The Effects of Exercise Training on Functional Capacity and Quality of Life in Patients with Rheumatoid Arthritis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Criteria
2.3. Quality Assessment
2.4. Outcome Measures
3. Results
3.1. Search Results
3.2. Assessment of the Methodological Quality of the Studies
3.3. Characteristics of Participants
3.4. Exercise Training Protocols
3.5. Effect of Exercise Training on Cardiorespiratory Fitness
3.6. Effect of Exercise Training on Quality of Life
4. Discussion
5. Clinical Perspectives
6. Study Limitations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chauhan, K.; Jandu, J.S.; Brent, L.H.; Al-Dhahir, M.A. Rheumatoid Arthritis; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Adami, G.; Saag, K.G. Osteoporosis Pathophysiology, Epidemiology, and Screening in Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2019, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Myasoedova, E.; Davis, J.; Matteson, E.L.; Crowson, C.S. Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985–2014. Ann. Rheum. Dis. 2020, 79, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Osailan, A.M.; Metsios, G.S.; Duda, J.L.; Kitas, G.D.; Veldhuijzen van Zanten, J.J.C.S.; Elnaggar, R.K. Chronotropic Response and Risk Factors for Cardiovascular Disease in Patients with Rheumatoid Arthritis: A Cross-Sectional Study. J. Clin. Med. 2023, 12, 7256. [Google Scholar] [CrossRef] [PubMed]
- Malm, K.; Bergman, S.; Andersson, M.L.; Bremander, A.; Larsson, I. Quality of life in patients with established rheumatoid arthritis: A phenomenographic study. SAGE Open Med. 2017, 5, 2050312117713647. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Chen, Y.; Zhen, K.; Ren, S.; Lv, Y.; Yu, L. Effect of continuous aerobic exercise on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Front. Physiol. 2023, 14, 1043108. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Garcia, T.; Aniqa, M.; Ali, S.; Ally, A.; Nauli, S.M. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: In Physiology and in Disease States. Am. J. Biomed. Sci. Res. 2022, 15, 153–177. [Google Scholar] [PubMed]
- Siragusa, M.; Fleming, I. The eNOS signalosome and its link to endothelial dysfunction. Pflugers Arch. 2016, 468, 1125–1137. [Google Scholar] [CrossRef]
- Bond, B.; Gates, P.E.; Jackman, S.R.; Corless, L.M.; Williams, C.A.; Barker, A.R. Exercise intensity and the protection from postprandial vascular dysfunction in adolescents. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1443–H1450. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar]
- Pearson, M.J.; Smart, N.A. Effect of exercise training on endothelial function in heart failure patients: A systematic review meta-analysis. Int. J. Cardiol. 2017, 15, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Fuertes-Kenneally, L.; Manresa-Rocamora, A.; Blasco-Peris, C.; Ribeiro, F.; Sempere-Ruiz, N.; Sarabia, J.M.; Climent-Paya, V. Effects and Optimal Dose of Exercise on Endothelial Function in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Sports Med. Open 2023, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Briasoulis, A.; Karatzanos, E.; Zouganeli, V.; Psarra, K.; Pratikaki, M.; Alevra-Prokopiou, A.; Skoularigis, J.; Xanthopoulos, A.; Nanas, S.; et al. The Effects of a Cardiac Rehabilitation Program on Endothelial Progenitor Cells and Inflammatory Profile in Patients with Chronic Heart Failure of Different Severity. J. Clin. Med. 2023, 12, 6592. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Alshamari, M.; Mitsiou, G.; Psarra, K.; Delis, D.; Linardatou, V.; Pittaras, T.; Ntalianis, A.; Papadopoulos, C.; Panagopoulou, N.; et al. The acute and long-term effects of a cardiac rehabilitation program on endothelial progenitor cells in chronic heart failure patients: Comparing two different exercise training protocols. Int. J. Cardiol. Heart Vasc. 2020, 32, 100702. [Google Scholar] [CrossRef] [PubMed]
- Peçanha, T.; Bannell, D.J.; Sieczkowska, S.M.; Goodson, N.; Roschel, H.; Sprung, V.S.; Low, D.A. Effects of physical activity on vascular function in autoimmune rheumatic diseases: A systematic review and meta-analysis. Rheumatology 2021, 60, 3107–3120. [Google Scholar] [CrossRef] [PubMed]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef]
- Metsios, G.S.; Stavropoulos-Kalinoglou, A.; Veldhuijzen van Zanten, J.J.; Treharne, G.J.; Panoulas, V.F.; Douglas, K.M.; Koutedakis, Y.; Kitas, G.D. Rheumatoid arthritis, cardiovascular disease and physical exercise: A systematic review. Rheumatology 2008, 47, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; Corbi, G.; Polito, M.V.; Ciccarelli, M.; Manzo, V.; Torsiello, M.; De Bellis, E.; D’Auria, F.; Vitulano, G.; Piscione, F.; et al. Sirt1 Activity in PBMCs as a Biomarker of Different Heart Failure Phenotypes. Biomolecules 2020, 10, 1590. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Q.; Zeng, Z.; Wu, J.; Zhang, Y.; Chen, Z. Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells. Oxid. Med. Cell Longev. 2017, 2017, 7543973. [Google Scholar] [CrossRef]
- Noreau, L.; Martineau, H.; Roy, L.; Belzile, M. Effects of a modified dance-based exercise on cardiorespiratory fitness, psychological state and health status of persons with rheumatoid arthritis. Am. J. Phys. Med. Rehabil. 1995, 74, 19–27. [Google Scholar] [CrossRef]
- Rintala, P.; Kettunen, H.; McCubbin, J.A. Effects of a water exercise program for individuals with rheumatoid arthritis. Sports Med. Train. Rehabil. 1996, 7, 31–38. [Google Scholar] [CrossRef]
- Bilberg, A.; Ahlmén, M.; Mannerkorpi, K. Moderately intensive exercise in a temperate pool for patients with rheumatoid arthritis: A randomized controlled study. Rheumatology 2005, 44, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, G.B.; Aaronson, L.S.; Gajewski, B.; Embretson, S.E.; Cagle, P.E.; Loudon, J.K.; Miller, P.A. Predictors of exercise and effects of exercise on symptoms, function, aerobic fitness, and disease outcomes of rheumatoid arthritis. Arthritis Rheum. 2007, 57, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Breedland, I.; van Scheppingen, C.; Leijsma, M.; Verheij-Jansen, N.P.; van Weert, E. Effects of a group-based exercise and educational program on physical performance and disease self-management in rheumatoid arthritis: A randomized controlled study. Phys. Ther. 2011, 91, 879–893. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos-Kalinoglou, A.; Metsios, G.S.; Veldhuijzen van Zanten, J.J.; Nightingale, P.; Kitas, G.D.; Koutedakis, Y. Individualised aerobic and resistance exercise training improves cardiorespiratory fitness and reduces cardiovascular risk in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Azeez, M.; Clancy, C.; O’Dwyer, T.; Lahiff, C.; Wilson, F.; Cunnane, G. Benefits of exercise in patients with rheumatoid arthritis: A randomized controlled trial of a patient-specific exercise programme. Clin. Rheumatol. 2020, 39, 1783–1792. [Google Scholar] [CrossRef] [PubMed]
- Antunes-Correa, L.M. Maximal oxygen uptake: New and more accurate predictive equation. Eur. J. Prev. Cardiol. 2018, 25, 1075–1076. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M. Cardiopulmonary exercise testing and risk stratification in heart failure with reduced, midrange or preserved ejection fraction: When nomenclature may not match with pathophysiology. Eur. J. Prev. Cardiol. 2018, 25, 392–394. [Google Scholar] [CrossRef]
- Vanhees, L. The prognostic strength of gas analysis measurement during maximal exercise testing. Eur. J. Prev. Cardiol. 2018, 25, 770–771. [Google Scholar] [CrossRef]
- Volkov, M.; van Schie, K.A.; van der Woude, D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology. Immunol. Rev. 2020, 294, 148–163. [Google Scholar] [CrossRef]
- de Santana, F.S.; da Cunha Nascimento, D.; de Freitas, J.P.; Miranda, R.F.; Muniz, L.F.; Santos Neto, L.; da Mota, L.M.; Balsamo, S. Avaliação da capacidade funcional em pacientes com artrite reumatoide: Implicações para a recomendação de exercícios físicos [Assessment of functional capacity in patients with rheumatoid arthritis: Implications for recommending exercise]. Rev. Bras. Reumatol. 2014, 54, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Munsterman, T.; Takken, T.; Wittink, H. Are persons with rheumatoid arthritis deconditioned? A review of physical activity and aerobic capacity. BMC Musculoskelet. Disord. 2012, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Niebauer, J.; Cooke, J.P. Cardiovascular effects of exercise: Role of endothelial shear stress. J. Am. Coll. Cardiol. 1996, 28, 1652–1660. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Marquez, D.X.; Aguiñaga, S.; Vásquez, P.M.; Conroy, D.E.; Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Sheppard, B.B.; Petruzzello, S.J.; et al. A systematic review of physical activity and quality of life and well-being. Transl. Behav. Med. 2020, 10, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Slimani, M.; Ramirez-Campillo, R.; Paravlic, A.; Hayes, L.D.; Bragazzi, N.L.; Sellami, M. The Effects of Physical Training on Quality of Life, Aerobic Capacity, and Cardiac Function in Older Patients with Heart Failure: A Meta-Analysis. Front. Physiol. 2018, 9, 1564. [Google Scholar] [CrossRef] [PubMed]
- Ostman, C.; Jewiss, D.; Smart, N.A. The Effect of Exercise Training Intensity on Quality of Life in Heart Failure Patients: A Systematic Review and Meta-Analysis. Cardiology 2017, 136, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Cai, X.; Yin, H.; Sun, Z.; Zügel, M.; Steinacker, J.M.; Schumann, U. Exercise training and endothelial function in patients with type 2 diabetes: A meta-analysis. Cardiovasc. Diabetol. 2018, 17, 64. [Google Scholar] [CrossRef]
- Gao, J.; Pan, X.; Li, G.; Chatterjee, E.; Xiao, J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J. Cardiovasc. Transl. Res. 2022, 15, 604–620. [Google Scholar] [CrossRef]
- Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med. Princ. Pract. 2018, 27, 501–507. [Google Scholar] [CrossRef]
- Pereira Nunes Pinto, A.C.; Natour, J.; de Moura Castro, C.H.; Eloi, M.; Lombardi Junior, I. Acute effect of a resistance exercise session on markers of cartilage breakdown and inflammation in women with rheumatoid arthritis. Int. J. Rheum. Dis. 2017, 20, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Osailan, A.; Metsios, G.S.; Rouse, P.C.; Ntoumanis, N.; Duda, J.L.; Kitas, G.D.; Veldhuijzen van Zanten, J.J. Factors associated with parasympathetic activation following exercise in patients with rheumatoid arthritis: A cross-sectional study. BMC Cardiovasc. Disord. 2016, 16, 86. [Google Scholar] [CrossRef]
- Bağlan Yentur, S.; Ercan, Z.; Deniz, G.; Karataş, A.; Gür, M.; Alkan, G.; Koca, S.S. Effects of acute aerobic exercise on brain-derived neurotrophic factor level in rheumatoid arthritis patients. Arch. Rheumatol. 2022, 38, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Cheon, Y.H.; Lee, S.G.; Kim, M.; Kim, H.O.; Sun Suh, Y.; Park, K.S.; Kim, R.B.; Yang, H.S.; Kim, J.M.; Son, C.N.; et al. The association of disease activity, pro-inflammatory cytokines, and neurotrophic factors with depression in patients with rheumatoid arthritis. Brain Behav. Immun. 2018, 73, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, F.; Qin, D.; Chen, H.; Wang, J.; Wang, J.; Song, S.; Wang, C.; Wang, Y.; Liu, S.; et al. The role of brain derived neurotrophic factor in central nervous system. Front. Aging Neurosci. 2022, 14, 986443. [Google Scholar] [CrossRef] [PubMed]
- Porter, G.A.; O’Connor, J.C. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J. Psychiatry 2022, 12, 77–97. [Google Scholar] [CrossRef]
- Coelho-Oliveira, A.C.; Lacerda, A.C.R.; de Souza, A.L.C.; Santos, L.M.M.; da Fonseca, S.F.; Dos Santos, J.M.; Ribeiro, V.G.C.; Leite, H.R.; Figueiredo, P.H.S.; Fernandes, J.S.C.; et al. Acute Whole-Body Vibration Exercise Promotes Favorable Handgrip Neuromuscular Modifications in Rheumatoid Arthritis: A Cross-Over Randomized Clinical. Biomed. Res. Int. 2021, 2021, 9774980. [Google Scholar] [CrossRef]
- Balchin, C.; Tan, A.L.; Golding, J.; Bissell, L.A.; Wilson, O.J.; McKenna, J.; Stavropoulos-Kalinoglou, A. Acute effects of exercise on pain symptoms, clinical inflammatory markers and inflammatory cytokines in people with rheumatoid arthritis: A systematic literature review. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221114104. [Google Scholar] [CrossRef]
Criteria | Noreu et al. [21] | Rintala et al. [22] | Bilberg et al. [23] | Neuberger et al. [24] | Breedland et al. [25] | Stavropoulos-Kalinoglou et al. [26] | Azeez et al. [27] |
---|---|---|---|---|---|---|---|
Criterion 1: Eligibility criteria | √ | √ | √ | √ | √ | √ | √ |
Criterion 2: Random allocation | √ | √ | √ | √ | √ | √ | |
Criterion 3: Concealed allocation | √ | ||||||
Criterion 4: Baseline compararability | √ | √ | √ | √ | √ | √ | √ |
Criterion 5: Blinded subjects | |||||||
Criterion 6: Blinded therapists | |||||||
Criterion 7: Blinded assesors | √ | √ | √ | ||||
Criterion 8: Adequate follow-up | √ | √ | √ | √ | √ | ||
Criterion 9: Intention-to-treat analysis | √ | √ | |||||
Criterion 10: Between-group comparisons | √ | √ | √ | √ | √ | √ | √ |
Criterion 11: Point estimates and variability | √ | √ | √ | √ | √ | √ | √ |
Total score | 4/10 | 5/10 | 6/10 | 6/10 | 7/10 | 5/10 | 5/10 |
Studies | Groups | Females/Males (n) | Year after Diagnosis | Age (Years) | BMI (kg/m2) | Peak VO2 (mL/kg/min) | DAS-28 | CPET Characteristics for All Patients (Test/Protocol) | Medication (%) |
---|---|---|---|---|---|---|---|---|---|
Noreau et al. [21] | I (n = 19) | 12/7 | 8.1 ± 8.2 | 49.3 ± 13.0 | NA | 22.2 ± 7.4 | NA | Maximal cycle ergometer test/Bruce protocol |
|
C (n = 10) | 8/2 | 11.0 ± 5.1 | 49.4 ± 11.9 | NA | 22.7 ± 6.5 | NA |
| ||
Rintala et al. [22] | I (n = 18) | 15/3 | <5 (6 patients), ≥5 (12 patients) | <50 (9 patients), ≥50 (9 patients) | NA | 27.9 ± 7.1 | NA | Submaximal cycle ergometer test/Bruce protocol |
|
C (n = 16) | 14/2 | <5 (6 patients), ≥5 (10 patients) | <50 (8 patients), ≥50 (8 patients) | NA | 25.7 ± 5.1 | NA | |||
Bilberg et al. [23] | I (n = 20) | NA | 31 ± 15.8 * | 49 (32–62) | NA | 34.0 ± 10.9 | 4.1 ± 1.5 | Submaximal cycle ergometer test/Astrand–Rhyming protocol |
|
C (n = 23) | NA | 35 ± 17.1 * | 46 (21–65) | NA | 34.2 ± 6.7 | 4.0 ± 1.3 |
| ||
Neuberger et al. [24] | I1 (n = 68) | NA | 8 (0.5–50) for total sample | 55.5 (40–70) for total sample | NA | 22.50 ± 9.15 | NA | Submaximal cycle ergometer test/Astrand–Rhyming protocol | NSAID or DMARD as standard therapy for total sample |
I2 (n = 79) | NA | 23.32 ± 7.19 | NA | ||||||
C (n = 73) | NA | 21.10 ± 8.15 | NA | ||||||
Breedland et al. [25] | I (n = 19) | 12/7 | 9.7 ± 14.0 | 45 ± 11.9 | NA | 31.52 ± 10.17 | 2.9 ± 1.1 | Submaximal cycle ergometer test/Astrand–Rhyming protocol |
|
C (n = 15) | 12/13 | 5.9 ± 7.2 | 51.8 ± 9.4 | NA | 25.99 ± 6.07 | 3.1 ± 0.9 |
| ||
Stavropoulos-Kalinoglou et al. [26] | I (n = 18) | 14/4 | 5.5 (3.0–9.7) | 55.0 ± 9.8 | 28.7 ± 5.1 | 24.8 ± 7.6 | 3.2 ± 1.2 | Maximal treadmill test/Ramp test protocol | DMARD as standard therapy for total sample |
C (n = 18) | 14/4 | 7.0 (5.0–10.0) | 52.8 ± 10.1 | 28.8 ± 5.3 | 22.4 ± 5.7 | 3.2 ± 1.1 | |||
Azeez et al. [27] | I (n = 28) | 24/4 | 2 (2–21) | 58.5 (34–73) | 26.1 (18–47) | 24.3 (16–31.8) | 2.37 (0.49–3.7) | Submaximal treadmill test/Modified Bruce protocol |
|
C (n = 24) | 20/4 | 9 (1–43) | 63 (36–74) | 26.3 (21–46) | 25.9 (14–31.8) | 2.69 (0.49–5.3) |
|
Studies | Interventions by Group | Frequency | Session Duration | Intervention Duration | Outcomes | Main Results |
---|---|---|---|---|---|---|
Noreu et al. [21] | I: Warm-up (10 min), Exercise (15–30 min): aerobic exercise in the format of aerobic dancing, without jumps or sudden movements. 3 weeks: 50% of HRR max. 9 weeks: 70% of HRR max. Cool-down (10 min) Counseling C: usual care | Twice per wk Once per wk | 35–50 min | 12 wk | Peak VO2 QoL (AIMS, POMS) | Peak VO2
AIMS
|
Rintala et al. [22] | I: Water exercise program in a pool. Warm-up (12 min) Exercise: arm, trunk, and leg movements, such as rotation of the upper body, abduction and adduction of arm and legs, and flexion and extension of arms; some included the use of fins and balls (35 min). Cool-down included stretching, floating, and breathing exercises. C: usual care | 2 times/wk | 45–60 min Increased gradually | 12 wk | Peak VO2 | Peak VO2
|
Bilberg et al. [23] | I: exercises for aerobic capacity, of moderate aerobic intensity, dynamic (eccentric and concentric), static muscle strength, and muscle endurance in the upper and lower extremities, flexibility, coordination, and relaxation. C: usual care | 2 times/wk | 45 min | 12 wk | Peak VO2 QoL (SF-36, AIMS2) | Peak VO2
SF-36
|
Neuberger et al. [24] | I 1: Gym-based warm-up, low-impact aerobic exercise, strengthening exercises, and cool-down, 60% and 80% MHR. Weeks 1–3: 20, 10, 20, and 10 min; weeks 2–3: 15, 20, 15, and 10 min; weeks 4–6: 10, 25, 20, and 5 min; and weeks 7–12: 10, 30, 15, and 5 min. I 2: The same program, but home- based from a videotape. C: usual care | 3 times/wk | 60 min | 12 wk | Peak VO2 QoL (POMS, MAF, CES-D) | Peak VO2
|
Breedland et al. [25] | I: Muscle exercise circuit at 40–60% of 1 RM for 3 sets × 20 reps with increased load 5%/wk. Bicycle training, 10–20 min, at 60% HRmax. Other activities included badminton, table tennis, bowling, uni-hockey, circuit training, and aqua jogging. C: usual care | 2 times/wk | 90 min | 8 wk | Peak VO2 DAS28 QoL (Dutch-AIMS2, ASES) | Peak VO2
No significant differences in DAS28 scores between groups. QoL Dutch-AIMS2
|
Stavropoulos- Kalinoglou et al. [26] | I: First 3 months aerobic exercise. Three circuits of 3–4 exercises (walk on treadmill, cycle, row, or hand ergometer) at 70% VO2max for 3–4 min, with 1 min resting interval. After 3 months, resistance training was added to the schedule above. Three sets of 4 resistance exercises (leg press, chest press, shoulder press, pull-ups) for 12–15 reps. C: usual care | 3 times/wk | 50–60 min | 6 months | Peak VO2 DAS28 QoL (HAQ) At 3 and at 6 months | Peak VO2
|
Azeez et al. [27] | I: Personalized exercise program. Cardiovascular exercises, such as walking, cycling, or swimming, depended on the patient’s preferences. Strength exercises for the upper body (biceps curls, triceps extensions, and shoulder press). Exercises for the lower body (leg squat). Resistance bands and balls were used for grip strength. C: usual care | NA | NA | 3 months | Peak VO2 DAS28 QoL (HAQ, GFI) | Peak VO2
No difference in DAS28 within and between groups (p > 0.05). QoL HAQ
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiou, A.; Papazachou, O.; Rovina, N.; Nanas, S.; Dimopoulos, S.; Kourek, C. The Effects of Exercise Training on Functional Capacity and Quality of Life in Patients with Rheumatoid Arthritis: A Systematic Review. J. Cardiovasc. Dev. Dis. 2024, 11, 161. https://doi.org/10.3390/jcdd11060161
Athanasiou A, Papazachou O, Rovina N, Nanas S, Dimopoulos S, Kourek C. The Effects of Exercise Training on Functional Capacity and Quality of Life in Patients with Rheumatoid Arthritis: A Systematic Review. Journal of Cardiovascular Development and Disease. 2024; 11(6):161. https://doi.org/10.3390/jcdd11060161
Chicago/Turabian StyleAthanasiou, Amalia, Ourania Papazachou, Nikoletta Rovina, Serafim Nanas, Stavros Dimopoulos, and Christos Kourek. 2024. "The Effects of Exercise Training on Functional Capacity and Quality of Life in Patients with Rheumatoid Arthritis: A Systematic Review" Journal of Cardiovascular Development and Disease 11, no. 6: 161. https://doi.org/10.3390/jcdd11060161
APA StyleAthanasiou, A., Papazachou, O., Rovina, N., Nanas, S., Dimopoulos, S., & Kourek, C. (2024). The Effects of Exercise Training on Functional Capacity and Quality of Life in Patients with Rheumatoid Arthritis: A Systematic Review. Journal of Cardiovascular Development and Disease, 11(6), 161. https://doi.org/10.3390/jcdd11060161