Beyond Medical Therapy—An Update on Heart Failure Devices
Abstract
:1. Introduction
2. Mitral Valve Devices
3. Tricuspid Valve Devices
4. Interatrial Shunting
5. Implantable Cardioverter Defibrillator
6. Cardiac Resynchronization Therapy
7. Cardiac Contractility Modulation
8. Autonomic Modulation in HFrEF and HFpEF
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Rosano, G.M.C.; Moura, B.; Metra, M.; Böhm, M.; Bauersachs, J.; Ben Gal, T.; Adamopoulos, S.; Abdelhamid, M.; Bistola, V.; Čelutkienė, J.; et al. Patient Profiling in Heart Failure for Tailoring Medical Therapy. Patient profiling in heart failure for tailoring medical therapy. A consensus document of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2021, 23, 872–881. [Google Scholar] [CrossRef]
- Falco, L.; Brescia, B.; Catapano, D.; Martucci, M.L.; Valente, F.; Gravino, R.; Contaldi, C.; Pacileo, G.; Masarone, D. Vericiguat: The Fifth Harmony of Heart Failure with Reduced Ejection Fraction. JCDD 2023, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Ahmad, T.; Alexander, K.M.; Baker, W.L.; Bosak, K.; Breathett, K.; Fonarow, G.C.; Heidenreich, P.; Ho, J.E.; Hsich, E.; et al. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America. J. Card. Fail. 2023, 29, 1412–1451. [Google Scholar] [CrossRef]
- Beghini, A.; Sammartino, A.M.; Papp, Z.; von Haehling, S.; Biegus, J.; Ponikowski, P.; Adamo, M.; Falco, L.; Lombardi, C.M.; Pagnesi, M.; et al. 2024 update in heart failure. ESC Heart Fail. 2024, 11. [Google Scholar] [CrossRef] [PubMed]
- Greene, S.J.; Butler, J.; Fonarow, G.C. Contextualizing Risk among Patients with Heart Failure. JAMA 2021, 326, 2261. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease: Developed by the Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Española Cardiol. (Engl. Ed.) 2022, 75, 524. [Google Scholar] [CrossRef]
- Bartko, P.E.; Heitzinger, G.; Pavo, N.; Heitzinger, M.; Spinka, G.; Prausmüller, S.; Arfsten, H.; Andreas, M.; Gabler, C.; Strunk, G.; et al. Burden, Treatment Use, and Outcome of Secondary Mitral Regurgitation across the Spectrum of Heart Failure: Observational Cohort Study. BMJ 2021, 373, n1421. [Google Scholar] [CrossRef]
- Obadia, J.-F.; Messika-Zeitoun, D.; Leurent, G.; Iung, B.; Bonnet, G.; Piriou, N.; Lefèvre, T.; Piot, C.; Rouleau, F.; Carrié, D.; et al. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. N. Engl. J. Med. 2018, 379, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Armoiry, X.; Vahanian, A.; Boutitie, F.; Mewton, N.; Trochu, J.; Lefèvre, T.; Messika-Zeitoun, D.; Guerin, P.; Cormier, B.; et al. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation: Outcomes at 2 Years. Eur. J. Heart Fail. 2019, 21, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Grayburn, P.A.; Sannino, A.; Packer, M. Proportionate and Disproportionate Functional Mitral Regurgitation. JACC Cardiovasc. Imaging 2019, 12, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Grayburn, P.A.; Sannino, A.; Packer, M. Distinguishing Proportionate and Disproportionate Subtypes in Functional Mitral Regurgitation and Left Ventricular Systolic Dysfunction. JACC Cardiovasc. Imaging 2021, 14, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Enriquez-Sarano, M.; Michelena, H.I.; Grigioni, F. Treatment of Functional Mitral Regurgitation: Doubts, Confusion, and the Way Forward after MITRA-FR and COAPT. Circulation 2019, 139, 2289–2291. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.K.; Grayburn, P.A.; Rinaldi, M.J.; Kapadia, S.R.; et al. 3-Year Outcomes of Transcatheter Mitral Valve Repair in Patients with Heart Failure. J. Am. Coll. Cardiol. 2021, 77, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Abraham, W.T.; Lindenfeld, J.; Kar, S.; Grayburn, P.A.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Rinaldi, M.; Kapadia, S.R.; et al. Five-Year Follow-up after Transcatheter Repair of Secondary Mitral Regurgitation. N. Engl. J. Med. 2023, 388, 2037–2048. [Google Scholar] [CrossRef]
- Lim, D.S.; Kar, S.; Spargias, K.; Kipperman, R.M.; O’Neill, W.W.; Ng, M.K.C.; Fam, N.P.; Walters, D.L.; Webb, J.G.; Smith, R.L.; et al. Transcatheter Valve Repair for Patients with Mitral Regurgitation. JACC Cardiovasc. Interv. 2019, 12, 1369–1378. [Google Scholar] [CrossRef]
- Webb, J.G.; Hensey, M.; Szerlip, M.; Schäfer, U.; Cohen, G.N.; Kar, S.; Makkar, R.; Kipperman, R.M.; Spargias, K.; O’Neill, W.W.; et al. 1-Year Outcomes for Transcatheter Repair in Patients with Mitral Regurgitation from the CLASP Study. JACC Cardiovasc. Interv. 2020, 13, 2344–2357. [Google Scholar] [CrossRef]
- Hausleiter, J.; Lim, D.S.; Gillam, L.D.; Zahr, F.; Chadderdon, S.; Rassi, A.N.; Makkar, R.; Goldman, S.; Rudolph, V.; Hermiller, J.; et al. Transcatheter Edge-to-Edge Repair in Patients with Anatomically Complex Degenerative Mitral Regurgitation. J. Am. Coll. Cardiol. 2023, 81, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Szerlip, M.; Spargias, K.S.; Makkar, R.; Kar, S.; Kipperman, R.M.; O’Neill, W.W.; Ng, M.K.C.; Smith, R.L.; Fam, N.P.; Rinaldi, M.J.; et al. 2-Year Outcomes for Transcatheter Repair in Patients with Mitral Regurgitation from the CLASP Study. JACC Cardiovasc. Interv. 2021, 14, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.S.; Smith, R.L.; Gillam, L.D.; Zahr, F.; Chadderdon, S.; Makkar, R.; Von Bardeleben, R.S.; Kipperman, R.M.; Rassi, A.N.; Szerlip, M.; et al. Randomized Comparison of Transcatheter Edge-to-Edge Repair for Degenerative Mitral Regurgitation in Prohibitive Surgical Risk Patients. JACC Cardiovasc. Interv. 2022, 15, 2523–2536. [Google Scholar] [CrossRef] [PubMed]
- Messika-Zeitoun, D.; Nickenig, G.; Latib, A.; Kuck, K.-H.; Baldus, S.; Schueler, R.; La Canna, G.; Agricola, E.; Kreidel, F.; Huntgeburth, M.; et al. Transcatheter Mitral Valve Repair for Functional Mitral Regurgitation Using the Cardioband System: 1 Year Outcomes. Eur. Heart J. 2019, 40, 466–472. [Google Scholar] [CrossRef]
- Nickenig, G.; Schueler, R.; Dager, A.; Martinez Clark, P.; Abizaid, A.; Siminiak, T.; Buszman, P.; Demkow, M.; Ebner, A.; Asch, F.M.; et al. Treatment of Chronic Functional Mitral Valve Regurgitation with a Percutaneous Annuloplasty System. J. Am. Coll. Cardiol. 2016, 67, 2927–2936. [Google Scholar] [CrossRef]
- Witte, K.K.; Lipiecki, J.; Siminiak, T.; Meredith, I.T.; Malkin, C.J.; Goldberg, S.L.; Stark, M.A.; Von Bardeleben, R.S.; Cremer, P.C.; Jaber, W.A.; et al. The REDUCE FMR Trial. JACC Heart Fail. 2019, 7, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Kałmucki, P.; Lipiecki, J.; Witte, K.K.; Goldberg, S.L.; Baszko, A.; Siminiak, T. Percutaneous Mitral Annuloplasty with the Carillon Device: Outcomes in Proportionate and Disproportionate Functional Mitral Regurgitation. Am. Heart J. 2023, 265, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.W.M.; Sorajja, P.; Duncan, A.; Bethea, B.; Dahle, G.; Grayburn, P.; Babaliaros, V.; Guerrero, M.; Thourani, V.H.; Bedogni, F.; et al. 2-Year Outcomes of Transcatheter Mitral Valve Replacement in Patients with Severe Symptomatic Mitral Regurgitation. J. Am. Coll. Cardiol. 2021, 78, 1847–1859. [Google Scholar] [CrossRef]
- Messika-Zeitoun, D.; Verta, P.; Gregson, J.; Pocock, S.J.; Boero, I.; Feldman, T.E.; Abraham, W.T.; Lindenfeld, J.; Bax, J.; Leon, M.; et al. Impact of Tricuspid Regurgitation on Survival in Patients with Heart Failure: A Large Electronic Health Record Patient-level Database Analysis. Eur. J. Heart Fail. 2020, 22, 1803–1813. [Google Scholar] [CrossRef]
- Rodés-Cabau, J.; Taramasso, M.; O’Gara, P.T. Diagnosis and Treatment of Tricuspid Valve Disease: Current and Future Perspectives. Lancet 2016, 388, 2431–2442. [Google Scholar] [CrossRef]
- Nath, J.; Foster, E.; Heidenreich, P.A. Impact of Tricuspid Regurgitation on Long-Term Survival. J. Am. Coll. Cardiol. 2004, 43, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Sorajja, P.; Whisenant, B.; Hamid, N.; Naik, H.; Makkar, R.; Tadros, P.; Price, M.J.; Singh, G.; Fam, N.; Kar, S.; et al. Transcatheter Repair for Patients with Tricuspid Regurgitation. N. Engl. J. Med. 2023, 388, 1833–1842. [Google Scholar] [CrossRef]
- Kodali, S.K.; Hahn, R.T.; Davidson, C.J.; Narang, A.; Greenbaum, A.; Gleason, P.; Kapadia, S.; Miyasaka, R.; Zahr, F.; Chadderdon, S.; et al. 1-Year Outcomes of Transcatheter Tricuspid Valve Repair. J. Am. Coll. Cardiol. 2023, 81, 1766–1776. [Google Scholar] [CrossRef] [PubMed]
- Nickenig, G.; Weber, M.; Schueler, R.; Hausleiter, J.; Näbauer, M.; Von Bardeleben, R.S.; Sotiriou, E.; Schäfer, U.; Deuschl, F.; Kuck, K.-H.; et al. 6-Month Outcomes of Tricuspid Valve Reconstruction for Patients with Severe Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2019, 73, 1905–1915. [Google Scholar] [CrossRef]
- Hahn, R.T.; Meduri, C.U.; Davidson, C.J.; Lim, S.; Nazif, T.M.; Ricciardi, M.J.; Rajagopal, V.; Ailawadi, G.; Vannan, M.A.; Thomas, J.D.; et al. Early Feasibility Study of a Transcatheter Tricuspid Valve Annuloplasty. J. Am. Coll. Cardiol. 2017, 69, 1795–1806. [Google Scholar] [CrossRef]
- Wild, M.G.; Lubos, E.; Cruz-Gonzalez, I.; Amat-Santos, I.; Ancona, M.; Andreas, M.; Boeder, N.F.; Butter, C.; Carrasco-Chinchilla, F.; Estevez-Loureiro, R.; et al. Early Clinical Experience with the TRICENTO Bicaval Valved Stent for Treatment of Symptomatic Severe Tricuspid Regurgitation: A Multicenter Registry. Circ. Cardiovasc. Interv. 2022, 15, e011302. [Google Scholar] [CrossRef]
- Estévez-Loureiro, R.; Sánchez-Recalde, A.; Amat-Santos, I.J.; Cruz-González, I.; Baz, J.A.; Pascual, I.; Mascherbauer, J.; Abdul-Jawad Altisent, O.; Nombela-Franco, L.; Pan, M.; et al. 6-Month Outcomes of the TricValve System in Patients with Tricuspid Regurgitation. JACC Cardiovasc. Interv. 2022, 15, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Kodali, S.; Hahn, R.T.; Makkar, R.; Makar, M.; Davidson, C.J.; Puthumana, J.J.; Zahr, F.; Chadderdon, S.; Fam, N.; Ong, G.; et al. Transfemoral Tricuspid Valve Replacement and One-Year Outcomes: The TRISCEND Study. Eur. Heart J. 2023, 44, 4862–4873. [Google Scholar] [CrossRef]
- Nickenig, G.; Kowalski, M.; Hausleiter, J.; Braun, D.; Schofer, J.; Yzeiraj, E.; Rudolph, V.; Friedrichs, K.; Maisano, F.; Taramasso, M.; et al. Transcatheter Treatment of Severe Tricuspid Regurgitation with the Edge-to-Edge MitraClip Technique. Circulation 2017, 135, 1802–1814. [Google Scholar] [CrossRef]
- Orban, M.; Besler, C.; Braun, D.; Nabauer, M.; Zimmer, M.; Orban, M.; Noack, T.; Mehilli, J.; Hagl, C.; Seeburger, J.; et al. Six-month Outcome after Transcatheter Edge-to-edge Repair of Severe Tricuspid Regurgitation in Patients with Heart Failure. Eur. J. Heart Fail. 2018, 20, 1055–1062. [Google Scholar] [CrossRef]
- Nickenig, G.; Weber, M.; Lurz, P.; Von Bardeleben, R.S.; Sitges, M.; Sorajja, P.; Hausleiter, J.; Denti, P.; Trochu, J.-N.; Näbauer, M.; et al. Transcatheter Edge-to-Edge Repair for Reduction of Tricuspid Regurgitation: 6-Month Outcomes of the TRILUMINATE Single-Arm Study. Lancet 2019, 394, 2002–2011. [Google Scholar] [CrossRef]
- Taramasso, M.; Benfari, G.; Van Der Bijl, P.; Alessandrini, H.; Attinger-Toller, A.; Biasco, L.; Lurz, P.; Braun, D.; Brochet, E.; Connelly, K.A.; et al. Transcatheter versus Medical Treatment of Patients with Symptomatic Severe Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2019, 74, 2998–3008. [Google Scholar] [CrossRef]
- Asmarats, L.; Perlman, G.; Praz, F.; Hensey, M.; Chrissoheris, M.P.; Philippon, F.; Ofek, H.; Ye, J.; Puri, R.; Pibarot, P.; et al. Long-Term Outcomes of the FORMA Transcatheter Tricuspid Valve Repair System for the Treatment of Severe Tricuspid Regurgitation. JACC Cardiovasc. Interv. 2019, 12, 1438–1447. [Google Scholar] [CrossRef]
- Kodali, S.; Hahn, R.T.; Eleid, M.F.; Kipperman, R.; Smith, R.; Lim, D.S.; Gray, W.A.; Narang, A.; Pislaru, S.V.; Koulogiannis, K.; et al. Feasibility Study of the Transcatheter Valve Repair System for Severe Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2021, 77, 345–356. [Google Scholar] [CrossRef]
- Nickenig, G.; Weber, M.; Schüler, R.; Hausleiter, J.; Nabauer, M.; Von Bardeleben, R.S.; Sotiriou, E.; Schäfer, U.; Deuschl, F.; Alessandrini, H.; et al. Tricuspid Valve Repair with the Cardioband System: Two-Year Outcomes of the Multicentre, Prospective TRI-REPAIR Study. EuroIntervention 2021, 16, e1264–e1271. [Google Scholar] [CrossRef]
- Gray, W.A.; Abramson, S.V.; Lim, S.; Fowler, D.; Smith, R.L.; Grayburn, P.A.; Kodali, S.K.; Hahn, R.T.; Kipperman, R.M.; Koulogiannis, K.P.; et al. 1-Year Outcomes of Cardioband Tricuspid Valve Reconstruction System Early Feasibility Study. JACC Cardiovasc. Interv. 2022, 15, 1921–1932. [Google Scholar] [CrossRef]
- Curio, J.; Demir, O.M.; Pagnesi, M.; Mangieri, A.; Giannini, F.; Weisz, G.; Latib, A. Update on the Current Landscape of Transcatheter Options for Tricuspid Regurgitation Treatment. Interv. Cardiol. 2019, 14, 54–61. [Google Scholar] [CrossRef]
- Dubé, B.-P.; Agostoni, P.; Laveneziana, P. Exertional Dyspnoea in Chronic Heart Failure: The Role of the Lung and Respiratory Mechanical Factors. Eur. Respir. Rev. 2016, 25, 317–332. [Google Scholar] [CrossRef]
- Tedford, R.J.; Hassoun, P.M.; Mathai, S.C.; Girgis, R.E.; Russell, S.D.; Thiemann, D.R.; Cingolani, O.H.; Mudd, J.O.; Borlaug, B.A.; Redfield, M.M.; et al. Pulmonary Capillary Wedge Pressure Augments Right Ventricular Pulsatile Loading. Circulation 2012, 125, 289–297. [Google Scholar] [CrossRef]
- Falco, L.; Martucci, M.L.; Valente, F.; Verrengia, M.; Pacileo, G.; Masarone, D. Pathophysiology-Based Management of Acute Heart Failure. Clin. Pract. 2023, 13, 206–218. [Google Scholar] [CrossRef]
- Maeder, M.T.; Thompson, B.R.; Brunner-La Rocca, H.-P.; Kaye, D.M. Hemodynamic Basis of Exercise Limitation in Patients with Heart Failure and Normal Ejection Fraction. J. Am. Coll. Cardiol. 2010, 56, 855–863. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Nishimura, R.A.; Sorajja, P.; Lam, C.S.P.; Redfield, M.M. Exercise Hemodynamics Enhance Diagnosis of Early Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2010, 3, 588–595. [Google Scholar] [CrossRef]
- Søndergaard, L.; Reddy, V.; Kaye, D.; Malek, F.; Walton, A.; Mates, M.; Franzen, O.; Neuzil, P.; Ihlemann, N.; Gustafsson, F. Transcatheter Treatment of Heart Failure with Preserved or Mildly Reduced Ejection Fraction Using a Novel Interatrial Implant to Lower Left Atrial Pressure. Eur. J. Heart Fail. 2014, 16, 796–801. [Google Scholar] [CrossRef]
- Feldman, T.; Mauri, L.; Kahwash, R.; Litwin, S.; Ricciardi, M.J.; Van Der Harst, P.; Penicka, M.; Fail, P.S.; Kaye, D.M.; Petrie, M.C.; et al. Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure with Preserved Ejection Fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients with Heart Failure]): A Phase 2, Randomized, Sham-Controlled Trial. Circulation 2018, 137, 364–375. [Google Scholar] [CrossRef]
- Wessler, J.; Kaye, D.; Gustafsson, F.; Petrie, M.C.; Hasenfuβ, G.; Lam, C.S.P.; Borlaug, B.A.; Komtebedde, J.; Feldman, T.; Shah, S.J.; et al. Impact of Baseline Hemodynamics on the Effects of a Transcatheter Interatrial Shunt Device in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2018, 11, e004540. [Google Scholar] [CrossRef]
- Feldman, T.; Komtebedde, J.; Burkhoff, D.; Massaro, J.; Maurer, M.S.; Leon, M.B.; Kaye, D.; Silvestry, F.E.; Cleland, J.G.F.; Kitzman, D.; et al. Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure: Rationale and Design of the Randomized Trial to REDUCE Elevated Left Atrial Pressure in Heart Failure (REDUCE LAP-HF I). Circ. Heart Fail. 2016, 9, e003025. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.N.V.; Shah, S.J.; Kaye, D.M.; Gustafsson, F.; Hasenfuβ, G.; Hoendermis, E.; Litwin, S.E.; Komtebedde, J.; Lam, C.; et al. Effects of Interatrial Shunt on Pulmonary Vascular Function in Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2019, 74, 2539–2550. [Google Scholar] [CrossRef]
- Shah, S.J.; Borlaug, B.A.; Chung, E.S.; Cutlip, D.E.; Debonnaire, P.; Fail, P.S.; Gao, Q.; Hasenfuß, G.; Kahwash, R.; Kaye, D.M.; et al. Atrial Shunt Device for Heart Failure with Preserved and Mildly Reduced Ejection Fraction (REDUCE LAP-HF II): A Randomised, Multicentre, Blinded, Sham-Controlled Trial. Lancet 2022, 399, 1130–1140. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Blair, J.; Bergmann, M.W.; Bugger, H.; Burkhoff, D.; Bruch, L.; Celermajer, D.S.; Claggett, B.; Cleland, J.G.F.; Cutlip, D.E.; et al. Latent Pulmonary Vascular Disease May Alter the Response to Therapeutic Atrial Shunt Device in Heart Failure. Circulation 2022, 145, 1592–1604. [Google Scholar] [CrossRef]
- Sun, W.; Zou, H.; Yong, Y.; Liu, B.; Zhang, H.; Lu, J.; Shen, Y.; Li, P.; Xu, T.; Chen, X.; et al. The RAISE Trial: A Novel Device and First-in-Man Trial. Circ. Heart Fail. 2022, 15, e008362. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, B.; Zahr, F.; Simard, T.; Labinaz, M.; Nazer, B.; Sorajja, P.; Eckman, P.; Pineda, A.M.; Missov, E.; Mahmud, E.; et al. Left Atrial to Coronary Sinus Shunting for Treatment of Symptomatic Heart Failure. JACC Cardiovasc. Interv. 2023, 16, 1369–1380. [Google Scholar] [CrossRef]
- Rodés-Cabau, J.; Bernier, M.; Amat-Santos, I.J.; Ben Gal, T.; Nombela-Franco, L.; García Del Blanco, B.; Kerner, A.; Bergeron, S.; Del Trigo, M.; Pibarot, P.; et al. Interatrial Shunting for Heart Failure. JACC Cardiovasc. Interv. 2018, 11, 2300–2310. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, L.; Bergeron, S.; Bernier, M.; Rodriguez-Gabella, T.; Del Val, D.; Pibarot, P.; Eigler, N.; Abraham, W.T.; Rodés-Cabau, J. Interatrial Shunt with the Second-Generation V-Wave System for Patients with Advanced Chronic Heart Failure. EuroIntervention 2020, 15, 1426–1428. [Google Scholar] [CrossRef] [PubMed]
- Rodés-Cabau, J.; Lindenfeld, J.; Abraham, W.T.; Zile, M.R.; Kar, S.; Bayés-Genís, A.; Eigler, N.; Holcomb, R.; Núñez, J.; Lee, E.; et al. Interatrial Shunt Therapy in Advanced Heart Failure: Outcomes from the Open-label Cohort of the RELIEVE-HF Trial. Eur. J. Heart Fail. 2024, 26, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Leyva, F.; Israel, C.W.; Singh, J. Declining Risk of Sudden Cardiac Death in Heart Failure: Fact or Myth? Circulation 2023, 147, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Spartalis, M.; Nakajima, K.; Zweiker, D.; Spartalis, E.; Iliopoulos, D.C.; Siasos, G. Contemporary ICD Use in Patients with Heart Failure. Cardiol. Ther. 2021, 10, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.L.; Russo, A.M. The Subcutaneous Implantable Cardioverter-Defibrillator Should Be Considered for All Patients with an Implantable Cardioverter-Defibrillator Indication. Heart Rhythm O2 2022, 3, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, M.S.; Brisben, A.J.; Reddy, V.Y.; Blomström-Lundqvist, C.; Boersma, L.V.A.; Bongiorni, M.G.; Burke, M.C.; Cantillon, D.J.; Doshi, R.; Friedman, P.A.; et al. Design and Rationale of the MODULAR ATP Global Clinical Trial: A Novel Intercommunicative Leadless Pacing System and the Subcutaneous Implantable Cardioverter-Defibrillator. Heart Rhythm O2 2023, 4, 448–456. [Google Scholar] [CrossRef]
- Friedman, P.; Murgatroyd, F.; Boersma, L.V.A.; Manlucu, J.; O’Donnell, D.; Knight, B.P.; Clémenty, N.; Leclercq, C.; Amin, A.; Merkely, B.P.; et al. Efficacy and Safety of an Extravascular Implantable Cardioverter–Defibrillator. N. Engl. J. Med. 2022, 387, 1292–1302. [Google Scholar] [CrossRef]
- Linde, C.; Ellenbogen, K.; McAlister, F.A. Cardiac Resynchronization Therapy (CRT): Clinical Trials, Guidelines, and Target Populations. Heart Rhythm 2012, 9, S3–S13. [Google Scholar] [CrossRef]
- Cheng, A.; Helm, R.H.; Abraham, T.P. Pathophysiological Mechanisms Underlying Ventricular Dyssynchrony. Europace 2009, 11, v10–v14. [Google Scholar] [CrossRef] [PubMed]
- Cazeau, S.; Varma, C.; Haywood, G.A. Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay. N. Engl. J. Med. 2001, 344, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.T.; Leon, A.R.; Hayes, D.L. Cardiac Resynchronization in Chronic Heart Failure. N. Engl. J. Med. 2002, 346, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Bristow, M.R.; Krueger, S.; Carson, P.; White, B.G. Cardiac-Resynchronization Therapy with or without an Implantable Defibrillator in Advanced Chronic Heart Failure. N. Engl. J. Med. 2004, 350, 2140–2150. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G.F.; Erdmann, E.; Kappenberger, L. The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure. N. Engl. J. Med. 2005, 352, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Hall, W.J.; Cannom, D.S.; Klein, H.; Brown, M.W.; Daubert, J.P.; Estes, N.A.M.; Foster, E.; Greenberg, H.; Higgins, S.L.; et al. Cardiac-Resynchronization Therapy for the Prevention of Heart-Failure Events. N. Engl. J. Med. 2009, 361, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Linde, C.; Abraham, W.T.; Gold, M.R.; St. John Sutton, M.; Ghio, S.; Daubert, C. Randomized Trial of Cardiac Resynchronization in Mildly Symptomatic Heart Failure Patients and in Asymptomatic Patients with Left Ventricular Dysfunction and Previous Heart Failure Symptoms. J. Am. Coll. Cardiol. 2008, 52, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.S.L.; Wells, G.A.; Talajic, M.; Arnold, M.O.; Sheldon, R.; Connolly, S.; Hohnloser, S.H.; Nichol, G.; Birnie, D.H.; Sapp, J.L.; et al. Cardiac-Resynchronization Therapy for Mild-to-Moderate Heart Failure. N. Engl. J. Med. 2010, 363, 2385–2395. [Google Scholar] [CrossRef]
- Naqvi, T.Z.; Chao, C.-J. Adverse Effects of Right Ventricular Pacing on Cardiac Function: Prevalence, Prevention and Treatment with Physiologic Pacing. Trends Cardiovasc. Med. 2023, 33, 109–122. [Google Scholar] [CrossRef]
- Merkely, B.; Hatala, R.; Wranicz, J.K.; Duray, G.; Földesi, C.; Som, Z.; Németh, M.; Goscinska-Bis, K.; Gellér, L.; Zima, E.; et al. Upgrade of Right Ventricular Pacing to Cardiac Resynchronization Therapy in Heart Failure: A Randomized Trial. Eur. Heart J. 2023, 44, 4259–4269. [Google Scholar] [CrossRef]
- Dickstein, K.; Normand, C.; Auricchio, A.; Bogale, N.; Cleland, J.G.; Gitt, A.K.; Stellbrink, C.; Anker, S.D.; Filippatos, G.; Gasparini, M.; et al. CRT Survey II: A European Society of Cardiology Survey of Cardiac Resynchronisation Therapy in 11,088 Patients—Who Is Doing What to Whom and How? Eur. J. Heart Fail. 2018, 20, 1039–1051. [Google Scholar] [CrossRef]
- Bank, A.J.; Gage, R.M.; Olshansky, B. On the Underutilization of Cardiac Resynchronization Therapy. J. Card. Fail. 2014, 20, 696–705. [Google Scholar] [CrossRef]
- Herweg, B.; Welter-Frost, A.; Vijayaraman, P. The Evolution of Cardiac Resynchronization Therapy and an Introduction to Conduction System Pacing: A Conceptual Review. EP Eur. 2021, 23, 496–510. [Google Scholar] [CrossRef]
- Upadhyay, G.A.; Vijayaraman, P.; Nayak, H.M.; Verma, N.; Dandamudi, G.; Sharma, P.S.; Saleem, M.; Mandrola, J.; Genovese, D.; Tung, R. His Corrective Pacing or Biventricular Pacing for Cardiac Resynchronization in Heart Failure. J. Am. Coll. Cardiol. 2019, 74, 157–159. [Google Scholar] [CrossRef]
- Vinther, M.; Risum, N.; Svendsen, J.H.; Møgelvang, R.; Philbert, B.T. A Randomized Trial of His Pacing versus Biventricular Pacing in Symptomatic HF Patients with Left Bundle Branch Block (His-Alternative). JACC Clin. Electrophysiol. 2021, 7, 1422–1432. [Google Scholar] [CrossRef]
- Jastrzębski, M.; Kiełbasa, G.; Cano, O.; Curila, K.; Heckman, L.; De Pooter, J.; Chovanec, M.; Rademakers, L.; Huybrechts, W.; Grieco, D.; et al. Left Bundle Branch Area Pacing Outcomes: The Multicentre European MELOS Study. Eur. Heart J. 2022, 43, 4161–4173. [Google Scholar] [CrossRef]
- Vijayaraman, P.; Herweg, B.; Ellenbogen, K.A.; Gajek, J. His-Optimized Cardiac Resynchronization Therapy to Maximize Electrical Resynchronization: A Feasibility Study. Circ. Arrhythmia Electrophysiol. 2019, 12, e006934. [Google Scholar] [CrossRef]
- Zweerink, A.; Zubarev, S.; Bakelants, E.; Potyagaylo, D.; Stettler, C.; Chmelevsky, M.; Lozeron, E.D.; Hachulla, A.-L.; Vallée, J.-P.; Burri, H. His-Optimized Cardiac Resynchronization Therapy with Ventricular Fusion Pacing for Electrical Resynchronization in Heart Failure. JACC Clin. Electrophysiol. 2021, 7, 881–892. [Google Scholar] [CrossRef]
- Jastrzębski, M.; Moskal, P.; Huybrechts, W.; Curila, K.; Sreekumar, P.; Rademakers, L.M.; Ponnusamy, S.S.; Herweg, B.; Sharma, P.S.; Bednarek, A.; et al. Left Bundle Branch–Optimized Cardiac Resynchronization Therapy (LOT-CRT): Results from an International LBBAP Collaborative Study Group. Heart Rhythm 2022, 19, 13–21. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Bai, Y.; Wang, J.; Qin, S.; Bai, J.; Wang, W.; Liang, Y.; Chen, H.; Su, Y.; et al. Electrical Resynchronization and Clinical Outcomes during Long-Term Follow-Up in Intraventricular Conduction Delay Patients Applied Left Bundle Branch Pacing-Optimized Cardiac Resynchronization Therapy. Circ. Arrhythmia Electrophysiol. 2023, 16, e011761. [Google Scholar] [CrossRef]
- Auricchio, A.; Delnoy, P.-P.; Butter, C.; Brachmann, J.; Van Erven, L.; Spitzer, S.; Moccetti, T.; Seifert, M.; Markou, T.; Laszo, K.; et al. Feasibility, Safety, and Short-Term Outcome of Leadless Ultrasound-Based Endocardial Left Ventricular Resynchronization in Heart Failure Patients: Results of the Wireless Stimulation Endocardially for CRT (WiSE-CRT) Study. Europace 2014, 16, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Miller, M.A.; Neuzil, P.; Søgaard, P.; Butter, C.; Seifert, M.; Delnoy, P.P.; Van Erven, L.; Schalji, M.; Boersma, L.V.A.; et al. Cardiac Resynchronization Therapy with Wireless Left Ventricular Endocardial Pacing. J. Am. Coll. Cardiol. 2017, 69, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Sieniewicz, B.J.; Betts, T.R.; James, S.; Turley, A.; Butter, C.; Seifert, M.; Boersma, L.V.A.; Riahi, S.; Neuzil, P.; Biffi, M.; et al. Real-World Experience of Leadless Left Ventricular Endocardial Cardiac Resynchronization Therapy: A Multicenter International Registry of the WiSE-CRT Pacing System. Heart Rhythm 2020, 17, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Seifert, M.; Butter, C.; Rinaldi, C.A.; Sanders, P.; Kubo, S.H.; James, S.; Niazi, I.K.; Betts, T.R.; Aziz, E.; Biffi, M.; et al. Leadless Ultrasound-Based Cardiac Resynchronization System in Heart Failure Results from the SOLVE-CRT Randomised Sub-Study and the Primary Population Patient Cohort. Europace 2024, 26, euae102.480. [Google Scholar] [CrossRef]
- Brunckhorst, C.B.; Shemer, I.; Mika, Y.; Ben-Haim, S.A.; Burkhoff, D. Cardiac Contractility Modulation by Non-excitatory Currents: Studies in Isolated Cardiac Muscle. Eur. J. Heart Fail. 2006, 8, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Pappone, C.; Rosanio, S.; Burkhoff, D.; Mika, Y.; Vicedomini, G.; Augello, G.; Shemer, I.; Prutchi, D.; Haddad, W.; Aviv, R.; et al. Cardiac Contractility Modulation by Electric Currents Applied during the Refractory Period in Patients with Heart Failure Secondary to Ischemic or Idiopathic Dilated Cardiomyopathy. Am. J. Cardiol. 2002, 90, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.M.; Kahwash, R.; Abraham, W.T. Optimizer Smart in the Treatment of Moderate-to-Severe Chronic Heart Failure. Future Cardiol. 2020, 16, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Schröder, F.; Handrock, R.; Beuckelmann, D.J.; Hirt, S.; Hullin, R.; Priebe, L.; Schwinger, R.H.G.; Weil, J.; Herzig, S. Increased Availability and Open Probability of Single L-Type Calcium Channels from Failing Compared with Nonfailing Human Ventricle. Circulation 1998, 98, 969–976. [Google Scholar] [CrossRef]
- Masarone, D.; Kittleson, M.M.; D’onofrio, A.; Falco, L.; Fumarulo, I.; Massetti, M.; Crea, F.; Aspromonte, N.; Pacileo, G. Basic Science of Cardiac Contractility Modulation Therapy: Molecular and Electrophysiological Mechanisms. Heart Rhythm 2024, 21, 82–88. [Google Scholar] [CrossRef]
- Borggrefe, M.M.; Lawo, T.; Butter, C.; Schmidinger, H.; Lunati, M.; Pieske, B.; Misier, A.R.; Curnis, A.; Bocker, D.; Remppis, A.; et al. Randomized, Double Blind Study of Non-Excitatory, Cardiac Contractility Modulation Electrical Impulses for Symptomatic Heart Failure. Eur. Heart J. 2008, 29, 1019–1028. [Google Scholar] [CrossRef]
- Kadish, A.; Nademanee, K.; Volosin, K.; Krueger, S.; Neelagaru, S.; Raval, N.; Obel, O.; Weiner, S.; Wish, M.; Carson, P.; et al. A Randomized Controlled Trial Evaluating the Safety and Efficacy of Cardiac Contractility Modulation in Advanced Heart Failure. Am. Heart J. 2011, 161, 329–337.e2. [Google Scholar] [CrossRef]
- Abraham, W.T.; Kuck, K.-H.; Goldsmith, R.L.; Lindenfeld, J.; Reddy, V.Y.; Carson, P.E.; Mann, D.L.; Saville, B.; Parise, H.; Chan, R.; et al. A Randomized Controlled Trial to Evaluate the Safety and Efficacy of Cardiac Contractility Modulation. JACC Heart Fail. 2018, 6, 874–883. [Google Scholar] [CrossRef]
- Müller, D.; Remppis, A.; Schauerte, P.; Schmidt-Schweda, S.; Burkhoff, D.; Rousso, B.; Gutterman, D.; Senges, J.; Hindricks, G.; Kuck, K.-H. Clinical Effects of Long-Term Cardiac Contractility Modulation (CCM) in Subjects with Heart Failure Caused by Left Ventricular Systolic Dysfunction. Clin. Res. Cardiol. 2017, 106, 893–904. [Google Scholar] [CrossRef]
- Wiegn, P.; Chan, R.; Jost, C.; Saville, B.R.; Parise, H.; Prutchi, D.; Carson, P.E.; Stagg, A.; Goldsmith, R.L.; Burkhoff, D. Safety, Performance, and Efficacy of Cardiac Contractility Modulation Delivered by the 2-Lead Optimizer Smart System: The FIX-HF-5C2 Study. Circ. Heart Fail. 2020, 13, e006512. [Google Scholar] [CrossRef]
- Tschöpe, C.; Butler, J.; Farmakis, D.; Morley, D.; Rao, I.; Filippatos, G. Clinical Effects of Cardiac Contractility Modulation in Heart Failure with Mildly Reduced Systolic Function. ESC Heart Fail. 2020, 7, 3531–3535. [Google Scholar] [CrossRef]
- Anker, S.D.; Borggrefe, M.; Neuser, H.; Ohlow, M.; Röger, S.; Goette, A.; Remppis, B.A.; Kuck, K.; Najarian, K.B.; Gutterman, D.D.; et al. Cardiac Contractility Modulation Improves Long-term Survival and Hospitalizations in Heart Failure with Reduced Ejection Fraction. Eur. J. Heart Fail. 2019, 21, 1103–1113. [Google Scholar] [CrossRef]
- Linde, C.; Grabowski, M.; Ponikowski, P.; Rao, I.; Stagg, A.; Tschöpe, C. Cardiac Contractility Modulation Therapy Improves Health Status in Patients with Heart Failure with Preserved Ejection Fraction: A Pilot Study (CCM-HFpEF ). Eur. J. Heart Fail. 2022, 24, 2275–2284. [Google Scholar] [CrossRef]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkiene, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Van Bilsen, M.; Patel, H.C.; Bauersachs, J.; Böhm, M.; Borggrefe, M.; Brutsaert, D.; Coats, A.J.S.; De Boer, R.A.; De Keulenaer, G.W.; Filippatos, G.S.; et al. The Autonomic Nervous System as a Therapeutic Target in Heart Failure: A Scientific Position Statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2017, 19, 1361–1378. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Dunlap, M.E. Reconsidering Renal Sympathetic Denervation for Heart Failure. JACC Basic Transl. Sci. 2017, 2, 282–284. [Google Scholar] [CrossRef]
- Kresoja, K.-P.; Rommel, K.-P.; Fengler, K.; Von Roeder, M.; Besler, C.; Lücke, C.; Gutberlet, M.; Desch, S.; Thiele, H.; Böhm, M.; et al. Renal Sympathetic Denervation in Patients with Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2021, 14, e007421. [Google Scholar] [CrossRef]
- Gronda, E.; Francis, D.; Zannad, F.; Hamm, C.; Brugada, J.; Vanoli, E. Baroreflex Activation Therapy: A New Approach to the Management of Advanced Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Med. 2017, 18, 641–649. [Google Scholar] [CrossRef]
- De Leeuw, P.W.; Bisognano, J.D.; Bakris, G.L.; Nadim, M.K.; Haller, H.; Kroon, A.A. Sustained Reduction of Blood Pressure with Baroreceptor Activation Therapy: Results of the 6-Year Open Follow-Up. Hypertension 2017, 69, 836–843. [Google Scholar] [CrossRef]
- Abraham, W.T.; Zile, M.R.; Weaver, F.A.; Butter, C.; Ducharme, A.; Halbach, M.; Klug, D.; Lovett, E.G.; Müller-Ehmsen, J.; Schafer, J.E.; et al. Baroreflex Activation Therapy for the Treatment of Heart Failure with a Reduced Ejection Fraction. JACC Heart Fail. 2015, 3, 487–496. [Google Scholar] [CrossRef]
- Zile, M.R.; Lindenfeld, J.; Weaver, F.A.; Zannad, F.; Galle, E.; Rogers, T.; Abraham, W.T. Baroreflex Activation Therapy in Patients with Heart Failure with Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2020, 76, 1–13. [Google Scholar] [CrossRef]
- Zile, M.R.; Lindenfeld, J.; Weaver, F.A.; Zannad, F.; Galle, E.; Rogers, T.; Abraham, W.T. Baroreflex Activation Therapy in Patients with Heart Failure and a Reduced Ejection Fraction: Long-term Outcomes. Eur. J. Heart Fail. 2024, 26, 1051–1061. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Khayat, R.; Ponikowski, P.; Augostini, R.; Stellbrink, C.; Mianulli, M.; Abraham, W.T. Mechanisms and Clinical Consequences of Untreated Central Sleep Apnea in Heart Failure. J. Am. Coll. Cardiol. 2015, 65, 72–84. [Google Scholar] [CrossRef]
- Bradley, T.D.; Sériès, F.; Belenkie, I.; Hanly, P.; Floras, J.S. Continuous Positive Airway Pressure for Central Sleep Apnea and Heart Failure. N. Engl. J. Med. 2005, 353, 2025–2033. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Ponikowski, P.; Javaheri, S.; Augostini, R.; Goldberg, L.; Holcomb, R.; Kao, A.; Khayat, R.N.; Oldenburg, O.; Stellbrink, C.; et al. Transvenous Neurostimulation for Central Sleep Apnoea: A Randomised Controlled Trial. Lancet 2016, 388, 974–982. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Ponikowski, P.; Coats, A.; Javaheri, S.; Augostini, R.; Goldberg, L.R.; Holcomb, R.; Kao, A.; Khayat, R.N.; Oldenburg, O.; et al. Phrenic Nerve Stimulation to Treat Patients with Central Sleep Apnoea and Heart Failure. Eur. J. Heart Fail. 2018, 20, 1746–1754. [Google Scholar] [CrossRef]
Trials | Device | Design | Population | Key Results |
---|---|---|---|---|
MITRA-FR [11,13] | Mitraclip | Randomized, controlled, open-label trial | 304 HFrEF patients with severe MR (ERO 0.31 cm2, LV diameter 69 mm, NT-proBNP 3300 pg/mL) | Death from any cause or unplanned HHF at 12 months –Intervention Group: 54.6% –Control Group: 51.3% Death from any cause or unplanned HHF at 24 months –Intervention Group: 63.8% –Control Group: 67.1% |
COAPT [12,18] | Mitraclip | Randomized, controlled, parallel-group, open-label trial | 614 HF patients † with severe MR (ERO 0.41 cm2, LV diameter 62 mm, NT-proBNP 5500 pg/mL) | HHF at 24 and 60 months, annualized rate –Intervention Group: 35.8% *, 33.1% * –Control Group: 67.9%, 57.2% Death from any cause at 24 and 60 months –Intervention Group: 29.1% *, 57.3% * –Control Group: 46.1%, 67.2% Change in KCCQ score at 12 months –Intervention Group: 12.5 * –Control Group: −3.6 Change in distance on 6-MWT –Intervention Group: −2.2 m * –Control Group: −60.2 m |
CLASP [19,20,22] | Pascal | Single-arm prospective study | 109 symptomatic patients with severe MR ‡ (ERO 0.38 cm2, LV diameter 61 mm, NT-proBNP 4100 pg/mL) | Baseline vs. 30 days –Survival: 98.4% –ERO: 0.38 vs. 0.17 cm2 * –Residual MR (≤1): 81% –6-MWT: 258 m vs. 295 m * –KCCQ Score: 55 vs. 71 * Baseline vs. 12 and 24 months –Survival: 92%, 80% –ERO: 0.39 cm2 vs. 0.16 cm2 *, 0.22 cm2 * –Residual MR (≤1) 82%, 78% –Freedom from HHF: 87%, 84% |
Cardioband With Transfemoral Delivery System [29] | Cardioband | Single-arm prospective study | 60 HF patients with at least moderate MR | Baseline vs. 12 months –Survival: 87% –Freedom from HHF: 66% –Residual MR (≤2) 61% –MLHFQ: 20 vs. 39 * –6-MWT: 285 m vs. 342 m * |
Mitralign Percutaneous Annuloplasty First in Man Study [25] | Mitralign | Single-arm prospective study | 71 patients with at least moderate FMR and EF < 45% | Baseline vs. 6 months –Survival: 82% –ERO 0.33 cm2 vs. 0.29 cm2 –Residual MR (≤2) 52% –6-MWT: 307 m vs. 364 m * |
REDUCE-FMR [26] | Carillon | Double-blinded, randomized, sham-controlled trial | 120 patients with at least moderate FMR and EF < 50% | Change in RV at 12 months –Intervention Group: −7.1 * –Control Group: 3.3 Change in 6-MWT at 12 months –Intervention Group: 32 m –Control Group: 17.5 m Change in KCCQ Score at 12 months –Intervention Group: 9.5 –Control Group: 7.6 |
Expanded Clinical Study of the Tendyne Mitral Valve System [28] | Tendyne | Single-arm prospective study | 100 patients with severe MR and high surgical risk | Baseline vs. 24 months –Survival: 61% –Residual MR (≤1) 7% –6-MWT: 245 m vs. 287 m |
Trials | Device | Design | Population | Key Results |
---|---|---|---|---|
TRILUMINATE [32] | Triclip | Randomized controlled trial | 350 patients with severe TR | Primary hierarchical composite endpoint † –Intervention Group vs. Control Group Win Ratio: 1.48 * Change in KCCQ Score at 12 months –Intervention Group: 12.3 * –Control Group: 0.6 Change in 6-MWT at 12 months –Intervention Group: −8 m –Control Group: −25 m Residual TR (≤2) –Intervention Group: 87% * –Control Group: 4% |
CLASP-TR [33] | Pascal | Single-arm prospective study | 65 patients with severe TR | Baseline vs. 12 months –Residual TR (≤2): 86% * –Freedom from All-Cause Death: 88% –Freedom from HHF: 78.5% –6-MWT: 208 m vs. 311 m * –KCCQ Score: 53 vs. 72 * |
TRI-REPAIR [34] | Cardioband | Single-arm prospective study | 30 patients with at least moderate TR | Baseline vs. 12 months, 24 months –Residual TR (≤2): 63% *, 72% * –6-MWT: 248 m vs. 296 m, 309 m –KCCQ Score: 45 vs. 64 *, 63 * –Freedom from All-Cause Death: 83%, 73% –Freedom from HHF: 69%, 56% |
SCOUT [35] | Trialign | Single-arm prospective study | 15 patients with at least FTR | Baseline vs. 30 days –TA: 12.3 vs. 11.3 * –ERO: 0.51 cm2 vs. 0.32 cm2 * –6-MWT: 245 m vs. 298 m * –MLHFQ: 47 vs. 21 * |
Wild et al. [36] | Tricento | Retrospective observational registry | 21 high-risk patients with at least severe TR | –RVEDV: 252 vs. 221 mm3 (median follow-up 188 days) –1-year survival rate: 76% |
TRICUS-EURO [37] | Tricvalve | Single-arm prospective study | 35 symptomatic patients (NYHA ≥ III) with at least severe TR | Baseline vs. 1 month –KCCQ Score: 42 vs. 59 –NYHA Class ≤ II: 50% Baseline vs. 6 months –KCCQ Score: 42 vs. 59 –NYHA Class ≤ II: 79% |
TRISCEND [38] | Evoque | Single-arm prospective study | 176 patients with at least moderate TR | Baseline vs. 12 months –Residual TR (≤1): 98% * –SV: 54 vs. 65 mL * –CO: 4 vs. 4.5 L/min * –KCCQ Score: 46 vs. 72 * –6-MWT: 214 vs. 270 * |
Trials | Device | Design | Population | Key Results |
---|---|---|---|---|
REDUCE LAP-HF I [54] | Corvia Atrial Shunt | Phase 2, randomized, parallel-group, blinded trial | 44 patients with NYHA III, LVEF ≥ 40%, exercise PCWP ≥ 25 mmHg, and PCWP right atrial pressure gradient ≥ 5 mmHg | –Peak PWCP after 1 month: −3.5 mmHg * –No peri-procedural or 1-month MACCRE |
REDUCE LAP-HF II [58] | Corvia Atrial Shunt | Randomized, blinded, sham-controlled trial | 626 symptomatic patients with LVEF ≥ 40%, exercise PCWP ≥ 25 mmHg, and PCWP right atrial pressure gradient ≥ 5 mmHg | –No difference in primary composite endpoint –No differences in the composite safety endpoint |
ALT-FLOW [61] | APTURE transcatheter shunt system | Single-arm open-label trial | 87 symptomatic patients with exercise PCWP ≥ 25 mmHg, and PCWP right atrial pressure gradient ≥ 5 mmHg | Baseline vs. 6 months –KCCQ Score: 39 vs. 62 * –NYHA Class II: 12 vs. 67% * –20W PCWP: 35 vs. 28 mmHg |
RELIEVE-HF [64] | V-Wave | Prospective, randomized, observer-blinded study | 97 HF patients on GDMT with ≥1 HHF within 12 months | Baseline vs. 12 months –KCCQ Score: 46 vs. 59 * –LVEDVi: 77.7 vs. 74.4 ml/m2 * –LVESVi: 49 vs. 45.6 mL/m2 * –RVFAC: 36 vs. 40% * –TAPSE: 15.9 vs. 17.3 mm * –LVEF: 43 vs. 45% * |
Trials | Device | Population | Key Results |
---|---|---|---|
FIX-HF-4 [100] | Three-lead Optimizer System | 164 patients on stable GDMT for HFrEF, EF < 35% | Cross-over study, showed improvement in peak VO2 and MLWHFQ |
FIX-HF-5 [101] | Three-lead Optimizer System | 428 patients with advanced heart failure (EF less than 35% and NYHA class III or IV) | Unblinded prospective study, showed improvements in peak VO2 and MLHFQ and suggested greater effect in the subgroup with higher EFs |
FIX-HF-5C [102] | Three-lead Optimizer System | 160 patients with HF with an EF in the 25–45% range | Confirmed greater efficacy in patients with an EF > 35% |
FIX-HF-5C2 [104] | Two-lead Optimizer Smart System | 60 patients with HF with an EF in the 25–45% range (15% of whom suffered from atrial fibrillation) | Showed that there is no sacrifice in efficacy with the two-lead Optimizer device |
CCM-Reg [106] | Two-lead Optimizer Smart System | 140 patients, EF in the 25–45% range | Improved QoL and NYHA class, reduced hospitalizations, survival better than predicted |
CCM-HFpEF [107] | Two-lead Optimizer Smart System | 47 patients with an EF > 50% | Improved QoL according to KCCQ, small improvements in echo parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falco, L.; Valente, F.; De Falco, A.; Barbato, R.; Marotta, L.; Soviero, D.; Cantiello, L.M.; Contaldi, C.; Brescia, B.; Coscioni, E.; et al. Beyond Medical Therapy—An Update on Heart Failure Devices. J. Cardiovasc. Dev. Dis. 2024, 11, 187. https://doi.org/10.3390/jcdd11070187
Falco L, Valente F, De Falco A, Barbato R, Marotta L, Soviero D, Cantiello LM, Contaldi C, Brescia B, Coscioni E, et al. Beyond Medical Therapy—An Update on Heart Failure Devices. Journal of Cardiovascular Development and Disease. 2024; 11(7):187. https://doi.org/10.3390/jcdd11070187
Chicago/Turabian StyleFalco, Luigi, Fabio Valente, Aldo De Falco, Raffaele Barbato, Luigi Marotta, Davide Soviero, Luigi Mauro Cantiello, Carla Contaldi, Benedetta Brescia, Enrico Coscioni, and et al. 2024. "Beyond Medical Therapy—An Update on Heart Failure Devices" Journal of Cardiovascular Development and Disease 11, no. 7: 187. https://doi.org/10.3390/jcdd11070187
APA StyleFalco, L., Valente, F., De Falco, A., Barbato, R., Marotta, L., Soviero, D., Cantiello, L. M., Contaldi, C., Brescia, B., Coscioni, E., Pacileo, G., & Masarone, D. (2024). Beyond Medical Therapy—An Update on Heart Failure Devices. Journal of Cardiovascular Development and Disease, 11(7), 187. https://doi.org/10.3390/jcdd11070187