Machine Learning Approaches for Stroke Risk Prediction: Findings from the Suita Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Outcomes
2.3. Risk Factors and Additional Measurements
2.4. Statistical Methods
2.5. Data Pre-Processing
2.6. Unsupervised Learning
2.7. Supervised Learning
2.8. Extraction of Important Variables for Stroke Risk
3. Results
4. Discussion
4.1. Top Most Important Variables and Comparisons with Other Studies
4.2. Comparing Our Important Variables and the Variables Used in Framingham and Suita Scores
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHAP | Shapley Additive Explanations |
AUC | Area Under the Curve |
VIF | Variance inflation factor |
LR | Logistic Regression |
SVM | Support Vector Machine |
RF | Random Forest |
XGBoost | Extreme Gradient Boosting |
LightGBM | Light Gradient-Boosting Machine |
BMI | Body mass index |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
HDL-c | High-density lipoprotein cholesterol |
eGFR | Estimated glomerular filtration rate |
MetS | Metabolic syndrome |
Appendix A
Performance Metrics | Definition | Formula | Interpretation |
---|---|---|---|
Accuracy | Accuracy is a measure of how many of the total predictions made by the model are correct | Accuracy tells us the overall correctness of predictions. However, a highly imbalanced dataset can lead to misleadingly high accuracy if the model predicts the majority class most of the time. | |
AUC | Area under a receiver operating characteristic (AUC-ROC) measures the ability of a model to distinguish between the positive and negative classes by varying the classification threshold | The ROC curve plots the True Positive Rate (Recall) against the False Positive Rate at various threshold values, and AUC-ROC calculates the area under this curve. | |
Recall | Recall (or Sensitivity) measures the ability of the model to correctly identify positive instances out of all actual positive instances | Recall quantifies the model’s ability to avoid missing positive cases. It is crucial in scenarios where false negatives (missing actual positive cases) are costly or problematic. | |
Precision | Precision (or Positive Predictive Value) measures the accuracy of positive predictions made by the model | Precision focuses on the accuracy of positive predictions. | |
F1-score | The F1-score is the harmonic mean of precision and recall. It provides a single metric that balances both precision and recall. | The F1-score combines the strengths of precision and recall into a single metric. |
References
- WHO. The Top 10 Causes of Death. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 13 March 2023).
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, M.O.; Thrift, A.G.; Mahal, A.; Ishida, M.; Martins, S.; Johnson, W.D.; Pandian, J.; Abd-Allah, F.; Yaria, J.; Phan, H.T.; et al. Primary stroke prevention worldwide: Translating evidence into action. Lancet Public Health 2022, 7, e74–e85. [Google Scholar] [CrossRef] [PubMed]
- Ambale-Venkatesh, B.; Yang, X.; Wu, C.O.; Liu, K.; Hundley, W.G.; McClelland, R.; Gomes, A.S.; Folsom, A.R.; Shea, S.; Guallar, E.; et al. Cardiovascular Event Prediction by Machine Learning. Circ. Res. 2017, 121, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Kim, N.R.; Choi, S.H.; Oh, S.; Park, M.S.; Lee, S.H.; Kim, B.C.; Choi, J.; Kim, M.S. Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes. Sci. Rep. 2022, 12, 9420. [Google Scholar] [CrossRef] [PubMed]
- Dritsas, E.; Trigka, M. Stroke Risk Prediction with Machine Learning Techniques. Sensors 2022, 22, 4670. [Google Scholar] [CrossRef] [PubMed]
- Tazin, T.; Alam, M.N.; Dola, N.N.; Bari, M.S.; Bourouis, S.; Khan, M.M. Stroke Disease Detection and Prediction Using Robust Learning Approaches. J. Healthc. Eng. 2021, 2021, 7633381. [Google Scholar] [CrossRef]
- Kokubo, Y.; Kamide, K.; Okamura, T.; Watanabe, M.; Higashiyama, A.; Kawanishi, K.; Okayama, A.; Kawano, Y. Impact of High-Normal Blood Pressure on the Risk of Cardiovascular Disease in a Japanese Urban Cohort. Hypertension 2008, 52, 652–659. [Google Scholar] [CrossRef]
- Kokubo, Y.; Watanabe, M.; Higashiyama, A.; Nakao, Y.M.; Kobayashi, T.; Watanabe, T.; Okamura, T.; Okayama, A.; Miyamoto, Y. Interaction of Blood Pressure and Body Mass Index with Risk of Incident Atrial Fibrillation in a Japanese Urban Cohort: The Suita Study. Am. J. Hypertens. 2015, 28, 1355–1361. [Google Scholar] [CrossRef]
- Nakao, Y.M.; Miyamoto, Y.; Ueshima, K.; Nakao, K.; Nakai, M.; Nishimura, K.; Yasuno, S.; Hosoda, K.; Ogawa, Y.; Itoh, H.; et al. Effectiveness of nationwide screening and lifestyle intervention for abdominal obesity and cardiometabolic risks in Japan: The metabolic syndrome and comprehensive lifestyle intervention study on nationwide database in Japan (MetS ACTION-J study). PLoS ONE 2018, 13, e0190862. [Google Scholar] [CrossRef]
- Iso, H.; Cui, R.; Takamoto, I.; Kiyama, M.; Saito, I.; Okamura, T.; Miyamoto, Y.; Higashiyama, A.; Kiyohara, Y.; Ninomiya, T.; et al. Risk Classification for Metabolic Syndrome and the Incidence of Cardiovascular Disease in Japan With Low Prevalence of Obesity: A Pooled Analysis of 10 Prospective Cohort Studies. J. Am. Heart Assoc. 2021, 10, e020760. [Google Scholar] [CrossRef]
- Imai, E.; Horio, M.; Nitta, K.; Yamagata, K.; Iseki, K.; Hara, S.; Ura, N.; Kiyohara, Y.; Hirakata, H.; Watanabe, T.; et al. Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin. Exp. Nephrol. 2007, 11, 41–50. [Google Scholar] [CrossRef]
- Martin-Morales, A.; Yamamoto, M.; Inoue, M.; Vu, T.; Dawadi, R.; Araki, M. Predicting Cardiovascular Disease Mortality: Leveraging Machine Learning for Comprehensive Assessment of Health and Nutrition Variables. Nutrients 2023, 15, 3937. [Google Scholar] [CrossRef]
- Huang, Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Min. Knowl. Discov. 1998, 2, 283–304. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. arXiv 2019, arXiv:1907.10902. [Google Scholar]
- Landwehr, N.; Hall, M.; Frank, E. Logistic Model Trees. Mach. Learn. 2005, 59, 161–205. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Saito, T.; Suzuki, M.; Ishioka, T.; Tomisawa, Y.; Nakaya, N.; Abo, M. Support Vector Machine-Based Classifier for the Assessment of Finger Movement of Stroke Patients Undergoing Rehabilitation. J. Med. Biol. Eng. 2020, 40, 91–100. [Google Scholar] [CrossRef]
- Su, P.Y.; Wei, Y.C.; Luo, H.; Liu, C.H.; Huang, W.Y.; Chen, K.F.; Lin, C.P.; Wei, H.Y.; Lee, T.H. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study. JMIR Med. Inform. 2022, 10, e32508. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems 30 (NIPS 2017); Neural Information Processing Systems Foundation: San Diego, CA, USA, 2017; Volume 30. [Google Scholar]
- Nouraei, H.; Nouraei, H.; Rabkin, S.W. Comparison of Unsupervised Machine Learning Approaches for Cluster Analysis to Define Subgroups of Heart Failure with Preserved Ejection Fraction with Different Outcomes. Bioengineering 2022, 9, 175. [Google Scholar] [CrossRef]
- Fernandez-Lozano, C.; Hervella, P.; Mato-Abad, V.; Rodríguez-Yáñez, M.; Suárez-Garaboa, S.; López-Dequidt, I.; Estany-Gestal, A.; Sobrino, T.; Campos, F.; Castillo, J.; et al. Random forest-based prediction of stroke outcome. Sci. Rep. 2021, 11, 10071. [Google Scholar] [CrossRef]
- Sirsat, M.S.; Fermé, E.; Câmara, J. Machine Learning for Brain Stroke: A Review. J. Stroke Cerebrovasc. Dis. 2020, 29, 105162. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, Z.; Zhang, Y.; Shang, J.; Yu, L.; Fu, P.; Liu, Y.; Li, X.; Wang, H.; Ren, L.; et al. Rapid triage for ischemic stroke: A machine learning-driven approach in the context of predictive, preventive and personalised medicine. EPMA J. 2022, 13, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.W.; Arima, H.; Miyazawa, I.; Fujii, T.; Miyamatsu, N.; Sugimoto, Y.; Nagata, S.; Komori, M.; Takashima, N.; Kita, Y.; et al. The Association between Glomerular Filtration Rate Estimated on Admission and Acute Stroke Outcome: The Shiga Stroke Registry. J. Atheroscler. Thromb. 2018, 25, 570–579. [Google Scholar] [CrossRef]
- Penn, A.M.; Croteau, N.S.; Votova, K.; Sedgwick, C.; Balshaw, R.F.; Coutts, S.B.; Penn, M.; Blackwood, K.; Bibok, M.B.; Saly, V.; et al. Systolic blood pressure as a predictor of transient ischemic attack/minor stroke in emergency department patients under age 80: A prospective cohort study. BMC Neurol. 2019, 19, 251. [Google Scholar] [CrossRef] [PubMed]
- Arafa, A.; Kokubo, Y.; Sheerah, H.A.; Sakai, Y.; Watanabe, E.; Li, J.; Honda-Kohmo, K.; Teramoto, M.; Kashima, R.; Nakao, Y.M.; et al. Developing a Stroke Risk Prediction Model Using Cardiovascular Risk Factors: The Suita Study. Cerebrovasc. Dis. 2022, 51, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Guzik, A.; Bushnell, C. Stroke Epidemiology and Risk Factor Management. CONTINUUM Lifelong Learn. Neurol. 2017, 23, 15–39. [Google Scholar] [CrossRef]
- Turana, Y.; Tengkawan, J.; Chia, Y.C.; Nathaniel, M.; Wang, J.; Sukonthasarn, A.; Chen, C.; Minh, H.V.; Buranakitjaroen, P.; Shin, J.; et al. Hypertension and stroke in Asia: A comprehensive review from HOPE Asia. J. Clin. Hypertens. 2021, 23, 513–521. [Google Scholar] [CrossRef]
- Lee, M.; Saver, J.L.; Chang, K.H.; Liao, H.W.; Chang, S.C.; Ovbiagele, B. Low glomerular filtration rate and risk of stroke: Meta-analysis. BMJ 2010, 341, c4249. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.H.; Wu, C.L.; Huang, W.Y. Association between estimated glomerular filtration rate and clinical outcomes in ischemic stroke patients with high-grade carotid artery stenosis. BMC Neurol. 2021, 21, 124. [Google Scholar] [CrossRef]
- Hajhosseiny, R.; Matthews, G.K.; Lip, G.Y. Metabolic syndrome, atrial fibrillation, and stroke: Tackling an emerging epidemic. Heart Rhythm 2015, 12, 2332–2343. [Google Scholar] [CrossRef]
- Carson, A.P.; Muntner, P.; Kissela, B.M.; Kleindorfer, D.O.; Howard, V.J.; Meschia, J.F.; Williams, L.S.; Prineas, R.J.; Howard, G.; Safford, M.M. Association of Prediabetes and Diabetes with Stroke Symptoms. Diabetes Care 2012, 35, 1845–1852. [Google Scholar] [CrossRef]
- Ribeiro, R.T.; Macedo, M.P.; Raposo, J.F. HbA1c, Fructosamine, and Glycated Albumin in the Detection of Dysglycaemic Conditions. Curr. Diabetes Rev. 2015, 12, 14–19. [Google Scholar] [CrossRef]
- Selvin, E.; Rawlings, A.M.; Lutsey, P.L.; Maruthur, N.; Pankow, J.S.; Steffes, M.; Coresh, J. Fructosamine and Glycated Albumin and the Risk of Cardiovascular Outcomes and Death. Circulation 2015, 132, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, A.; Lubas, A.; Smoszna, J.; Niemczyk, S. Risk Factors Associated with All-Cause Death Among Dialysis Patients with Diabetes. Med. Sci. Monit. 2021, 27, e930152-1. [Google Scholar] [CrossRef] [PubMed]
- Panwar, B.; Judd, S.E.; Warnock, D.G.; McClellan, W.M.; Booth, J.N.; Muntner, P.; Gutiérrez, O.M. Hemoglobin Concentration and Risk of Incident Stroke in Community-Living Adults. Stroke 2016, 47, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Jee, S.H.; Yun, J.E.; Baek, S.J.; Lee, D.C. Hemoglobin Concentration and Risk of Cardiovascular Disease in Korean Men and Women—The Korean Heart Study. J. Korean Med. Sci. 2013, 28, 1316. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.V.; Tripathi, B.; Agarwal, Y.; Kabi, B.; Kumar, R. Association of serum calcium levels with clinical severity of ischemic stroke at the time of admission as defined by NIHSS score: A cross-sectional, observational study. J. Fam. Med. Prim. Care 2022, 11, 6427. [Google Scholar] [CrossRef]
- Dibaba, D.T.; Xun, P.; Fly, A.D.; Bidulescu, A.; Tsinovoi, C.L.; Judd, S.E.; McClure, L.A.; Cushman, M.; Unverzagt, F.W.; He, K. Calcium Intake and Serum Calcium Level in Relation to the Risk of Ischemic Stroke: Findings from the REGARDS Study. J. Stroke 2019, 21, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Garmo, H.; Malmström, H.; Hammar, N.; Jungner, I.; Walldius, G.; Hemelrijck, M.V. Association between serum calcium concentration and risk of incident and fatal cardiovascular disease in the prospective AMORIS study. Atherosclerosis 2016, 251, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Burgess, S.; Michaëlsson, K. Association of Genetic Variants Related to Serum Calcium Levels With Coronary Artery Disease and Myocardial Infarction. JAMA 2017, 318, 371. [Google Scholar] [CrossRef]
- Jahangiry, L.; Farhangi, M.A.; Rezaei, F. Framingham risk score for estimation of 10-years of cardiovascular diseases risk in patients with metabolic syndrome. J. Health Popul. Nutr. 2017, 36, 36. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Itaya, T.; Terasawa, Y.; Kohriyama, T. Association between the Suita Score and Stroke Recurrence in Patients with First-ever Ischemic Stroke: A Prospective Cohort Study. Intern. Med. 2022, 61, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Okamura, T.; Watanabe, M.; Nakai, M.; Takegami, M.; Higashiyama, A.; Kokubo, Y.; Okayama, A.; Miyamoto, Y. Predicting Coronary Heart Disease Using Risk Factor Categories for a Japanese Urban Population, and Comparison with the Framingham Risk Score: The Suita Study. J. Atheroscler. Thromb. 2014, 21, 784–798. [Google Scholar] [CrossRef] [PubMed]
Overall | Stroke Incidence | p-Value | ||
---|---|---|---|---|
No | Yes | |||
(n = 7389) | (n = 6951, 94.1%) | (n = 438, 5.9%) | ||
Age, Years | 56 [44, 65] | 55 [44, 65] | 66 [58, 72] | <0.0001 |
male | 3377 (45.7%) | 3143 (45.2%) | 234 (53.4%) | <0.0001 |
BMI, kg/m2 | 22.5 (3.01) | 22.5 (3.00) | 23.1 (3.21) | <0.0001 |
SBP, mmHg | 124 [110, 138] | 123 [110, 137] | 137 [122, 153] | <0.0001 |
DBP, mmHg | 77.7 (12.2) | 77.4 (12.0) | 81.2 (13.4) | <0.0001 |
Smoking, n (%) | 0.004 | |||
Current | 2140 (29.5) | 1999 (29.2) | 141 (33.3) | |
Past | 1162 (16.0) | 1075 (15.7) | 87 (20.5) | |
Never | 3963 (54.5) | 3767 (55.1) | 196 (46.2) | |
Glucose, mg/dL | 95.0 [90.0, 102.0] | 95.0 [89.0, 101.0] | 99.0 [92.0, 107.0] | <0.0001 |
Fructosamine, μmol/L | 253 (22.3) | 253 (22.2) | 258 (23.7) | <0.001 |
Elbow, mm | 6.3 (0.6) | 6.3 (0.6) | 6.4 (0.5) | 0.008 |
Calcium, mg/dL | 9.4 (0.4) | 9.4 (0.4) | 9.3 (0.4) | 0.039 |
Hemoglobin, g/dL | 13.9 (1.5) | 13.9 (1.5) | 14.1 (1.4) | 0.001 |
TG, mg/dL | 99.0 [71.0, 144.0] | 98.0 [70.0, 143.0] | 112.5 [82.0, 163.8] | <0.0001 |
non-HDL-c, mg/dL | 152.6 (36.9) | 152.2 (36.9) | 158.9 (36.8) | 0.0002 |
eGFR, mL/min/1.73 m2 | 90.0 [73.7, 104.6] | 90.3 [74.4, 104.8] | 80.0 [66.6, 95.0] | <0.0001 |
Hypertension, n (%) | 2295 (31.1) | 2054 (29.5) | 241 (55.0) | <0.0001 |
Diabetes, n (%) | 898 (12.2) | 798 (11.5) | 100 (22.8) | <0.0001 |
MetS, n (%) | 1811 (24.5) | 1630 (23.4) | 181 (41.3) | <0.0001 |
Overall | Stroke Risk | p-Value | |||
---|---|---|---|---|---|
High | Medium | Low | |||
(n = 7389) | (n = 1974) | (n = 2565) | (n = 2850) | ||
Stroke incidence, n (%) | 438 (5.9) | 179 (9.1) | 169 (6.6) | 90 (3.2) | <0.001 |
Age, Years | 56 [44, 65] | 63 [55, 71] | 55 [44, 63] | 50 [40, 62] | <0.001 |
Gender | <0.001 | ||||
Male, n (%) | 3377 (45.7) | 211 (10.7) | 2497 (97.3) | 669 (23.5) | |
Female, n (%) | 4012 (54.3) | 1763 (89.3) | 68 (2.7) | 2181 (76.5) | |
BMI, kg/m2 | 22.5 (3.0) | 24.0 (2.7) | 23.8 (2.6) | 20.3 (2.1) | <0.001 |
Body fat, % | 23.2 (6.0) | 28.6 (5.6) | 20.6 (4.1) | 21.8 (5.3) | <0.001 |
SBP, mmHg | 126.3 (20.8) | 138.7 (20.0) | 129.0 (19.1) | 115.4 (16.8) | <0.001 |
DBP, mmHg | 77.6 (11.8) | 82.2 (10.8) | 81.3 (11.4) | 71.1 (9.7) | <0.001 |
Smoking, n (%) | <0.001 | ||||
Current | 2140 (29.0) | 194 (9.8) | 1300 (50.7) | 646 (22.7) | |
Past | 1162 (15.7) | 157 (8.0) | 746 (29.1) | 259 (9.1) | |
Never | 4087 (55.3) | 1623 (82.2) | 519 (20.2) | 1945 (68.2) | |
eGFR, mL/min/1.73 m2 | 90.8 (23.7) | 86.9 (23.9) | 89.1 (22.0) | 94.9 (24.4) | <0.001 |
Hemoglobin, g/dL | 13.9 (1.5) | 13.3 (1.1) | 15.3 (1.0) | 13.1 (1.3) | <0.001 |
TG, mg/dL | 99 [71, 144] | 116 [87, 159.8] | 129 [91, 186] | 73 [57, 95] | <0.001 |
non-HDL-c, mg/dL | 152.4 (36.1) | 172.2 (34.2) | 155.2 (34.2) | 136.2 (31.3) | <0.001 |
HDL-c, mg/dL | 54.6 (14.0) | 53.3 (13.1) | 48.8 (12.5) | 60.7 (13.3) | <0.001 |
Glucose, mg/dL | 95 [90, 101] | 97 [92, 104] | 98 [92.9, 105] | 91 [87, 96] | <0.001 |
Fructosamine, μmol/L | 253.2 (22.3) | 258.3 (23.0) | 251.9 (23.3) | 250.8 (20.4) | <0.001 |
Elbow, mm | 6.3 (0.6) | 6.1 (0.5) | 6.8 (0.4) | 6.0 (0.5) | <0.001 |
Calcium, mg/dL | 9.3 (0.4) | 9.5 (0.4) | 9.4 (0.4) | 9.2 (0.4) | <0.001 |
Hypertension, n (%) | 2295 (31.1) | 1063 (53.9) | 920 (35.9) | 312 (10.9) | <0.001 |
Diabetes, n (%) | 898 (12.2) | 334 (16.9) | 455 (17.7) | 109 (3.8) | <0.001 |
MetS, n (%) | 1811 (24.5) | 762 (38.6) | 997 (38.9) | 52 (1.8) | <0.001 |
Accuracy | AUC | Recall | Precision | F1-Score | |
---|---|---|---|---|---|
LR | 0.64 ± 0.04 | 0.68 ± 0.06 | 0.64 ± 0.04 | 0.64 ± 0.05 | 0.64 ± 0.04 |
RF | 0.70 ± 0.05 | 0.71 ± 0.06 | 0.70 ± 0.05 | 0.70 ± 0.06 | 0.70 ± 0.05 |
SVM | 0.68 ± 0.05 | 0.73 ± 0.06 | 0.68 ± 0.05 | 0.68 ± 0.06 | 0.68 ± 0.05 |
XGBoost | 0.68 ± 0.05 | 0.71 ± 0.06 | 0.68 ± 0.05 | 0.68 ± 0.05 | 0.68 ± 0.05 |
LightGBM | 0.66 ± 0.05 | 0.70 ± 0.06 | 0.66 ± 0.05 | 0.67 ± 0.05 | 0.66 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.; Kokubo, Y.; Inoue, M.; Yamamoto, M.; Mohsen, A.; Martin-Morales, A.; Inoué, T.; Dawadi, R.; Araki, M. Machine Learning Approaches for Stroke Risk Prediction: Findings from the Suita Study. J. Cardiovasc. Dev. Dis. 2024, 11, 207. https://doi.org/10.3390/jcdd11070207
Vu T, Kokubo Y, Inoue M, Yamamoto M, Mohsen A, Martin-Morales A, Inoué T, Dawadi R, Araki M. Machine Learning Approaches for Stroke Risk Prediction: Findings from the Suita Study. Journal of Cardiovascular Development and Disease. 2024; 11(7):207. https://doi.org/10.3390/jcdd11070207
Chicago/Turabian StyleVu, Thien, Yoshihiro Kokubo, Mai Inoue, Masaki Yamamoto, Attayeb Mohsen, Agustin Martin-Morales, Takao Inoué, Research Dawadi, and Michihiro Araki. 2024. "Machine Learning Approaches for Stroke Risk Prediction: Findings from the Suita Study" Journal of Cardiovascular Development and Disease 11, no. 7: 207. https://doi.org/10.3390/jcdd11070207
APA StyleVu, T., Kokubo, Y., Inoue, M., Yamamoto, M., Mohsen, A., Martin-Morales, A., Inoué, T., Dawadi, R., & Araki, M. (2024). Machine Learning Approaches for Stroke Risk Prediction: Findings from the Suita Study. Journal of Cardiovascular Development and Disease, 11(7), 207. https://doi.org/10.3390/jcdd11070207