The Evolving Role of Genetic Evaluation in the Prenatal Diagnosis and Management of Congenital Heart Disease
Abstract
:1. Introduction
2. Common Genetic Syndromes in CHD
3. Genetic Counseling
4. Prenatal Genetic Testing
5. Postnatal Genetic Testing in CHD
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Richards, A.A.; Garg, V. Genetics of Congenital Heart Disease. Curr. Cardiol. Rev. 2010, 6, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, J.; Garg, V. Genetics of congenital heart disease: A narrative review of recent advances and clinical implications. Transl. Pediatr. 2021, 10, 2366–2386. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, M.E.; Basson, C.T.; Benson, D.W., Jr.; Gelb, B.D.; Giglia, T.M.; Goldmuntz, E.; McGee, G.; Sable, C.A.; Srivastava, D.; Webb, C.L.; et al. Genetic Basis for Congenital Heart Defects: Current Knowledge. Circulation 2007, 115, 3015–3038. [Google Scholar] [CrossRef] [PubMed]
- Nees, S.N.; Chung, W.K. Genetic Basis of Human Congenital Heart Disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a036749. [Google Scholar] [CrossRef] [PubMed]
- Patt, E.; Singhania, A.; Roberts, A.E.; Morton, S.U. The Genetics of Neurodevelopment in Congenital Heart Disease. Can. J. Cardiol. 2023, 39, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, P.C.; Adler, B.J.; Parrott, A.; Anixt, J.; Mason, K.; Phillips, J.; Cooper, D.S.; Ware, S.M.; Marino, B.S. High burden of genetic conditions diagnosed in a cardiac neurodevelopmental clinic. Cardiol. Young 2017, 27, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Sood, E.; Newburger, J.W.; Anixt, J.S.; Cassidy, A.R.; Jackson, J.L.; Jonas, R.A.; Lisanti, A.J.; Lopez, K.N.; Peyvandi, S.; Marino, B.S.; et al. Neurodevelopmental Outcomes for Individuals with Congenital Heart Disease: Updates in Neuroprotection, Risk-Stratification, Evaluation, and Management: A Scientific Statement from the American Heart Association. Circulation 2024, 149, e997–e1022. [Google Scholar] [CrossRef] [PubMed]
- Simmons, M.A.; Brueckner, M. The genetics of congenital heart disease… understanding and improving long-term outcomes in congenital heart disease: A review for the general cardiologist and primary care physician. Curr. Opin. Pediatr. 2017, 29, 520–528. [Google Scholar] [CrossRef]
- Knowles, M.R.; Daniels, L.A.; Davis, S.D.; Zariwala, M.A.; Leigh, M.W. Primary Ciliary Dyskinesia. Recent Advances in Diagnostics, Genetics, and Characterization of Clinical Disease. Am. J. Respir. Crit. Care Med. 2013, 188, 913–922. [Google Scholar] [CrossRef]
- Kohaut, E.; Ader, F.; Rooryck, C.; Pelluard, F.; Bonniere, M.; Andre, G.; Sauvestre, F.; Roth, P.; Khraiche, D.; Bessieres, B.; et al. Morphological and genetic causes of fetal cardiomyopathies. Clin. Genet. 2023, 104, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation 2019, 140, E9–E68. [Google Scholar] [CrossRef] [PubMed]
- Hartman, R.J.; Rasmussen, S.A.; Botto, L.D.; Riehle-Colarusso, T.; Martin, C.L.; Cragan, J.D.; Shin, M.; Correa, A. The Contribution of Chromosomal Abnormalities to Congenital Heart Defects: A Population-Based Study. Pediatr. Cardiol. 2011, 32, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, E.; Greenberg, F.; Keating, M.T.; McCaskill, C.; Shaffer, L.G. Deletions of the elastin gene at 7q11.23 occur in approximately 90% of patients with Williams syndrome. Am. J. Hum. Genet. 1995, 56, 1156–1161. [Google Scholar] [PubMed]
- Grossfeld, P.D.; Mattina, T.; Lai, Z.; Favier, R.; Jones, K.L.; Cotter, F.; Jones, C. The 11q terminal deletion disorder: A prospective study of 110 cases. Am. J. Med. Genet. Part A 2004, 129A, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, J.H.; Burt, A.A.; Crosslin, D.R.; Burnham, N.; Kim, C.E.; McDonald-McGinn, D.M.; Zackai, E.H.; Nicolson, S.C.; Spray, T.L.; et al. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival. J. Thorac. Cardiovasc. Surg. 2016, 151, 1147–1151.e4. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, M.E.; Brueckner, M.; Chung, W.K.; Garg, V.; Lacro, R.V.; McGuire, A.L.; Mital, S.; Priest, J.R.; Pu, W.T.; Roberts, A.; et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement from the American Heart Association. Circulation 2018, 138, e653–e711. [Google Scholar] [CrossRef] [PubMed]
- Copel, J.A.; Pilu, G.; Kleinman, C.S. Congenital heart disease and extracardiac anomalies: Associations and indications for fetal echocardiography. Am. J. Obstet. Gynecol. 1986, 154, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Fogel, M.; Copel, J.A.; Cullen, M.T.; Hobbins, J.C.; Kleinman, C.S. Congenital Heart Disease and Fetal Thoracoabdominal Anomalies: Associations in Utero and the Importance of Cytogenetic Analysis. Am. J. Perinatol. 1991, 8, 411–416. [Google Scholar] [CrossRef]
- Kasparian, N.A.; Fidock, B.; Sholler, G.F.; Camphausen, C.; Murphy, D.N.; Cooper, S.G.; Kaul, R.; Jones, O.; Winlaw, D.S.; Kirk, E.P. Parents’ perceptions of genetics services for congenital heart disease: The role of demographic, clinical, and psychological factors in determining service attendance. Genet. Med. 2014, 16, 460–468. [Google Scholar] [CrossRef]
- Kasparian, N.A.; Lourenco, R.D.A.; Winlaw, D.S.; Sholler, G.F.; Viney, R.; Kirk, E.P. Tell me once, tell me soon: Parents’ preferences for clinical genetics services for congenital heart disease. Genet. Med. 2018, 20, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Blue, G.M.; Kasparian, N.A.; Sholler, G.F.; Kirk, E.P.; Winlaw, D.S. Genetic counselling in parents of children with congenital heart disease significantly improves knowledge about causation and enhances psychosocial functioning. Int. J. Cardiol. 2015, 178, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Ison, H.E.; Griffin, E.L.; Parrott, A.; Shikany, A.R.; Meyers, L.; Thomas, M.J.; Syverson, E.; Demo, E.M.; Fitzgerald, K.K.; Fitzgerald-Butt, S.; et al. Genetic counseling for congenital heart disease–Practice resource of the National Society of Genetic Counselors. J. Genet. Couns. 2022, 31, 9–33. [Google Scholar] [CrossRef] [PubMed]
- Warsof, S.L.; Larion, S.; Abuhamad, A.Z. Overview of the impact of noninvasive prenatal testing on diagnostic procedures. Prenat. Diagn. 2015, 35, 972–979. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics Committee on Genetics Society for Maternal-Fetal Medicine. Screening for Fetal Chromosomal Abnormalities. Obstet. Gynecol. 2020, 136, e48–e69. [Google Scholar] [CrossRef] [PubMed]
- Taneja, P.A.; Snyder, H.L.; de Feo, E.; Kruglyak, K.M.; Halks-Miller, M.; Curnow, K.J.; Bhatt, S. Noninvasive prenatal testing in the general obstetric population: Clinical performance and counseling considerations in over 85,000 cases. Prenat. Diagn. 2016, 36, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Dar, P.; Jacobsson, B.; MacPherson, C.; Egbert, M.; Malone, F.; Wapner, R.J.; Roman, A.S.; Khalil, A.; Faro, R.; Madankumar, R.; et al. Cell-free DNA screening for trisomies 21, 18, and 13 in pregnancies at low and high risk for aneuploidy with genetic confirmation. Am. J. Obstet. Gynecol. 2022, 227, 259.e1–259.e14. [Google Scholar] [CrossRef]
- Gil, M.M.; Accurti, V.; Santacruz, B.; Plana, M.N.; Nicolaides, K.H. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: Updated meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Dungan, J.S.; Klugman, S.; Darilek, S.; Malinowski, J.; Akkari, Y.M.; Monaghan, K.G.; Erwin, A.; Best, R.G. Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2023, 25, 100336. [Google Scholar] [CrossRef]
- Mohan, P.; Lemoine, J.; Trotter, C.; Rakova, I.; Billings, P.; Peacock, S.; Kao, C.-Y.; Wang, Y.; Xia, F.; Eng, C.M.; et al. Clinical experience with non-invasive prenatal screening for single-gene disorders. Ultrasound Obstet. Gynecol. 2022, 59, 33–39. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Saucier, J.B.; Feng, Y.; Jiang, Y.; Sinson, J.; McCombs, A.K.; Schmitt, E.S.; Peacock, S.; Chen, S.; et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat. Med. 2019, 25, 439–447. [Google Scholar] [CrossRef]
- Sparks, T.N.; Dugoff, L. How to choose a test for prenatal genetic diagnosis: A practical overview. Am. J. Obstet. Gynecol. 2023, 228, 178–186. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Bui, T. Molecular cytogenetic and rapid aneuploidy detection methods in prenatal diagnosis. Am. J. Med. Genet. Part C Semin. Med. Genet. 2007, 145C, 87–98. [Google Scholar] [CrossRef] [PubMed]
- South, S.T.; Lee, C.; Lamb, A.N.; Higgins, A.W.; Kearney, H.M.; Working Group for the American College of Medical Genetics; Genomics (ACMG) Laboratory Quality Assurance Committee. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: Revision 2013. Genet. Med. 2013, 15, 901–909. [Google Scholar] [CrossRef]
- Parchem, J.G.; Sparks, T.N.; Gosnell, K.; Norton, M.E. Utility of chromosomal microarray in anomalous fetuses. Prenat. Diagn. 2018, 38, 140–147. [Google Scholar] [CrossRef]
- Vora, N.L.; Norton, M.E. Prenatal exome and genome sequencing for fetal structural abnormalities. Am. J. Obstet. Gynecol. 2023, 228, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Petrovski, S.; Aggarwal, V.; Giordano, J.L.; Stosic, M.; Wou, K.; Bier, L.; Spiegel, E.; Brennan, K.; Stong, N.; Jobanputra, V.; et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: A prospective cohort study. Lancet 2019, 393, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Mellis, R.; Oprych, K.; Scotchman, E.; Hill, M.; Chitty, L.S. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat. Diagn. 2022, 42, 662–685. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.; McMullan, D.J.; Eberhardt, R.Y.; Rinck, G.; Hamilton, S.J.; Quinlan-Jones, E.; Prigmore, E.; Keelagher, R.; Best, S.K.; Carey, G.K.; et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet 2019, 393, 747–757. [Google Scholar] [CrossRef]
- Van den Veyver, I.B.; Chandler, N.; Wilkins-Haug, L.E.; Wapner, R.J.; Chitty, L.S.; Directors, I.B.O. International Society for Prenatal Diagnosis Updated Position Statement on the use of genome-wide sequencing for prenatal diagnosis. Prenat. Diagn. 2022, 42, 796–803. [Google Scholar] [CrossRef]
- Sweeney, N.M.; Nahas, S.A.; Chowdhury, S.; Batalov, S.; Clark, M.; Caylor, S.; Cakici, J.; Nigro, J.J.; Ding, Y.; Veeraraghavan, N.; et al. Rapid whole genome sequencing impacts care and resource utilization in infants with congenital heart disease. Npj Genom. Med. 2021, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, J.H.; Burt, A.A.; Crosslin, D.R.; Burnham, N.; McDonald-McGinn, D.M.; Zackai, E.H.; Nicolson, S.C.; Spray, T.L.; Stanaway, I.B.; et al. Patient Genotypes Impact Survival After Surgery for Isolated Congenital Heart Disease. Ann. Thorac. Surg. 2014, 98, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Harden, B.; Tian, X.; Giese, R.; Nakhleh, N.; Kureshi, S.; Francis, R.; Hanumanthaiah, S.; Li, Y.; Swisher, M.; Kuehl, K.; et al. Increased postoperative respiratory complications in heterotaxy congenital heart disease patients with respiratory ciliary dysfunction. J. Thorac. Cardiovasc. Surg. 2014, 147, 1291–1298.e2. [Google Scholar] [CrossRef] [PubMed]
- Landis, B.J.; Helm, B.M.; Herrmann, J.L.; Hoover, M.C.; Durbin, M.D.; Elmore, L.R.; Huang, M.; Johansen, M.; Li, M.; Przybylowski, L.F.; et al. Learning to Crawl: Determining the Role of Genetic Abnormalities on Postoperative Outcomes in Congenital Heart Disease. J. Am. Heart Assoc. 2022, 11, e026369. [Google Scholar] [CrossRef] [PubMed]
- D’souza, E.E.; Findley, T.O.; Hu, R.; Khazal, Z.S.H.; Signorello, R.; Dash, C.; D’gama, A.M.; Feldman, H.A.; Agrawal, P.B.; Wojcik, M.H.; et al. Genomic testing and molecular diagnosis among infants with congenital heart disease in the neonatal intensive care unit. J. Perinatol. 2024, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Allred, E.T.; Perens, E.A.; Coufal, N.G.; Kobayashi, E.S.; Kingsmore, S.F.; Dimmock, D.P. Genomic sequencing has a high diagnostic yield in children with congenital anomalies of the heart and urinary system. Front. Pediatr. 2023, 11, 1157630. [Google Scholar] [CrossRef] [PubMed]
- Helm, B.M.; Landis, B.J.; Ware, S.M. Genetic Evaluation of Inpatient Neonatal and Infantile Congenital Heart Defects: New Findings and Review of the Literature. Genes 2021, 12, 1244. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.S.; Chaturvedi, R.R.; Liston, E.; Manshaei, R.; Aul, R.B.; Bowdin, S.; Cohn, I.; Curtis, M.; Dhir, P.; Hayeems, R.Z.; et al. The Cardiac Genome Clinic: Implementing genome sequencing in pediatric heart disease. Genet. Med. 2020, 22, 1015–1024. [Google Scholar] [CrossRef]
- Ahrens-Nicklas, R.C.; Khan, S.; Garbarini, J.; Woyciechowski, S.; D’Alessandro, L.; Zackai, E.H.; Deardorff, M.A.; Goldmuntz, E. Utility of genetic evaluation in infants with congenital heart defects admitted to the cardiac intensive care unit. Am. J. Med. Genet. Part A 2016, 170, 3090–3097. [Google Scholar] [CrossRef]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.; Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef]
- Shikany, A.R.; Landis, B.J.; Parrott, A.; Miller, E.M.; Coyan, A.; Walters, L.; Hinton, R.B.; Goldenberg, P.; Ware, S.M. A Comprehensive Clinical Genetics Approach to Critical Congenital Heart Disease in Infancy. J. Pediatr. 2020, 227, 231–238.e14. [Google Scholar] [CrossRef]
- Geddes, G.C.; Basel, D.; Frommelt, P.; Kinney, A.; Earing, M. Genetic Testing Protocol Reduces Costs and Increases Rate of Genetic Diagnosis in Infants with Congenital Heart Disease. Pediatr. Cardiol. 2017, 38, 1465–1470. [Google Scholar] [CrossRef]
- Manickam, K.; McClain, M.R.; Demmer, L.A.; Biswas, S.; Kearney, H.M.; Malinowski, J.; Massingham, L.J.; Miller, D.; Yu, T.W.; Hisama, F.M. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Swaggart, K.A.; Swarr, D.T.; Tolusso, L.K.; He, H.; Dawson, D.B.; Suhrie, K.R. Making a Genetic Diagnosis in a Level IV Neonatal Intensive Care Unit Population: Who, When, How, and at What Cost? J. Pediatr. 2019, 213, 211–217.e4. [Google Scholar] [CrossRef]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2023, 25, 100866. [Google Scholar] [CrossRef]
Mutation | Incidence of CHD | Associated CHD | Non-Cardiac Malformations and Features | Detectable by Testing Method | ||||
---|---|---|---|---|---|---|---|---|
K | CMA | GPS | ES | GS | ||||
Aneuploidies | ||||||||
Trisomy 13 (Patau) | 60–80% | ASD, VSD, PDA, TOF, PHTN | Facial dysmorphism, cleft lip/palate, CNS abnormalities, polydactyly, GI/GU anomalies | x | x | x | x | |
Trisomy 18 (Edward) | 60–80% | ASD, VSD, PDA, PHTN | Facial dysmorphism, hypotonia, growth retardation, rocker-bottom feet, clenched hands, GI/GU anomalies, CNS abnormalities, IUGR | x | x | x | x | |
Trisomy 21 (Down) | 35–50% | AVSD, VSD, ASD, PDA | Facial dysmorphism, GI anomalies, hypothyroidism, hypotonia, vertebral anomalies | x | x | x | x | |
Monosomy X (Turner) | 25–45% | Left-sided obstructive lesions (CoA, BAV, AS) | Webbed neck, shield chest, renal anomalies, lymphedema, ovarian dysgenesis, cystic hygroma (often with internal septation), nonimmune hydrops | x | x | x | x | |
4p- (Wolf Hirschhorn) | 30–80% | ASD | Facial dysmorphism, scoliosis, cleft lip/palate, seizures, intellectual disability | x | x | x | x | |
5p- (Cri de Chat) | 5–30% | VSD, TOF, PA, DORV | Microcephaly, hypotonia, high-pitched cry | x | x | x | x | |
Copy Number Variants | ||||||||
22q11.2 deletion (DiGeorge) | 75% | Conotruncal anomalies (TOF, IAA, truncus arteriosus) | Cleft palate, developmental delays, facial dysmorphism, renal anomaly, absent thymus | x | x | x | ||
7q11.23 deletion (Williams) | 75–80% | Supravalvar AS, branch PS, VSD | Arterial stenosis, facial dysmorphism, intellectual disability, IUGR | x | x | x | ||
11q24-25 deletion (Jacobsen) | 55% | Left-sided obstructive lesions, VSD | Facial dysmorphism, skull abnormality, bleeding disorder, GI/GU abnormalities | x | x | x | ||
Single-Gene Changes | ||||||||
Rasopathies (Noonan, cardiofaciocutaneous, and Costello syndromes) (BRAF, HRAS, KRAS, LZTR1, MAP2K1, MAP2K2, MRAS, NRAS, PTPN11, RAF1, RASA2, RIT1, RRAS2, SHOC2, SOS1, SOS2) | 70–80% | PS, ASD, hypertrophic cardiomyopathy, VSD, AVSD, CoA | Facial dysmorphism, short stature, neurodevelopmental delay, increased nuchal translucency, cystic hygroma, polyhydramnios, absent ductus venosus | x | x | x | ||
Alagille syndrome JAG1, NOTCH2 | 90% | PPS, PS, TOF | Cholestasis, skeletal abnormalities, eye, facial dysmorphism | x | x | x | ||
Kabuki syndrome KMT2D, KDM6A | 30–55% | Left-sided obstructive lesions, HLHS, CoA | Polyhydramnios, GU anomalies, single umbilical artery, IUGR, hydrops/pleural effusion/ascites | x | x | x | ||
CHARGE syndrome CHD7 | 75–85% | TOF, DORV, ASD, VSD | Dandy-Walker malformation, holoprosencephaly, choanal atresia, cleft lip/palate, micrognathia, esophageal atresia/stenosis, omphalocele, renal anomalies | x | x | x | ||
Ellis van Creveld syndrome EVC/EVC2 | 50–60% | Common atrium, atrioventricular valve dysplasia, PDA, HLHS | Cleft lip/palate, cryptorchidism, short long bones, narrow thorax, hand anomalies, peg teeth | x | x | x | ||
Smith–Lemi–Opitz syndrome DHCR7 | 50% | AVSD, PAPVR | Facial dysmorphism, short stature, cleft palate, hypotonia, intellectual disability, hand anomalies, renal anomalies | x | x | x | ||
Heterotaxy ACVR2B, ARMC4, CCDC103, CCDC114, CCDC151, CCDC39, CCDC40, CCDC65, CCNO, CFAP298, CFAP300, CFAP53, CRELD1, CFC1, DNAAF1, DNAAF2, DNAAF3, DNAAF4, DNAAF5, DNAH1, DNAH11, DNAH5, DNAH9, DNAI1, DNAI2, DNAJB13, DNAL1, DRC1, FOXH1, FOXJ1, GDF1, GAS2L2, GAS8, HYDIN, LEFTY1, LEFTY2, LRRC56, LRRC6, MCIDAS, MMP21, MNS1, NEK10, NME8, NKX2.5, NODAL, PIH1D3, PKD1L1, RSPH1, RSPH3, RSPH4A, RSPH9, SPAG1, STK36, TP73, TTC12, TTC25, ZIC3, ZMYND10 | 80% | TAPVR, PAPVR, atrial situs ambiguous or inversus, CAVC, HLHS, DORV, TGA, PAIVS, dextrocardia, bilateral SVC, interrupted IVC | Biliary atresia, abdominal situs abnormalities, asplenia/polysplenia, lung isomerism, intestinal malrotation, absent gallbladder, primary ciliary dyskinesia | x | x | x | ||
Underline refers to anomalies that can be detected on screening prenatal ultrasound. K: karyotype, CMA: chromosomal microarray, GPS: gene panel sequencing, ES: exome sequencing, GS: genome sequencing, IUGR: intrauterine growth restriction, CNS: central nervous system, GI: gastrointestinal, GU: genitourinary. ASD: atrial septal defect, VSD: ventricular septal defect, PDA: patent ductus arteriosus, TOF: tetralogy of Fallot, PHTN: pulmonary hypertension, AVSD: atrioventricular canal defect, CoA: coarctation of the aorta, BAV: bicuspid aortic valve, AS: aortic stenosis, PA: pulmonary atresia, DORV: double-outlet right ventricle, IAA: interrupted aortic arch, PS: pulmonary stenosis, HLHS: hypoplastic left heart syndrome, PAPVR: partial anomalous pulmonary venous return, TAPVR: total anomalous pulmonary venous return, TGA: transposition of the great arteries, PAIVS: pulmonary atresia intact ventricular septum, SVC: superior vena cava, IVC: inferior vena cava. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucholz, E.M.; Morton, S.U.; Madriago, E.; Roberts, A.E.; Ronai, C. The Evolving Role of Genetic Evaluation in the Prenatal Diagnosis and Management of Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 170. https://doi.org/10.3390/jcdd11060170
Bucholz EM, Morton SU, Madriago E, Roberts AE, Ronai C. The Evolving Role of Genetic Evaluation in the Prenatal Diagnosis and Management of Congenital Heart Disease. Journal of Cardiovascular Development and Disease. 2024; 11(6):170. https://doi.org/10.3390/jcdd11060170
Chicago/Turabian StyleBucholz, Emily M., Sarah U. Morton, Erin Madriago, Amy E. Roberts, and Christina Ronai. 2024. "The Evolving Role of Genetic Evaluation in the Prenatal Diagnosis and Management of Congenital Heart Disease" Journal of Cardiovascular Development and Disease 11, no. 6: 170. https://doi.org/10.3390/jcdd11060170
APA StyleBucholz, E. M., Morton, S. U., Madriago, E., Roberts, A. E., & Ronai, C. (2024). The Evolving Role of Genetic Evaluation in the Prenatal Diagnosis and Management of Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 11(6), 170. https://doi.org/10.3390/jcdd11060170