. Ther. 2017, 102, 832–840. [Google Scholar] [CrossRef]
- Small, D.S.; Ke, A.B.; Hall, S.D.; Mantlo, N.; Rotelli, M.; Friedrich, S. Assessment of the persistence of anacetrapib and evacetrapib concentrations using two pharmacokinetic modeling approaches. J. Clin. Pharmacol. 2015, 55, 757–767. [Google Scholar] [CrossRef]
- Nelson, A.J.; Sniderman, A.D.; Ditmarsch, M.; Dicklin, M.R.; Nicholls, S.J.; Davidson, M.H.; Kastelein, J.J.P. Cholesteryl Ester Transfer Protein Inhibition Reduces Major Adverse Cardiovascular Events by Lowering Apolipoprotein B Levels. Int. J. Mol. Sci. 2022, 23, 9417. [Google Scholar] [CrossRef]
- Ference, B.A.; Kastelein, J.J.P.; Ginsberg, H.N.; Chapman, M.J.; Nicholls, S.J.; Ray, K.K.; Packard, C.J.; Laufs, U.; Brook, R.D.; Oliver-Williams, C.; et al. Association of Genetic Variants Related to CETP Inhibitors and Statins with Lipoprotein Levels and Cardiovascular Risk. JAMA 2017, 318, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.V.; Smith, G.D. Dyslipidaemia: Revealing the effect of CETP inhibition in cardiovascular disease. Nat. Rev. Cardiol. 2017, 14, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Lee, Y.J.; Kwon, N.Y.; Ryu, K.H. Old target, but new drug: 2nd generation cetp inhibitor, CKD-508. Atherosclerosis 2020, 315, e258. [Google Scholar] [CrossRef]
- Vachal, P.; Duffy, J.L.; Campeau, L.-C.; Amin, R.P.; Mitra, K.; Murphy, B.A.; Shao, P.P.; Sinclair, P.J.; Ye, F.; Katipally, R.; et al. Invention of MK-8262, a Cholesteryl Ester Transfer Protein (CETP) Inhibitor Backup to Anacetrapib with Best-in-Class Properties. J. Med. Chem. 2021, 64, 13215–13258. [Google Scholar] [CrossRef]
- NewAmsterdam Pharma. A Placebo-Controlled, Double-Blind, Randomized, Phase 3 Study to Evaluate the Effect of 10 mg Obicetrapib in Participants with a History of HeFH Who Are Not Adequately Controlled by Their Lipid Modifying Therapies. Clinical Trial Registration NCT05425745. 2023. Available online: https://www.newamsterdampharma.com/obicetrapibta8995 (accessed on 7 May 2024).
- Study Details|Randomized Study to Evaluate the Effect of Obicetrapib on Top of Maximum Tolerated Lipid-Modifying Therapies|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05142722 (accessed on 11 January 2024).
- Study Details|Cardiovascular Outcome Study to Evaluate the Effect of Obicetrapib in Patients with Cardiovascular Disease|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05202509 (accessed on 11 January 2024).
- Nicholls, S.J.; Ditmarsch, M.; Kastelein, J.J.; Rigby, S.P.; Kling, D.; Curcio, D.L.; Alp, N.J.; Davidson, M.H. Lipid lowering effects of the CETP inhibitor obicetrapib in combination with high-intensity statins: A randomized phase 2 trial. Nat. Med. 2022, 28, 1672–1678. [Google Scholar] [CrossRef]
- van Capelleveen, J.C.; Kastelein, J.J.P.; Zwinderman, A.H.; van Deventer, S.J.H.; Collins, H.L.; Adelman, S.J.; Round, P.; Ford, J.; Rader, D.J.; Hovingh, G.K. Effects of the cholesteryl ester transfer protein inhibitor, TA-8995, on cholesterol efflux capacity and high-density lipoprotein particle subclasses. J. Clin. Lipidol. 2016, 10, 1137–1144.e3. [Google Scholar] [CrossRef] [PubMed]
- NewAmsterdam Pharma. A Placebo-Controlled, Double-Blind, Randomized Phase 2 Study to Evaluate the Effect of Obicetrapib in Combination with Ezetimibe in Participants with Mild Dyslipidemia. Clinical Trial Registration NCT04770389. 2021; Ongoing Trial Details. Available online: https://clinicaltrials.gov/study/NCT04770389 (accessed on 7 May 2024).
- Nicholls, S.J.; Nelson, A.J.; Ditmarsch, M.; Kastelein, J.J.P.; Ballantyne, C.M.; Ray, K.K.; Navar, A.M.; Nissen, S.E.; Golberg, A.C.; Brunham, L.R.; et al. Obicetrapib on Top of Maximally Tolerated Lipid-Modifying Therapies in Participants with or at High Risk for Atherosclerotic Cardiovascular Disease: Rationale and Designs of BROADWAY and BROOKLYN. Am. Heart J. 2024, in press. [Google Scholar] [CrossRef]
- Le Goff, W.; Guerin, M.; Chapman, M.J. Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol. Ther. 2004, 101, 17–38. [Google Scholar] [CrossRef]
- Nofer, J.-R.; Kehrel, B.; Fobker, M.; Levkau, B.; Assmann, G.; von Eckardstein, A. HDL and arteriosclerosis: Beyond reverse cholesterol transport. Atherosclerosis 2002, 161, 1–16. [Google Scholar] [CrossRef]
- Tall, A.R.; Rader, D.J. Trials and Tribulations of CETP Inhibitors. Circ. Res. 2018, 122, 106–112. [Google Scholar] [CrossRef]
- Metzinger, M.P.; Saldanha, S.; Gulati, J.; Patel, K.V.; El-Ghazali, A.; Deodhar, S.; Joshi, P.H.; Ayers, C.; Rohatgi, A. Effect of Anacetrapib on Cholesterol Efflux Capacity: A Substudy of the DEFINE Trial. J. Am. Heart Assoc. 2020, 9, e018136. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.A.; Feig, J.E.; Hewing, B.; Hazen, S.L.; Smith, J.D. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2813–2820. [Google Scholar] [CrossRef] [PubMed]
Study, Year | Drug Regimen | Arm Count | Age (Years) | Mean BMI | Men (%) | Statin Use ‡ (%) | HT (%) | Diabetes (%) | Mean LDL-C (mg/dL) | Mean HDL-C (mg/dL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CETPi | Placebo | CETPi | Placebo | CETPi | Placebo | CETPi | Placebo | CETPi | Placebo | CETPi | Placebo | CETPi | Placebo | CETPi | Placebo | CETPi | Placebo | ||
ACCELERATE, 2017 [29] | Evacetrapib | 6038 | 6054 | 64.8 | 65 | - | - | 77 | 77 | 96.4 | 96.6 | 87.3 | 87.6 | 68.4 | 67.9 | 81.6 | 81.1 | 45.3 | 45.3 |
HPS3/TIMI55- REVEAL Collaborative Group, 2022 [27] | Anacetrapib | 15,225 | 15,224 | 66 | 66 | 29 | 29 | 84 | 84 | 100 | 100 | - | - | 36 | 36 | 61 | 61 | 40 | 40 |
REVEAL, 2017 [26] | Anacetrapib | 15,225 | 15,224 | 67 | 67 | 28.6 | 28.6 | 84 | 84 | 97.2 | 96.9 | - | - | 37.1 | 37.2 | 61 | 61 | 40 | 40 |
DEFINE, 2010 [10] | Anacetrapib | 808 | 804 | 62.5 | 62.9 | 30.4 | 30.1 | 78 | 76 | 99 | 99 | 69 | 67 | 53 | 53 | 81.4 | 82.2 | 40.5 | 40.4 |
Ballantyne et al., 2017 [33] | Anacetrapib | 290 | 292 | 60.3 | 60.9 | 27.7 | 27.8 | 76 | 69 | 100 | 100 | 64 | 72 | 9 | 6 | 87.2 | 88.7 | 43.5 | 43.6 |
Ballantyne et al., 2017 [34] | Anacetrapib | 153 | 154 | 58.7 | 60.3 | 31.1 | 31 | 66 | 70 | 100 | 100 | 72 | 74 | 48 | 51 | 95.7 | 93 | 46.2 | 47.7 |
Teramoto et al., 2017 [35] | Anacetrapib | 204 | 103 | 60.9 | 60.5 | 25.2 | 25.4 | 70 | 64 | 100 | 100 | - | - | 34 | 44 | 125.7 | 128.2 | 53.9 | 56 |
REALIZE, 2015 [36] | Anacetrapib | 203 | 102 | 55 | 55.7 | 28.2 | 27.9 | 59 | 49 | 100 | 100 | 30 | 39 | 5 | 6 | 130 | 130 | 54 | 54 |
dal-OUTCOMES, 2012 [37] | Dalcetrapib | 7938 | 7933 | 60.3 | 60.1 | 28.6 | 28.6 | 80 | 81 | 97 | 98 | 67 | 68 | 24 | 25 | 76.4 | 75.8 | 42.5 | 42.2 |
dal-VESSEL, 2012 [38] | Dalcetrapib | 236 | 236 | 62.3 | 61.9 | 29.6 | 28.7 | 91 | 90 | 94 | 97 | 74 | 75 | 47 | 44 | 81.4 | 79.2 | 39.1 | 38.4 |
dal-PLAQUE, 2011 [39] | Dalcetrapib | 63 | 65 | 62.6 | 64.6 | 29.6 | 29.8 | 80 | 83 | 81 | 92 | 73 | 73 | 30 | 30 | 73 | 73 | 42 | 46 |
Stein et al., 2009 [40] | Dalcetrapib | 89 | 46 | 61.2 | 60.2 | 30.5 | 30.1 | 76 | 83 | - | - | 73 | 65 | 54 | 54 | 77 | 77 | 41 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, W.u.; Yarkoni, M.; Ilyas, M.A.; Athar, F.; Javaid, M.; Ehsan, M.; Khalid, M.T.; Pasha, A.; Selma, A.B.; Yarkoni, A.; et al. Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2024, 11, 152. https://doi.org/10.3390/jcdd11050152
Rehman Wu, Yarkoni M, Ilyas MA, Athar F, Javaid M, Ehsan M, Khalid MT, Pasha A, Selma AB, Yarkoni A, et al. Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Journal of Cardiovascular Development and Disease. 2024; 11(5):152. https://doi.org/10.3390/jcdd11050152
Chicago/Turabian StyleRehman, Wajeeh ur, Merav Yarkoni, Muhammad Abdullah Ilyas, Farwa Athar, Mahnoor Javaid, Muhammad Ehsan, Muhammad Talha Khalid, Ahmed Pasha, Abdelhamid Ben Selma, Alon Yarkoni, and et al. 2024. "Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis" Journal of Cardiovascular Development and Disease 11, no. 5: 152. https://doi.org/10.3390/jcdd11050152
APA StyleRehman, W. u., Yarkoni, M., Ilyas, M. A., Athar, F., Javaid, M., Ehsan, M., Khalid, M. T., Pasha, A., Selma, A. B., Yarkoni, A., Patel, K., Sabouni, M. A., & Rehman, A. u. (2024). Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Journal of Cardiovascular Development and Disease, 11(5), 152. https://doi.org/10.3390/jcdd11050152