Improvement of Cardiac Function and Subcellular Defects Due to Chronic Diabetes upon Treatment with Sarpogrelate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model and Hemodynamic Assessment
2.2. Biochemical and Subcellular Studies
3. Results
3.1. Metabolic and Hemodynamic Characteristics
3.2. Cardiac Energy Stores and MT Activities
3.3. Cardiac SL ATPase, Ca2+-Uptake and Ca2+-Channel Activities
3.4. Cardiac SR ATPase, Ca2+-Uptake and Ca2+-Release Activities
3.5. Cardiac MF and Myosin ATPase Activities
3.6. Cardiac Oxidative Stress Biomarkers
4. Discussion
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regan, T.J. Congestive heart failure in the diabetic. Annu. Rev. Med. 1983, 34, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Fein, F.S. Diabetic cardiomyopathy. Diabetes Care 1990, 13, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.W. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol. Cell Biochem. 1991, 107, 1–20. [Google Scholar] [CrossRef]
- Ritchie, R.H.; Abel, E.D. Basic mechanisms of diabetic heart disease. Circ. Res. 2020, 126, 1501–1525. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Albanese, G.; Di Martino, A.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Sasso, F.C. The diabetic cardiomyopathy: The contributing pathophysiological mechanisms. Front. Med. 2021, 8, 695792. [Google Scholar] [CrossRef] [PubMed]
- Grubić Rotkvić, P.; Planinić, Z.; Liberati Pršo, A.M.; Šikić, J.; Galić, E.; Rotkvić, L. The mystery of diabetic cardiomyopathy: From early concepts and underlying mechanisms to novel therapeutic possibilities. Int. J. Mol. Sci. 2021, 22, 5973. [Google Scholar] [CrossRef] [PubMed]
- Phang, R.J.; Ritchie, R.H.; Hausenloy, D.J.; Lees, J.G.; Lim, S.Y. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc. Res. 2023, 119, 668–690. [Google Scholar] [CrossRef] [PubMed]
- Gollmer, J.; Zirlik, A.; Bugger, H. Mitochondrial mechanisms in diabetic cardiomyopathy. Diabetes Metab. J. 2020, 44, 33–53. [Google Scholar] [CrossRef]
- Karwi, Q.G.; Sun, Q.; Lopaschuk, G.D. The contribution of cardiac fatty acid oxidation to diabetic cardiomyopathy severity. Cells 2021, 10, 3259. [Google Scholar] [CrossRef]
- Jubaidi, F.F.; Zainalabidin, S.; Mariappan, V.; Budin, S.B. Mitochondrial dysfunction in diabetic cardiomyopathy: The possible therapeutic roles of phenolic acids. Int. J. Mol. Sci. 2020, 21, 6043. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Carresi, C.; Gliozzi, M.; Musolino, V.; Scarano, F.; Coppoletta, A.R.; Guarnieri, L.; Nucera, S.; Scicchitano, M.; Bosco, F.; et al. Effects of bergamot polyphenols on mitochondrial dysfunction and sarcoplasmic reticulum stress in diabetic cardiomyopathy. Nutrients 2021, 13, 2476. [Google Scholar] [CrossRef] [PubMed]
- Jubaidi, F.F.; Zainalabidin, S.; Taib, I.S.; Hamid, Z.A.; Budin, S.B. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int. J. Mol. Sci. 2021, 22, 5094. [Google Scholar] [CrossRef] [PubMed]
- De Geest, B.; Mishra, M. Role of oxidative stress in diabetic cardiomyopathy. Antioxidants 2022, 11, 784. [Google Scholar] [CrossRef] [PubMed]
- Zang, H.; Wu, W.; Qi, L.; Tan, W.; Nagarkatti, P.; Nagarkatti, M.; Wang, X.; Cui, T. Autophagy inhibition enables Nrf2 to exaggerate the progression of diabetic cardiomyopathy in mice. Diabetes 2020, 69, 2720–2734. [Google Scholar] [CrossRef]
- Byrne, N.J.; Rajasekaran, N.S.; Abel, E.D.; Bugger, H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic. Biol. Med. 2021, 169, 317–342. [Google Scholar] [CrossRef]
- Jaquenod De Giusti, C.; Palomeque, J.; Mattiazzi, A. Ca2+ mishandling and mitochondrial dysfunction: A converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch. 2022, 474, 33–61. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Takeda, N.; Rodriguez-Leyva, D.; Elimban, V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev. 2014, 19, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Shah, A.K.; Tappia, P.S. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy. Int. J. Mol. Sci. 2020, 21, 2413. [Google Scholar] [CrossRef]
- Nakamura, K.; Kariyazono, H.; Moriyama, Y.; Toyohira, H.; Kubo, H.; Yotsumoto, G.; Taira, A.; Yamada, K. Effects of sarpogrelate hydrochloride on platelet aggregation, and its relation to the release of serotonin and P-selectin. Blood Coagul. Fibrinolysis 1999, 10, 513–519. [Google Scholar] [CrossRef]
- Martín, F.J.; Míguez, J.M.; Aldegunde, M.; Atienza, G. Platelet serotonin transport is altered in streptozotocin-induced diabetic rats. Life Sci. 1995, 56, 1807–1815. [Google Scholar] [CrossRef]
- Barradas, M.A.; Gill, D.S.; Fonseca, V.A.; Mikhailidis, D.P.; Dandona, P. Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur. J. Clin. Investig. 1988, 18, 399–404. [Google Scholar] [CrossRef]
- Malyszko, J.; Urano, T.; Knofler, R.; Taminato, A.; Yoshimi, T.; Takada, Y.; Takada, A. Daily variations of platelet aggregation in relation to blood and plasma serotonin in diabetes. Thromb. Res. 1994, 75, 569–576. [Google Scholar] [CrossRef]
- Cameron, N.E.; Cotter, M.A. The effects of 5-hydroxytryptamine 5-HT2 receptor antagonists on nerve conduction velocity and endoneurial perfusion in diabetic rats. Naunyn Schmiedebergs Arch. Pharmacol. 2003, 367, 607–614. [Google Scholar] [CrossRef]
- Kobayashi, S.; Satoh, M.; Namikoshi, T.; Haruna, Y.; Fujimoto, S.; Arakawa, S.; Komai, N.; Tomita, N.; Sasaki, T.; Kashihara, N. Blockade of serotonin 2A receptor improves glomerular endothelial function in rats with streptozotocin-induced diabetic nephropathy. Clin. Exp. Nephrol. 2008, 12, 119–125. [Google Scholar] [CrossRef]
- Bir, S.C.; Fujita, M.; Marui, A.; Hirose, K.; Arai, Y.; Sakaguchi, H.; Huang, Y.; Esaki, J.; Ikeda, T.; Tabata, Y.; et al. New therapeutic approach for impaired arteriogenesis in diabetic mouse hindlimb ischemia. Circ. J. 2008, 72, 633–640. [Google Scholar] [CrossRef]
- Iizuka, K.; Hamaue, N.; Machida, T.; Hirafuji, M.; Tsuji, M. Beneficial effects of sarpogrelate hydrochloride, a 5-HT2A receptor antagonist, supplemented with pioglitazone on diabetic model mice. Endocr. Res. 2009, 34, 18–30. [Google Scholar] [CrossRef]
- Takishita, E.; Takahashi, A.; Harada, N.; Yamato, M.; Yoshizumi, M.; Nakaya, Y. Effect of sarpogrelate hydrochloride, a 5-HT2 blocker, on insulin resistance in Otsuka Long-Evans Tokushima fatty rats (OLETF rats), a type 2 diabetic rat model. J. Cardiovasc. Pharmacol. 2004, 43, 266–270. [Google Scholar] [CrossRef]
- Yamakawa, J.; Takahashi, T.; Saegusa, S.; Moriya, J.; Itoh, T.; Kusaka, K.; Kawaura, K.; Wang, X.Q.; Kanda, T. Effect of the serotonin blocker sarpogrelate on circulating interleukin-18 levels in patients with diabetes and arteriosclerosis obliterans. J. Int. Med. Res. 2004, 32, 166–169. [Google Scholar] [CrossRef]
- Nomura, S.; Shouzu, A.; Omoto, S.; Nishikawa, M.; Iwasaka, T. 5-HT2A receptor antagonist increases circulating adiponectin in patients with type 2 diabetes. Blood Coagul. Fibrinolysis 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Ogawa, S.; Mori, T.; Nako, K.; Ishizuka, T.; Ito, S. Reduced albuminuria with sarpogrelate is accompanied by a decrease in monocyte chemoattractant protein-1 levels in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2008, 3, 362–368. [Google Scholar] [CrossRef]
- Goyal, R.K.; Elimban, V.; Xu, Y.J.; Kumamoto, H.; Takeda, N.; Dhalla, N.S. Mechanism of sarpogrelate action in improving cardiac function in diabetes. J. Cardiovasc. Pharmacol. Ther. 2011, 16, 380–387. [Google Scholar] [CrossRef]
- Takeda, N.; Dixon, I.M.; Hata, T.; Elimban, V.; Shah, K.R.; Dhalla, N.S. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Diabetes Res. Clin. Pract. 1996, 30 (Suppl. S1), S113–S122. [Google Scholar] [CrossRef]
- Temsah, R.M.; Kumamoto, H.; Takeda, N.; Dhalla, N.S. Sarpogrelate diminishes changes in energy stores and ultrastructure of the ischemic-reperfused rat heart. Can. J. Physiol. Pharmacol. 2001, 79, 761–767. [Google Scholar] [CrossRef]
- Makino, N.; Dhalla, K.S.; Elimban, V.; Dhalla, N.S. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am. J. Physiol. 1987, 253 Pt 1, E202–E207. [Google Scholar] [CrossRef]
- Lee, S.L.; Ostadalova, I.; Kolar, F.; Dhalla, N.S. Alterations in Ca2+ -channels during the development of diabetic cardiomyopathy. Mol. Cell Biochem. 1992, 109, 173–179. [Google Scholar]
- Ganguly, P.K.; Pierce, G.N.; Dhalla, K.S.; Dhalla, N.S. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 1983, 244, E528–E535. [Google Scholar] [CrossRef]
- Pierce, G.N.; Dhalla, N.S. Heart mitochondrial function in chronic experimental diabetes in rats. Can. J. Cardiol. 1985, 1, 48–54. [Google Scholar]
- Pierce, G.N.; Dhalla, N.S. Mechanisms of the defect in cardiac myofibrillar function during diabetes. Am. J. Physiol. 1985, 248 Pt 1, E170–E175. [Google Scholar]
- Dillmann, W.H. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 1980, 29, 579–582. [Google Scholar] [CrossRef]
- Malhotra, A.; Penpargkul, S.; Fein, F.S.; Sonnenblick, E.H.; Scheuer, J. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ. Res. 1981, 49, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Kirshenbaum, L.A.; Singal, P.K. Increase in endogenous antioxidant enzymes protects hearts against reperfusion injury. Am. J. Physiol. 1993, 265 Pt 2, H484–H493. [Google Scholar] [CrossRef] [PubMed]
- Marklund, S.L. Pyrogallol autooxidation. In Handbook Methods for Oxygen Radical Research, 1st ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 243–247. [Google Scholar]
- Dhalla, A.K.; Hill, M.F.; Singal, P.K. Role of oxidative stress in transition of hypertrophy to heart failure. J. Am. Coll. Cardiol. 1996, 28, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, K.; Nozue, K.; Oka, Y. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice. Biochem. Biophys. Res. Commun. 2006, 351, 1078–1082. [Google Scholar] [CrossRef]
- Kuo, T.H.; Moore, K.H.; Giacomelli, F.; Wiener, J. Defective oxidative metabolism of heart mitochondria from genetically diabetic mice. Diabetes 1983, 32, 781–787. [Google Scholar] [CrossRef]
Parameters | Control | Diabetic | Diabetic+ | Diabetic+ |
---|---|---|---|---|
Insulin-Treated | Sarpogrelate-Treated | |||
Body wt (g) | 520 ± 18.9 | 325 ± 16.7 * | 440 ± 20.4 # | 412 ± 18.6 # |
Heart wt (mg) | 1404 ± 26.7 | 1138 ± 18.5 * | 1305 ± 22.7 # | 1230 ± 15.8 # |
Plasma glucose (mM) | 7.6± 0.8 | 33.6± 2.4 * | 6.7± 2.5 # | 26.3 ± 1.7 # |
Plasma insulin (ng/mL) | 0.58± 0.03 | 0.24 ± 0.04 * | 0.61 ± 0.04 # | 0.47 ± 0.05 # |
Plasma cholesterol (nM) | 1.54 ± 0.03 | 2.58 ± 0.03 * | 1.72± 0.04 # | 1.90 ± 0.09 # |
Plasma FFAs (m-eq/L) | 0.29 ± 0.02 | 0.44 ± 0.04 * | 0.26 ± 0.03 # | 0.31 ± 0.02 # |
Plasma TGs (mM) | 2.58 ± 0.36 | 6.75 ± 0.49 * | 2.57 ± 0.48 # | 3.89 ± 0.59 # |
Parameters | Control | Diabetic | Diabetic+ | Diabetic+ |
---|---|---|---|---|
Insulin-Treated | Sarpogrelate-Treated | |||
Heart rate (beats/min) | 412 ± 21.4 | 316± 14.3 * | 392 ± 16.6 # | 372 ± 12.8 # |
Blood Pressure (mm/Hg) | 111 ± 8.9 | 140 ± 6.8 * | 106 ± 7.7 # | 102 ± 6.9 # |
LVDP (mmHg) | 110.2 ± 4.0 | 86.9 ± 2.1 * | 99.9 ± 5.7 # | 111.3 ± 3.6 # |
LVEDP (mmHg) | 3.6 ± 0.2 | 3.7 ± 0.3 | 3.7 ± 0.2 | 3.8 ± 0.3 |
+dP/dt (mmHg/s) | 9421 ± 975 | 7915 ± 723 * | 9506 ± 794 # | * 9744 ± 242 # |
−dP/dt (mmHg/s) | 8874 ± 627 | 6685 ± 93 * | 9011 ± 662 # | 9496 ± 468 # |
Parameters | Control | Diabetic | Diabetic+ | Diabetic+ |
---|---|---|---|---|
Insulin-Treated | Sarpogrelate-Treated | |||
CP (µmol/g) | 6.58 ± 0.30 | 3.66 ± 0.48 * | 5.79 ± 0.28 # | 5.24 ± 0.36 # |
ATP (µmol/g) | 4.82 ± 0.21 | 3.58 ± 0.15 * | 4.46 ± 0.19 # | 4.16 ± 0.14 # |
ADP (µmol/g) | 1.36 ± 0.07 | 1.91 ± 0.08 * | 1.46 ± 0.05 # | 1.58 ± 0.09 # |
AMP (µmol/g) | 0.51 ± 0.03 | 0.97 ± 0.06 * | 0.65 ± 0.04 # | 0.72 ± 0.05 # |
Parameters | Control | Diabetic | Diabetic+ | Diabetic+ |
---|---|---|---|---|
Insulin-Treated | Sarpogrelate-Treated | |||
A. MT oxidative phosphorylation: | ||||
ADP/O ratio | 2.86 ± 0.23 | 2.59 ± 0.31 | 2.74 ± 0.24 | 2.86 ± 0.25 |
State 3 | ||||
(natoms O/mg/min) | 192 ± 8.3 | 144 ± 9.6 * | 182 ± 6.9 # | 174 ± 7.7 # |
State 4 | ||||
(natoms O/mg/min) | 17.5 ± 1.8 | 19.4 ± 2.7 | 20.3 ± 2.5 | 18.2 ± 2.5 |
Oxidative phosphorylation rate | ||||
(State 3x ADP/O ratio) | 549 ± 34 | 373 ± 42 * | 498 ± 31 # | 497 ± 37 # |
B. MT Ca2+ uptake and ATPase: | ||||
Ca2+ uptake | 134 ± 6.2 | 84 ± 3.6 * | 121 ± 4.9 # | 106 ± 3.8 # |
Mg2+ ATPase | 9.6 ± 0.4 | 6.2 ± 0.4 * | 6.4 ± 0.3 | 6.0 ± 0.3 |
(µmol Pi/mg/5 min) |
Parameters | Control | Diabetic | Diabetic+ | Diabetic+ |
---|---|---|---|---|
Insulin-Treated | Sarpogrelate-Treated | |||
A. SL Ca2+ channel and Ca2+ transport: | ||||
Ca2+-channel density | 154 ± 13 | 95 ± 10 * | 149 ± 12 # | 131 ± 9 # |
(fmol/mg) | ||||
Kd (nM) | 0.34 ± 0.03 | 0.24 ± 0.02 * | 0.41 ± 0.09 # | 0.32 ± 0.02 # |
ATP-dependent Ca2+ uptake | ||||
(nmol/mg/min) | 15.6 ± 1.6 | 6.4 ± 0.9 * | 11.7 ± 1.2 # | 10.1 ± 0.7 # |
Ca2+-stimulated ATPase | ||||
(µmol Pi/mg/5 min) | 1.6 ± 0.3 | 0.7 ± 0.1 * | 1.5 ± 0.2 # | 1.2 ± 0.2 # |
Mg2+-ATPase | ||||
(µmol Pi/mg/5 min) | 14.2 ± 2.1 | 13.7 ± 2.6 | 15.1 ± 2.8 | 14.7 ± 3.3 |
B. SR Ca2+-stimulated ATPase and Mg2+-ATPase: | ||||
Ca2+-stimulated ATPase | ||||
(µmol Pi/mg/5min) | 3.7 ± 0.49 | 2.5 ± 0.24 * | 3.4 ± 0.24 # | 3.2 ± 0.16 # |
Mg2+-ATPase | ||||
(µmol Pi/mg/5 min) | 10.6 ± 0.4 | 9.6 ± 0.5 | 10.3 ± 0.4 | 9.8 ± 0.3 |
Parameters | Control | Diabetic | Diabetic+ | Diabetic+ |
---|---|---|---|---|
Insulin-Treated | Sarpogrelate-Treated | |||
Malondialdehyde | ||||
(nmol/g heart) | 80 ± 8.5 | 106 ± 6.2 * | 83 ± 5.1 # | 90 ± 4.4 # |
Reduced glutathione | ||||
(ng/mg protein) | 258 ± 10.2 | 164 ± 9.5 * | 221 ± 7.9 # | 203 ± 6.8 # |
Oxidized glutathione | ||||
(ng/mg protein) | 72 ± 5.4 | 125 ± 7.2 * | 86 ± 5.6 * | 92 ± 4.3 # |
Glutathione peroxidase | ||||
(nmol/mg protein/min) | 82 ± 5.8 | 60 ± 4.2 * | 87 ± 6.1 # | 76 ± 3.4 # |
Superoxide dismutase | ||||
(Units/mg protein) | 10.4 ± 1.2 | 4.8 ± 1.3 * | 8.6 ± 1.7 # | 6.9 ± 0.8 # |
Catalase | ||||
(Units/mg protein) | 23.6 ± 1.7 | 26.4 ± 1.9 | 28.1 ± 2.3 | 24.4 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tappia, P.S.; Elimban, V.; Shah, A.K.; Goyal, R.K.; Dhalla, N.S. Improvement of Cardiac Function and Subcellular Defects Due to Chronic Diabetes upon Treatment with Sarpogrelate. J. Cardiovasc. Dev. Dis. 2024, 11, 215. https://doi.org/10.3390/jcdd11070215
Tappia PS, Elimban V, Shah AK, Goyal RK, Dhalla NS. Improvement of Cardiac Function and Subcellular Defects Due to Chronic Diabetes upon Treatment with Sarpogrelate. Journal of Cardiovascular Development and Disease. 2024; 11(7):215. https://doi.org/10.3390/jcdd11070215
Chicago/Turabian StyleTappia, Paramjit S., Vijayan Elimban, Anureet K. Shah, Ramesh K. Goyal, and Naranjan S. Dhalla. 2024. "Improvement of Cardiac Function and Subcellular Defects Due to Chronic Diabetes upon Treatment with Sarpogrelate" Journal of Cardiovascular Development and Disease 11, no. 7: 215. https://doi.org/10.3390/jcdd11070215
APA StyleTappia, P. S., Elimban, V., Shah, A. K., Goyal, R. K., & Dhalla, N. S. (2024). Improvement of Cardiac Function and Subcellular Defects Due to Chronic Diabetes upon Treatment with Sarpogrelate. Journal of Cardiovascular Development and Disease, 11(7), 215. https://doi.org/10.3390/jcdd11070215