Factors Contributing to Coronary Microvascular Dysfunction in Patients with Angina and Non-Obstructive Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CFT
2.3. Definitions of CFT
2.4. Definitions of Clinical Parameters
2.5. Statistical Analyses
3. Results
3.1. Patients’ Characteristics
3.2. Clinical Parameters Associated with CFR and IMR
3.3. Clinical Parameters Associated with the Presence of CMD in Relation to Gender
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [CrossRef] [PubMed]
- Hokimoto, S.; Kaikita, K.; Yasuda, S.; Tsujita, K.; Ishihara, M.; Matoba, T.; Matsuzawa, Y.; Mitsutake, Y.; Mitani, Y.; Murohara, T.; et al. JCS/CVIT/JCC 2023 Guideline Focused Update on Diagnosis and Treatment of Vasospastic Angina (Coronary Spastic Angina) and Coronary Microvascular Dysfunction. Circ. J. 2023, 87, 879–936. [Google Scholar] [CrossRef] [PubMed]
- Samuels, B.A.; Shah, S.M.; Widmer, R.J.; Kobayashi, Y.; Miner, S.E.S.; Taqueti, V.R.; Jeremias, A.; Albadri, A.; Blair, J.A.; Kearney, K.E.; et al. Comprehensive Management of ANOCA, Part 1-Definition, Patient Population, and Diagnosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 82, 1245–1263. [Google Scholar] [CrossRef] [PubMed]
- Kelshiker, M.A.; Seligman, H.; Howard, J.P.; Rahman, H.; Foley, M.; Nowbar, A.N.; Rajkumar, C.A.; Shun-Shin, M.J.; Ahmad, Y.; Sen, S.; et al. Coronary flow reserve and cardiovascular outcomes: A systematic review and meta-analysis. Eur. Heart J. 2022, 43, 1582–1593. [Google Scholar] [CrossRef]
- Suda, A.; Takahashi, J.; Hao, K.; Kikuchi, Y.; Shindo, T.; Ikeda, S.; Sato, K.; Sugisawa, J.; Matsumoto, Y.; Miyata, S.; et al. Coronary Functional Abnormalities in Patients with Angina and Nonobstructive Coronary Artery Disease. J. Am. Coll. Cardiol. 2019, 74, 2350–2360. [Google Scholar] [CrossRef] [PubMed]
- Milzi, A.; Dettori, R.; Lubberich, R.K.; Reith, S.; Frick, M.; Burgmaier, K.; Marx, N.; Burgmaier, M. Coronary microvascular dysfunction is a hallmark of all subtypes of MINOCA. Clin. Res. Cardiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Fearon, W.F.; Honda, Y.; Tanaka, S.; Pargaonkar, V.; Fitzgerald, P.J.; Lee, D.P.; Stefanick, M.; Yeung, A.C.; Tremmel, J.A. Effect of Sex Differences on Invasive Measures of Coronary Microvascular Dysfunction in Patients with Angina in the Absence of Obstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2015, 8, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Saito, Y.; Yamashita, D.; Kitahara, H.; Kobayashi, Y. Factors Associated with Impaired Resistive Reserve Ratio and Microvascular Resistance Reserve. Diagnostics 2023, 13, 950. [Google Scholar] [CrossRef]
- Paolisso, P.; Gallinoro, E.; Belmonte, M.; Bertolone, D.T.; Bermpeis, K.; De Colle, C.; Shumkova, M.; Leone, A.; Caglioni, S.; Esposito, G.; et al. Coronary Microvascular Dysfunction in Patients with Heart Failure: Characterization of Patterns in HFrEF Versus HFpEF. Circ. Heart Fail. 2024, 17, e010805. [Google Scholar] [CrossRef]
- Teragawa, H.; Oshita, C.; Uchimura, Y. Clinical Characteristics and Prognosis of Patients with Multi-Vessel Coronary Spasm in Comparison with Those in Patients with Single-Vessel Coronary Spasm. J. Cardiovasc. Dev. Dis. 2022, 9, 204. [Google Scholar] [CrossRef]
- Sueda, S.; Miyoshi, T.; Sasaki, Y.; Sakaue, T.; Habara, H.; Kohno, H. Sequential spasm provocation tests might overcome a limitation of the standard spasm provocation tests. Coron. Artery Dis. 2015, 26, 490–494. [Google Scholar] [CrossRef]
- Matsumura, M.; Oshita, C.; Fujii, Y.; Ueda, T.; Teragawa, H. Vasospastic Angina Diagnosed by the Spasm Provocation Test with the Combined Use of the Acetylcholine and Ergonovine Provocation Tests. Intern. Med. 2019, 58, 2377–2381. [Google Scholar] [CrossRef]
- Teragawa, H.; Oshita, C.; Uchimura, Y. The Impact of Myocardial Bridging on the Coronary Functional Test in Patients with Ischaemia with Non-Obstructive Coronary Artery Disease. Life 2022, 12, 1560. [Google Scholar] [CrossRef]
- Teragawa, H.; Oshita, C.; Ueda, T. History of gastroesophageal reflux disease in patients with suspected coronary artery disease. Heart Vessel. 2019, 34, 1631–1638. [Google Scholar] [CrossRef]
- Group, J.C.S.J.W. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ. J. 2014, 78, 2779–2801. [Google Scholar] [CrossRef]
- Sato, K.; Kaikita, K.; Nakayama, N.; Horio, E.; Yoshimura, H.; Ono, T.; Ohba, K.; Tsujita, K.; Kojima, S.; Tayama, S.; et al. Coronary vasomotor response to intracoronary acetylcholine injection, clinical features, and long-term prognosis in 873 consecutive patients with coronary spasm: Analysis of a single-center study over 20 years. J. Am. Heart Assoc. 2013, 2, e000227. [Google Scholar] [CrossRef]
- Ong, P.; Camici, P.G.; Beltrame, J.F.; Crea, F.; Shimokawa, H.; Sechtem, U.; Kaski, J.C.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018, 250, 16–20. [Google Scholar] [CrossRef]
- Teragawa, H.; Uchimura, Y.; Oshita, C.; Hashimoto, Y.; Nomura, S. Frequency and Clinical Impact of Family History of Coronary Artery Disease in Patients with Vasospastic Angina. J. Cardiovasc. Dev. Dis. 2023, 10, 249. [Google Scholar] [CrossRef]
- Teragawa, H.; Oshita, C.; Uchimura, Y.; Akazawa, R.; Orita, Y. Coronary Microvascular Vasodilatory Function: Related Clinical Features and Differences According to the Different Coronary Arteries and Types of Coronary Spasm. J. Clin. Med. 2021, 11, 130. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Devereux, R.B.; Reichek, N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977, 55, 613–618. [Google Scholar] [CrossRef]
- Devereux, R.B.; Lutas, E.M.; Casale, P.N.; Kligfield, P.; Eisenberg, R.R.; Hammond, I.W.; Miller, D.H.; Reis, G.; Alderman, M.H.; Laragh, J.H. Standardization of M-mode echocardiographic left ventricular anatomic measurements. J. Am. Coll. Cardiol. 1984, 4, 1222–1230. [Google Scholar] [CrossRef]
- Kusunose, K.; Imai, T.; Tanaka, A.; Doi, M.; Koide, Y.; Fukumoto, K.; Kadokami, T.; Ohishi, M.; Teragawa, H.; Ohte, N.; et al. Effects of ipragliflozin on left ventricular diastolic function in patients with type 2 diabetes: A sub-analysis of the PROTECT trial. J. Cardiol. 2024, 4, 1222–1230. [Google Scholar] [CrossRef]
- Loffler, A.I.; Pan, J.A.; Balfour, P.C., Jr.; Shaw, P.W.; Yang, Y.; Nasir, M.; Auger, D.A.; Epstein, F.H.; Kramer, C.M.; Gan, L.M.; et al. Frequency of Coronary Microvascular Dysfunction and Diffuse Myocardial Fibrosis (Measured by Cardiovascular Magnetic Resonance) in Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction. Am. J. Cardiol. 2019, 124, 1584–1589. [Google Scholar] [CrossRef]
- Shimokawa, H.; Suda, A.; Takahashi, J.; Berry, C.; Camici, P.G.; Crea, F.; Escaned, J.; Ford, T.; Yii, E.; Kaski, J.C.; et al. Clinical characteristics and prognosis of patients with microvascular angina: An international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. Eur. Heart J. 2021, 42, 4592–4600. [Google Scholar] [CrossRef]
- Gould, K.L.; Johnson, N.P. Ischemia in Aortic Stenosis: New Insights and Potential Clinical Relevance. J. Am. Coll. Cardiol. 2016, 68, 698–701. [Google Scholar] [CrossRef]
- Zelis, J.M.; Tonino, P.A.L.; Pijls, N.H.J.; De Bruyne, B.; Kirkeeide, R.L.; Gould, K.L.; Johnson, N.P. Coronary Microcirculation in Aortic Stenosis: Pathophysiology, Invasive Assessment, and Future Directions. J. Interv. Cardiol. 2020, 2020, 4603169. [Google Scholar] [CrossRef]
- Saito, Y.; Kitahara, H.; Shoji, T.; Tokimasa, S.; Nakayama, T.; Sugimoto, K.; Fujimoto, Y.; Kobayashi, Y. Paroxysmal atrial fibrillation during intracoronary acetylcholine provocation test. Heart Vessel. 2017, 32, 902–908. [Google Scholar] [CrossRef]
- Erdogan, D.; Yucel, H.; Uysal, B.A.; Ersoy, I.H.; Icli, A.; Akcay, S.; Arslan, A.; Aksoy, F.; Ozaydin, M.; Tamer, M.N. Effects of prediabetes and diabetes on left ventricular and coronary microvascular functions. Metabolism 2013, 62, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Haraldsson, I.; Gan, L.M.; Svedlund, S.; Torngren, K.; Westergren, H.U.; Redfors, B.; Lagerstrom-Fermer, M.; Angeras, O.; Ramunddal, T.; Petursson, P.; et al. PROspective evaluation of coronary FLOW reserve and molecular biomarkers in patients with established coronary artery disease the PROFLOW-trial: Cross-sectional evaluation of coronary flow reserve. Vasc. Health Risk Manag. 2019, 15, 375–384. [Google Scholar] [CrossRef]
- Freund, O.; Shetrit, A.; Bar-Shai, A.; Zornitzki, L.; Frydman, S.; Banai, A.; Shamir, R.A.; Ben-Shoshan, J.; Arbel, Y.; Banai, S.; et al. Smoking and Respiratory Diseases in Patients with Coronary Microvascular Dysfunction. Am. J. Med. 2024, 137, 538–544.e1. [Google Scholar] [CrossRef]
- Sugiishi, M.; Takatsu, F. Cigarette smoking is a major risk factor for coronary spasm. Circulation 1993, 87, 76–79. [Google Scholar] [CrossRef]
- Orlick, A.E.; Ricci, D.R.; Cipriano, P.R.; Guthaner, D.F.; Harrison, D.C. Coronary hemodynamic effects of ergonovine maleate in human subjects. Am. J. Cardiol. 1980, 45, 48–52. [Google Scholar] [CrossRef]
- Cannon, R.O.; Schenke, W.H.; Leon, M.B.; Rosing, D.R.; Urqhart, J.; Epstein, S.E. Limited coronary flow reserve after dipyridamole in patients with ergonovine-induced coronary vasoconstriction. Circulation 1987, 75, 163–174. [Google Scholar] [CrossRef]
- Feldman, R.L.; Curry, R.C.; Pepine, C.J.; Mehta, J.; Conti, C.R. Regional coronary hemodynamic effects of ergonovine in patients with and without variant angina. Circulation 1980, 62, 149–159. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Saito, Y.; Kikuta, Y.; Sato, K.; Taniguchi, M.; Goto, K.; Takebayashi, H.; Haruta, S.; Kobayashi, Y. Safety and potential usefulness of sequential intracoronary acetylcholine and ergonovine administration for spasm provocation testing. Ther. Adv. Cardiovasc. Dis. 2024, 18, 1–7. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Solomon, S.D.; Shah, A.M.; Desai, A.S.; Groarke, J.D.; Osborne, M.T.; Hainer, J.; Bibbo, C.F.; Dorbala, S.; Blankstein, R.; et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur. Heart J. 2018, 39, 840–849. [Google Scholar] [CrossRef]
- D’Amario, D.; Laborante, R.; Bianchini, E.; Ciliberti, G.; Paglianiti, D.A.; Galli, M.; Restivo, A.; Stolfo, D.; Vergallo, R.; Rosano, G.M.C.; et al. Impact of coronary microvascular dysfunction in heart failure with preserved ejection fraction: A meta-analysis. ESC Heart Fail. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.H.; Quah, J.X.; Davies, T.; Boos, C.J.; Nel, K.; Anstey, C.M.; Stanton, T.; Greaves, K. Relationship between coronary microvascular dysfunction and left ventricular diastolic function in patients with chest pain and unobstructed coronary arteries. Echocardiography 2020, 37, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Masuda, D.; Nohara, R.; Tamaki, N.; Hosokawa, R.; Inada, H.; Hikai, T.; Chen, L.G.; Tadamura, E.; Kudou, T.; Konishi, J.; et al. Evaluation of coronary blood flow reserve by 13N-NH3 positron emission computed tomography (PET) with dipyridamole in the treatment of hypertension with the ACE inhibitor (Cilazapril). Ann. Nucl. Med. 2000, 14, 353–360. [Google Scholar] [CrossRef]
- Iino, K.; Watanabe, H.; Iino, T.; Katsuta, M.; Koyama, T.; Kosaka, T.; Terui, G.; Ito, H. Candesartan improves impaired endothelial function in the human coronary artery. Coron. Artery Dis. 2012, 23, 278–283. [Google Scholar] [CrossRef]
- Toyama, T.; Sato, C.; Koyama, K.; Kasama, S.; Murakami, J.; Yamashita, E.; Kawaguchi, R.; Adachi, H.; Hoshizaki, H.; Oshima, S. Olmesartan improves coronary flow reserve of hypertensive patients using coronary magnetic resonance imaging compared with amlodipine. Cardiology 2012, 122, 230–236. [Google Scholar] [CrossRef]
- Stamatelopoulos, K.; Bramos, D.; Manios, E.; Alexaki, E.; Kaladaridou, A.; Georgiopoulos, G.; Koroboki, E.; Kolyviras, A.; Stellos, K.; Zakopoulos, N.; et al. Pleiotropic effects of the acute and chronic inhibition of the renin-angiotensin system in hypertensives. J. Hum. Hypertens. 2014, 28, 378–383. [Google Scholar] [CrossRef]
- Dean, J.; Cruz, S.D.; Mehta, P.K.; Merz, C.N. Coronary microvascular dysfunction: Sex-specific risk, diagnosis, and therapy. Nat. Rev. Cardiol. 2015, 12, 406–414. [Google Scholar] [CrossRef]
- Sara, J.D.; Widmer, R.J.; Matsuzawa, Y.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prevalence of Coronary Microvascular Dysfunction Among Patients with Chest Pain and Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2015, 8, 1445–1453. [Google Scholar] [CrossRef]
- Godo, S.; Shimokawa, H. Gender Differences in Endothelial Function and Coronary Vasomotion Abnormalities. Gend. Genome 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Patel, M.B.; Bui, L.P.; Kirkeeide, R.L.; Gould, K.L. Imaging Microvascular Dysfunction and Mechanisms for Female-Male Differences in CAD. JACC Cardiovasc. Imaging 2016, 9, 465–482. [Google Scholar] [CrossRef]
- Bailey, A.L.; Smyth, S.S. Invasive coronary vasoreactivity testing to diagnose microvascular dysfunction in women. JACC Cardiovasc. Interv. 2012, 5, 654–655. [Google Scholar] [CrossRef]
- Park, K.E.; Pepine, C.J. Microvascular dysfunction: What have we learned from WISE? Expert. Rev. Cardiovasc. Ther. 2011, 9, 1491–1494. [Google Scholar] [CrossRef]
- Tomas, J.P.; Moya, J.L.; Barrios, V.; Campuzano, R.; Guzman, G.; Megias, A.; Ruiz-Leria, S.; Catalan, P.; Marfil, T.; Tarancon, B.; et al. Effect of candesartan on coronary flow reserve in patients with systemic hypertension. J. Hypertens. 2006, 24, 2109–2114. [Google Scholar] [CrossRef]
- Galderisi, M.; Capaldo, B.; Sidiropulos, M.; D’Errico, A.; Ferrara, L.; Turco, A.; Guarini, P.; Riccardi, G.; de Divitiis, O. Determinants of reduction of coronary flow reserve in patients with type 2 diabetes mellitus or arterial hypertension without angiographically determined epicardial coronary stenosis. Am. J. Hypertens. 2007, 20, 1283–1290. [Google Scholar] [CrossRef]
- Noheria, A.; Mosley, T.H., Jr.; Kullo, I.J. Association of serum osteoprotegerin with left ventricular mass in African American adults with hypertension. Am. J. Hypertens. 2010, 23, 767–774. [Google Scholar] [CrossRef]
- Vitolo, E.; Comassi, M.; Caputo, M.T.; Solini, A. Hormone replacement therapy, renal function and heart ultrasonographic parameters in postmenopausal women: An observational study. Int. J. Clin. Pract. 2015, 69, 632–637. [Google Scholar] [CrossRef]
- Valenzuela-Garcia, L.F.; Matsuzawa, Y.; Sara, J.D.S.; Kwon, T.-G.; Lennon, R.J.; Lerman, L.O.; Ruiz-Salmeron, R.J.; Lerman, A. Lack of correlation between the optimal glycaemic control and coronary micro vascular dysfunction in patients with diabetes mellitus: A cross sectional study. Cardiovasc. Diabetol. 2015, 14, 106. [Google Scholar] [CrossRef]
- Yamazaki, T.; Saito, Y.; Yamashita, D.; Kitahara, H.; Kobayashi, Y. Impact of preceding acetylcholine provocation testing on following coronary physiological assessment during an interventional diagnostic procedure. J. Cardiol. 2023, 82, 215–219. [Google Scholar] [CrossRef]
Factors | CMD (−) | CMD (+) | p Value |
---|---|---|---|
No. | 38 (45) | 46 (55) | |
Age (years) | 63 ± 14 | 63 ± 14 | 0.852 |
Men/women | 20/18 | 16/30 | 0.099 |
Body mass index | 24.2 ± 4.6 | 24.6 ± 4.8 | 0.681 |
Coronary risk factors (%) | |||
Smoking history | 2 (5) | 10 (21) | 0.032 |
Hypertension | 22 (58) | 31 (67) | 0.369 |
Dyslipidaemia | 16 (42) | 23 (50) | 0.470 |
Diabetes mellitus | 6 (16) | 6 (13) | 0.720 |
Family history of CAD (%) | 11 (29) | 14 (30) | 0.882 |
Presence of MtS (%) | 9 (24) | 6 (13) | 0.205 |
Presence of CKD (%) | 9 (24) | 13 (28) | 0.635 |
Biochemical parameters | |||
Haemoglobin (g/mL) | 14.0 ± 1.2 | 13.5± 1.4 | 0.097 |
LDL cholesterol (mg/dL) | 114 ± 29 | 101 ± 27 | 0.052 |
HDL cholesterol (mg/dL) | 62 ± 17 | 62 ± 15 | 0.934 |
Triglycerides (mg/dL) | 126 ± 77 | 112 ± 58 | 0.374 |
Fasting blood sugar (mg/dL) | 105 ± 18 | 105 ± 18 | 0.866 |
HbA1c (%) | 6.0 ± 0.6 | 5.9 ± 0.6 | 0.305 |
Log CRP | −1.28 ± 0.52 | −1.28 ± 0.48 | 0.972 |
eGFR (mL/min/1.73 m2) | 69.7 ± 14.3 | 69.7 ± 14.2 | 0.987 |
Log NT proBNP | 1.78 ± 0.39 | 1.87 ± 0.40 | 0.269 |
Echocardiography | |||
LVEF (%) | 66 ± 7 | 68 ± 5 | 0.298 |
LVMI (g/m2) | 75 ± 19 | 82 ± 20 | 0.116 |
E/e′ | 10.3 ± 3.1 | 10.9 ± 4.2 | 0.437 |
Medication history (%) | |||
CCB | 19 (50) | 17 (37) | 0.229 |
RAS inhibitors | 5 (13) | 14 (30) | 0.059 |
Beta-blockers | 2 (5) | 6 (13) | 0.227 |
Anti-platelet therapy | 2 (5) | 6 (13) | 0.227 |
Lipid-lowering therapy | 12 (32) | 20 (43) | 0.264 |
CAG CFT | |||
Atherosclerotic change (%) | 14 (37) | 12 (26) | 0.289 |
Myocardial bridging (%) | 10 (26) | 10 (22) | 0.624 |
Dose of ACh (L/M/H) | 4/17/17 | 3/16/27 | 0.428 |
Use of EM (%) | 3 (8) | 12 (26) | 0.030 |
VSA (%) | 28 (74) | 30 (65) | 0.406 |
VSA type in the LAD | 6/20/6/6 | 14/13/10/9 | 0.134 |
(Focal/diffuse/MVS/non-specific) | |||
Presence of focal spasm (%) | 6 (15) | 14 (30) | 0.117 |
Baseline Pd/Pa | 0.96 ± 0.02 | 0.96 ± 0.03 | 0.633 |
FFR | 0.91 ± 0.04 | 0.92 ± 0.05 | 0.631 |
CFR | 3.5 ± 1.2 | 2.2 ± 1.2 | <0.001 |
CFR < 2.0 | 0 (0) | 22 (48) | <0.001 |
IMR | 16.6 ± 4.1 | 38.4 ± 17.7 | <0.001 |
IMR ≥ 25 | 0 (0) | 40 (87) | <0.001 |
(A) Logistic Regression Analyses to Determine the Risk Factors for CMD in all the Patients | |||
---|---|---|---|
Factors | Odds Ratio | CI | p Value |
Smoking | 5.45 | 1.28–37.66 | 0.020 |
Use of EM | 4.45 | 1.25–21.15 | 0.020 |
R2 = 0.09 | |||
(B) Logistic Regression Analyses to Determine the Factors Associated with a CFR < 2.0 in all the Patients | |||
Factors | Odds Ratio | CI | p Value |
E/e′ | 0.82 | 0.67–0.97 | 0.020 |
Smoking | 2.05 | 0.53–7.54 | 0.288 |
R2 = 0.07 | |||
(C) Logistic Regression Analyses to Determine the Factors Associated with an IMR ≥ 25 in all the Patients | |||
Factors | Odds Ratio | CI | p Value |
RAS inhibitors use | 3.92 | 1.26–13.86 | 0.018 |
Smoking | 4.15 | 1.05–21.06 | 0.042 |
Body mass index | 1.04 | 0.94–1.17 | 0.447 |
Low HDL cholesterol levels | 1.01 | 0.98–1.04 | 0.656 |
R2 = 0.102 | |||
(D) Logistic Regression Analyses to Determine the Risk Factors for CMD in Women | |||
Factors | Odds Ratio | CI | p Value |
LVMI | 1.05 | 1.01–1.09 | 0.010 |
Low HbA1c levels | 0.13 | 0.02–0.66 | 0.012 |
Use of EM | 5.25 | 0.76–105.8 | 0.097 |
R2 = 0.237 |
Factors | Men | Women | ||||
---|---|---|---|---|---|---|
CMD (−) | CMD (+) | p Value | CMD (−) | CMD (+) | p Value | |
No. | 20 (56) | 16 (44) | 18 (37) | 30 (63) | ||
Age (years) | 64 ± 13 | 62 ± 15 | 0.678 | 63 ± 15 | 64 ± 14 | 0.968 |
Body mass index | 25.6 ± 4.8 | 25.9 ± 4.7 | 0.860 | 22.5 ± 3.9 | 23.9 ± 4.9 | 0.320 |
Coronary risk factors (%) | ||||||
Smoking history | 1 (5) | 5 (31) | 0.036 | 1 (6) | 5 (17) | 0.260 |
Hypertension | 11 (55) | 11 (69) | 0.400 | 11 (61) | 20 (67) | 0.697 |
Dyslipidaemia | 7 (35) | 10 (63) | 0.101 | 9 (50) | 13 (43) | 0.654 |
Diabetes mellitus | 3 (15) | 3 (19) | 0.764 | 3 (17) | 3 (10) | 0.499 |
Family history of CAD (%) | 11 (29) | 14 (30) | 0.882 | 4 (22) | 11 (37) | 0.296 |
Presence of MtS (%) | 8 (40) | 6 (13) | 0.205 | 1 (6) | 3 (10) | 0.590 |
Presence of CKD (%) | 9 (24) | 3 (19) | 0.169 | 5 (28) | 7 (23) | 0.731 |
Biochemical parameters | ||||||
Haemoglobin (g/mL) | 14.5 ± 1.3 | 14.3 ± 1.7 | 0.745 | 13.5 ± 0.9 | 13.1 ± 1.1 | 0.187 |
LDL cholesterol (mg/dL) | 108 ± 26 | 95 ± 27 | 0.141 | 120 ± 32 | 105 ± 27 | 0.097 |
HDL cholesterol (mg/dL) | 53 ± 11 | 53 ± 12 | 0.858 | 71 ± 18 | 66 ± 14 | 0.308 |
Triglyceride (mg/dL) | 150 ± 94 | 128 ± 74 | 0.435 | 98 ± 39 | 112 ± 58 | 0.628 |
Fasting blood sugar (mg/dL) | 106 ± 17 | 113 ± 21 | 0.266 | 103 ± 19 | 101 ± 14 | 0.697 |
HbA1c (%) | 6.0 ± 0.8 | 6.0 ± 0.8 | 0.766 | 6.1 ± 0.5 | 5.8 ± 0.4 | 0.033 |
Log CRP | −1.18 ± 0.53 | −1.28 ± 0.53 | 0.608 | −1.38 ± 0.50 | −1.28 ± 0.46 | 0.500 |
eGFR (mL/min/1.73 m2) | 73.4 ± 13.8 | 68.9 ± 13.9 | 0.339 | 65.5 ± 14.1 | 70.1 ± 14.6 | 0.285 |
Log NT proBNP | 1.78 ± 0.43 | 1.68 ± 0.39 | 0.458 | 1.77 ± 0.35 | 1.98 ± 0.37 | 0.062 |
Echocardiography | ||||||
LVEF (%) | 65 ± 8 | 68 ± 6 | 0.158 | 68 ± 5 | 67 ± 6 | 0.730 |
LVMI (g/m2) | 82 ± 19 | 84 ± 13 | 0.751 | 68 ± 17 | 81 ± 23 | 0.042 |
E/e′ | 10.1 ± 2.9 | 8.9 ± 2.3 | 0.155 | 10.4 ± 3.4 | 12.0 ± 4.7 | 0.215 |
Medication history (%) | ||||||
CCB | 9 (45) | 6 (38) | 0.650 | 10 (56) | 11 (37) | 0.202 |
RAS inhibitors | 3 (15) | 6 (38) | 0.121 | 2 (11) | 8 (27) | 0.199 |
Beta-blockers | 2 (10) | 1 (6) | 0.686 | 0 (0) | 6 (13) | 0.067 |
Anti-platelet therapy | 2 (10) | 4 (25) | 0.230 | 0 (0) | 2 (7) | 0.263 |
Lipid-lowering therapy | 7 (35) | 9 (56) | 0.202 | 5 (28) | 11 (37) | 0.527 |
CAG CFT | ||||||
Atherosclerotic change (%) | 9 (45) | 7 (44) | 0.940 | 5 (28) | 5 (17) | 0.364 |
Myocardial bridging (%) | 5 (25) | 4 (25) | 1.000 | 5 (28) | 6 (20) | 0.535 |
Dose of ACh (L/M/H) | 3/11/6 | 2/9/5 | 0.977 | 1/6/11 | 1/7/22 | 0.673 |
Use of EM (%) | 2 (10) | 3 (19) | 0.451 | 1 (6) | 9 (30) | 0.044 |
VSA (%) | 18 (90) | 14 (88) | 0.813 | 10 (56) | 16 (53) | 0.881 |
VSA type in the LAD | 5/11/1/3 | 7/6/0/3 | 0.496 | 1/9/5/3 | 7/7/10/6 | 0.194 |
(focal/diffuse/MVS/non-specific) | ||||||
Presence of focal spasm (%) | 5 (25) | 7 (44) | 0.236 | 1 (6) | 7 (23) | 0.110 |
Baseline Pd/Pa | 0.95 ± 0.02 | 0.95 ± 0.03 | 0.820 | 0.96 ± 0.02 | 0.96 ± 0.03 | 0.732 |
FFR | 0.90 ± 0.04 | 0.88 ± 0.04 | 0.302 | 0.92 ± 0.03 | 0.93 ± 0.05 | 0.520 |
CFR | 3.7 ± 1.3 | 2.0 ± 0.7 | <0.001 | 3.4 ± 1.1 | 2.4 ± 1.4 | 0.012 |
CFR < 2.0 | 0 (0) | 7 (44) | 0.001 | 0 (0) | 15 (50) | <0.001 |
IMR | 17.9 ± 4.3 | 41.3 ± 15.0 | <0.001 | 15.1 ± 3.4 | 36.9 ± 19.0 | <0.001 |
IMR ≥ 25 | 0 (0) | 14 (88) | <0.001 | 0 (0) | 26 (87) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teragawa, H.; Uchimura, Y.; Oshita, C.; Hashimoto, Y.; Nomura, S. Factors Contributing to Coronary Microvascular Dysfunction in Patients with Angina and Non-Obstructive Coronary Artery Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 217. https://doi.org/10.3390/jcdd11070217
Teragawa H, Uchimura Y, Oshita C, Hashimoto Y, Nomura S. Factors Contributing to Coronary Microvascular Dysfunction in Patients with Angina and Non-Obstructive Coronary Artery Disease. Journal of Cardiovascular Development and Disease. 2024; 11(7):217. https://doi.org/10.3390/jcdd11070217
Chicago/Turabian StyleTeragawa, Hiroki, Yuko Uchimura, Chikage Oshita, Yu Hashimoto, and Shuichi Nomura. 2024. "Factors Contributing to Coronary Microvascular Dysfunction in Patients with Angina and Non-Obstructive Coronary Artery Disease" Journal of Cardiovascular Development and Disease 11, no. 7: 217. https://doi.org/10.3390/jcdd11070217
APA StyleTeragawa, H., Uchimura, Y., Oshita, C., Hashimoto, Y., & Nomura, S. (2024). Factors Contributing to Coronary Microvascular Dysfunction in Patients with Angina and Non-Obstructive Coronary Artery Disease. Journal of Cardiovascular Development and Disease, 11(7), 217. https://doi.org/10.3390/jcdd11070217