Revolutionizing Donor Heart Procurement: Innovations and Future Directions for Enhanced Transplantation Outcomes
Abstract
:1. Introduction
2. Recent Trends and Outcomes in U.S. Heart Transplantation
3. Application of Donation after Circulatory Death (DCD) Hearts
4. Ex Vivo Normothermic Perfusion of Donor Hearts—TransMedics Organ Care System (OCS)
5. Thoraco-Abdominal Normothermic Regional Perfusion
6. Controlled Hypothermic Preservation Technology—SherpaPak Cardiac Transport System
7. Hypothermic Oxygenated Perfusion (HOPE) Technology
8. Application of Extended-Criteria Donors, Post-Cardiopulmonary Resuscitation Donors, and High-Risk Donors
9. Future Directions
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Associati on. Circulation 2024, 149, e347–e913. [Google Scholar]
- Barnard, C.N. The operation. A human cardiac transplant: An interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S. Afr. Med. J. 1967, 41, 1271–1274. [Google Scholar] [PubMed]
- Zhu, Y.; Lingala, B.; Baiocchi, M.; Arana, V.T.; Williams, K.M.; Shudo, Y.; Oyer, P.E.; Woo, Y.J. The Stanford experience of heart transplantation over five decades. Eur. Heart J. 2021, 42, 4934–4943. [Google Scholar] [CrossRef]
- Colvin, M.M.; Smith, J.M.; Ahn, Y.S.; Handarova, D.K.; Martinez, A.C.; Lindblad, K.A.; Israni, A.K.; Snyder, J.J. OPTN/SRTR 2022 Annual Data Report: Heart. Am. J. Transplant. 2024, 24, S305–S393. [Google Scholar] [CrossRef]
- Jaiswal, A.; Gadela, N.V.; Baran, D.; Balakumaran, K.; Scatola, A.; Radojevic, J.; Gluck, J.; Arora, S.; Hammond, J.; Ali, A.; et al. Clinical outcomes of older adults listed for heart transplantation in the United States. J. Am. Geriatr. Soc. 2021, 69, 2507–2517. [Google Scholar] [CrossRef] [PubMed]
- Wever-Pinzon, O.; Edwards, L.B.; Taylor, D.O.; Kfoury, A.G.; Drakos, S.G.; Selzman, C.H.; Fang, J.C.; Lund, L.H.; Stehlik, J. Association of recipient age and causes of heart transplant mortality: Implications for personalization of post-transplant management-An analysis of the International Society for Heart and Lung Transplantation Registry. J. Heart Lung Transplant. 2017, 36, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.A.; Shah, A.; Griffith, B.P. Current status and outcomes in heart transplantation: A narrative review. Rev. Cardiovasc. Med. 2022, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Schroder, J.N.; Scheuer, S.; Catarino, P.; Caplan, A.; Silvestry, S.C.; Jeevanandam, V.; Large, S.; Shah, A.; MacDonald, P.; Slaughter, M.S.; et al. The American Association for Thoracic Surgery 2023 Expert Consensus Document: Adult cardiac transplantation utilizing donors after circulatory death. J. Thorac. Cardiovasc. Surg. 2023, 166, 856–869.e855. [Google Scholar] [CrossRef] [PubMed]
- Chew, H.C.; Iyer, A.; Connellan, M.; Scheuer, S.; Villanueva, J.; Gao, L.; Hicks, M.; Harkness, M.; Soto, C.; Dinale, A.; et al. Outcomes of Donation after Circulatory Death Heart Transplantation in Australia. J. Am. Coll. Cardiol. 2019, 73, 1447–1459. [Google Scholar] [CrossRef]
- Schroder, J.N.; Patel, C.B.; DeVore, A.D.; Bryner, B.S.; Casalinova, S.; Shah, A.; Smith, J.W.; Fiedler, A.G.; Daneshmand, M.; Silvestry, S.; et al. Transplantation Outcomes with Donor Hearts after Circulatory Death. N. Engl. J. Med. 2023, 388, 2121–2131. [Google Scholar] [CrossRef]
- Chen, Q.; Emerson, D.; Megna, D.; Osho, A.; Roach, A.; Chan, J.; Rowe, G.; Gill, G.; Esmailian, F.; Chikwe, J.; et al. Heart transplantation using donation after circulatory death in the United States. J. Thorac. Cardiovasc. Surg. 2023, 165, 1849–1860.e1846. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Moody, M.; Lyden, E.; Kinen, L.; Castleberry, A.W.; Siddique, A.; Lowes, B.D.; Stoller, D.A.; Lungren, S.W.; Um, J.Y. Impact of donation after circulatory death heart transplantation on waitlist outcomes and transplantation activity. Clin. Transplant. 2023, 37, e14942. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.E.; Kon, Z.N.; Carillo, J.A.; Chen, S.; Gidea, C.G.; Piper, G.L.; Reyentovich, A.; Montgomery, R.A.; Galloway, A.C.; Moazami, N. Early experience with donation after circulatory death heart transplantation using normothermic regional perfusion in the United States. J. Thorac. Cardiovasc. Surg. 2022, 164, 557–568.e551. [Google Scholar] [CrossRef] [PubMed]
- Madan, S.; Saeed, O.; Forest, S.J.; Goldstein, D.J.; Jorde, U.P.; Patel, S.R. Feasibility and Potential Impact of Heart Transplantation From Adult Donors after Circulatory Death. J. Am. Coll. Cardiol. 2022, 79, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Gernhofer, Y.K.; Bui, Q.M.; Powell, J.J.; Perez, P.M.; Jones, J.; Batchinsky, A.I.; Glenn, I.C.; Adler, E.; Kearns, M.J.; Pretorius, V. Heart transplantation from donation after circulatory death: Impact on waitlist time and transplant rate. Am. J. Transplant. 2023, 23, 1241–1255. [Google Scholar] [CrossRef]
- Hornby, L.; Dhanani, S.; Shemie, S.D. Update of a Systematic Review of Autoresuscitation after Cardiac Arrest. Crit. Care Med. 2018, 46, e268–e272. [Google Scholar] [CrossRef] [PubMed]
- Croome, K.P.; Barbas, A.S.; Whitson, B.; Zarrinpar, A.; Taner, T.; Lo, D.; MacConmara, M.; Kim, J.; Kennealey, P.T.; Bromberg, J.S.; et al. American Society of Transplant Surgeons recommendations on best practices in donation after circulatory death organ procurement. Am. J. Transplant. 2023, 23, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Joshi, Y.; Villanueva, J.; Gao, L.; Hwang, B.; Zhao, C.; Doyle, A.; Wu, J.; Jansz, P.; Macdonald, P. Donation after Circulatory Death: A New Frontier. Curr. Cardiol. Rep. 2022, 24, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Shudo, Y.; Benjamin-Addy, R.; Koyano, T.K.; Hiesinger, W.; MacArthur, J.W.; Woo, Y.J. Donors after circulatory death heart trial. Future Cardiol. 2021, 17, 11–17. [Google Scholar] [CrossRef]
- Lerman, J.B.; Agarwal, R.; Patel, C.B.; Keenan, J.E.; Casalinova, S.; Milano, C.A.; Schroder, J.N.; DeVore, A.D. Donor Heart Recovery and Preservation Modalities in 2024. JACC Heart Fail. 2024, 12, 427–437. [Google Scholar] [CrossRef]
- White, C.W.; Ambrose, E.; Müller, A.; Li, Y.; Le, H.; Hiebert, B.; Arora, R.; Lee, T.W.; Dixon, I.; Tian, G.; et al. Assessment of donor heart viability during ex vivo heart perfusion. Can. J. Physiol. Pharmacol. 2015, 93, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Fedson, S. Heart transplant donation after circulatory death: Current status and implications. Curr. Opin. Cardiol. 2024, 39, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Langmuur, S.J.J.; Amesz, J.H.; Veen, K.M.; Bogers, A.; Manintveld, O.C.; Taverne, Y. Normothermic Ex Situ Heart Perfusion with the Organ Care System for Cardiac Transplantation: A Meta-analysis. Transplantation 2022, 106, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Schroder, J.N.; Patel, C.B.; DeVore, A.D.; Casalinova, S.; Koomalsingh, K.J.; Shah, A.S.; Anyanwu, A.C.; D’Alessandro, D.A.; Mudy, K.; Sun, B.; et al. Increasing Utilization of Extended Criteria Donor Hearts for Transplantation: The OCS Heart EXPAND Trial. JACC Heart Fail. 2024, 12, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Kothari, P. Ex-Vivo Preservation of Heart Allografts-An Overview of the Current State. J. Cardiovasc. Dev. Dis. 2023, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Ryan, T.R.; Um, J.Y.; Siddique, A.; Castleberry, A.W.; Lowes, B.D. Financial impact of donation after circulatory death heart transplantation: A single-center analysis. Clin. Transplant. 2024, 38, e15296. [Google Scholar] [CrossRef] [PubMed]
- Kounatidis, D.; Brozou, V.; Anagnostopoulos, D.; Pantos, C.; Lourbopoulos, A.; Mourouzis, I. Donor Heart Preservation: Current Knowledge and the New Era of Machine Perfusion. Int. J. Mol. Sci. 2023, 24, 16693. [Google Scholar] [CrossRef] [PubMed]
- Joyce, D.L.; Carlson, S.F.; Kohmoto, T.; Durham, L.; Ubert, A.; Candek, C.; Koerten, D.; Joyce, L.D. Thoracoabdominal Normothermic Regional Perfusion for Cardiac Procurement. ASAIO J. 2022, 68, e163–e165. [Google Scholar] [CrossRef]
- Alamouti-Fard, E.; Garg, P.; Wadiwala, I.J.; Yazji, J.H.; Alomari, M.; Hussain, W.A.; Elawady, M.S.; Jacob, S. Normothermic Regional Perfusion is an Emerging Cost-Effective Alternative in Donation after Circulatory Death (DCD) in Heart Transplantation. Cureus 2022, 14, e26437. [Google Scholar] [CrossRef]
- Hoffman, J.R.; McMaster, W.G.; Rali, A.S.; Rahaman, Z.; Balsara, K.; Absi, T.; Levack, M.; Brinkley, M.; Menachem, J.; Punnoose, L.; et al. Early US experience with cardiac donation after circulatory death (DCD) using normothermic regional perfusion. J. Heart Lung Transplant. 2021, 40, 1408–1418. [Google Scholar] [CrossRef]
- Messer, S.; Cernic, S.; Page, A.; Berman, M.; Kaul, P.; Colah, S.; Ali, J.; Pavlushkov, E.; Baxter, J.; Quigley, R.; et al. A 5-year single-center early experience of heart transplantation from donation after circulatory-determined death donors. J. Heart Lung Transplant. 2020, 39, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Entwistle, J.W.; Drake, D.H.; Fenton, K.N.; Smith, M.A.; Sade, R.M.; Cardiothoracic Ethics, F. Normothermic Regional Perfusion: Ethical Issues in Thoracic Organ Donation. Ann. Thorac. Surg. 2022, 114, 44–51. [Google Scholar] [CrossRef]
- D’alessandro, D.; Schroder, J.; Meyer, D.M.; Vidic, A.; Shudo, Y.; Silvestry, S.; Leacche, M.; Sciortino, C.M.; Rodrigo, M.E.; Pham, S.M.; et al. Impact of controlled hypothermic preservation on outcomes following heart transplantation. J. Heart Lung Transplant. 2024, 43, 1153–1161. [Google Scholar] [CrossRef]
- Hendry, P.J.; Walley, V.M.; Koshal, A.; Masters, R.G.; Keon, W.J. Are temperatures attained by donor hearts during transport too cold? J. Thorac. Cardiovasc. Surg. 1989, 98, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Michel, S.G.; LaMuraglia Ii, G.M.; Madariaga, M.L.; Anderson, L.M. Innovative cold storage of donor organs using the Paragonix Sherpa Pak devices. Heart Lung Vessel. 2015, 7, 246–255. [Google Scholar]
- Copeland, H.; Hayanga, J.A.; Neyrinck, A.; MacDonald, P.; Dellgren, G.; Bertolotti, A.; Khuu, T.; Burrows, F.; Copeland, J.G.; Gooch, D.; et al. Donor heart and lung procurement: A consensus statement. J. Heart Lung Transplant. 2020, 39, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Radakovic, D.; Karimli, S.; Penov, K.; Schade, I.; Hamouda, K.; Bening, C.; Leyh, R.G.; Aleksic, I. First clinical experience with the novel cold storage SherpaPak system for donor heart transportation. J. Thorac. Dis. 2020, 12, 7227–7235. [Google Scholar] [CrossRef] [PubMed]
- Bitargil, M.; Haddad, O.; Pham, S.M.; Garg, N.; Jacob, S.; Ahmed, M.M.E.; Landolfo, K.; Patel, P.C.; Goswami, R.M.; Moreno, J.C.L.; et al. Packing the donor heart: Is SherpaPak cold preservation technique safer compared to ice cold storage. Clin. Transplant. 2022, 36, e14707. [Google Scholar] [CrossRef]
- Zhu, Y.; Shudo, Y.; He, H.; Kim, J.Y.P.-C.; Elde, S.; Williams, K.M.; Walsh, S.K.B.; Koyano, T.K.B.; Guenthart, B.; Woo, Y.J. Outcomes of Heart Transplantation Using a Temperature-controlled Hypothermic Storage System. Transplantation 2023, 107, 1151–1157. [Google Scholar] [CrossRef]
- Shudo, Y.; Leacche, M.; Copeland, H.; Silvestry, S.; Pham, S.M.; Molina, E.; Schroder, J.N.; Sciortino, C.M.; Jacobs, J.P.; Kawabori, M.; et al. A Paradigm Shift in Heart Preservation: Improved Post-transplant Outcomes in Recipients of Donor Hearts Preserved with the SherpaPak System. ASAIO J. 2023, 69, 993–1000. [Google Scholar] [CrossRef]
- Voigt, J.D.; Leacche, M.; Copeland, H.; Wolfe, S.B.; Pham, S.M.; Shudo, Y.; Molina, E.; Jacobs, J.P.; Stukov, Y.; Meyer, D.; et al. Multicenter Registry Using Propensity Score Analysis to Compare a Novel Transport/Preservation System to Traditional Means on Postoperative Hospital Outcomes and Costs for Heart Transplant Patients. ASAIO J. 2023, 69, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Belzer, F.O.; Southard, J.H. Principles of solid-organ preservation by cold storage. Transplantation 1988, 45, 673–676. [Google Scholar] [CrossRef] [PubMed]
- McGiffin, D.C.; Kure, C.E.; Macdonald, P.S.; Jansz, P.C.; Emmanuel, S.; Marasco, S.F.; Doi, A.; Merry, C.; Larbalestier, R.; Shah, A.; et al. Hypothermic oxygenated perfusion (HOPE) safely and effectively extends acceptable donor heart preservation times: Results of the Australian and New Zealand trial. J. Heart Lung Transplant. 2024, 43, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Steen, S.; Paskevicius, A.; Liao, Q.; Sjoberg, T. Safe orthotopic transplantation of hearts harvested 24 hours after brain death and preserved for 24 hours. Scand. Cardiovasc. J. 2016, 50, 193–200. [Google Scholar] [CrossRef]
- Nilsson, J.; Jernryd, V.; Qin, G.; Paskevicius, A.; Metzsch, C.; Sjöberg, T.; Steen, S. A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat. Commun. 2020, 11, 2976. [Google Scholar]
- Critsinelis, A.C.; Patel, S.; Nordan, T.; Chen, F.Y.; Couper, G.S.; Kawabori, M. Trends in Outcomes of Heart Transplants Using Extended Criteria Donors: A United Network for Organ Sharing Database Analysis. Ann. Thorac. Surg. 2023, 115, 1503–1509. [Google Scholar] [PubMed]
- Felker, G.M.; Milano, C.A.; Yager, J.E.; Hernandez, A.F.; Blue, L.; Higginbotham, M.B.; Lodge, A.J.; Russell, S.D. Outcomes with an alternate list strategy for heart transplantation. J. Heart Lung Transplant. 2005, 24, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.J.; Wang, I.-W.; Gracon, A.S.A.; Hellman, Y.M.; Hormuth, D.A.; Wozniak, T.C.; Hashmi, Z.A. Impact of donor age on survival after heart transplantation: An analysis of the United Network for Organ Sharing (UNOS) registry. J. Card. Surg. 2014, 29, 723–728. [Google Scholar] [CrossRef]
- Shudo, Y.; Guenther, S.P.; Lingala, B.; He, H.; Hiesinger, W.; MacArthur, J.W.; Currie, M.E.; Lee, A.M.; Boyd, J.H.; Woo, Y.J. Relation of Length of Survival after Orthotopic Heart Transplantation to Age of the Donor. Am. J. Cardiol. 2020, 131, 54–59. [Google Scholar] [CrossRef]
- Lechiancole, A.; Vendramin, I.; Sponga, S.; Sappa, R.; Zanuttini, D.; Spedicato, L.; Ferrara, V.; Di Nora, C.; Livi, U. Influence of donor-transmitted coronary artery disease on long-term outcomes after heart transplantation—A retrospective study. Transpl. Int. 2021, 34, 281–289. [Google Scholar] [CrossRef]
- Jahanyar, J.; Liao, J.M.; Zhang, N.; Butterfield, R.J.; Hardaway, B.W.; Scott, R.L.; Steidley, E.D. Does Pre-Existing Donor Heart Coronary Artery Disease Impact Survival after Orthotopic Heart Transplantation? J. Heart Lung Transplant. 2019, 38, S185–S186. [Google Scholar] [CrossRef]
- Sibona, A.; Khush, K.K.; Oyoyo, U.E.; Martens, T.P.; Hasaniya, N.W.; Razzouk, A.J.; Bailey, L.L.; Rabkin, D.G. Long-term transplant outcomes of donor hearts with left ventricular dysfunction. J. Thorac. Cardiovasc. Surg. 2019, 157, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Sprys, M.H.; Gaffey, A.C.; Chung, J.J.; Margulies, K.B.; Acker, M.A.; Atluri, P. Low ejection fraction in donor hearts is not directly associated with increased recipient mortality. J. Heart Lung Transplant. 2017, 36, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Pinzon, O.W.; Stoddard, G.; Drakos, S.G.; Gilbert, E.M.; Nativi, J.N.; Budge, D.; Bader, F.; Alharethi, R.; Reid, B.; Selzman, C.H.; et al. Impact of donor left ventricular hypertrophy on survival after heart transplant. Am. J. Transplant. 2011, 11, 2755–2761. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, M.A.; Zuckerman, W.A.; Möller, T.; Knecht, K.; Lin, K.Y.; Beasley, G.S.; Peng, D.M.; Albert, D.C.; Miera, O.; Dipchand, A.I.; et al. Effects of donor cause of death, ischemia time, inotrope exposure, troponin values, cardiopulmonary resuscitation, electrocardiographic and echocardiographic data on recipient outcomes: A review of the literature. Pediatr. Transplant. 2020, 24, e13676. [Google Scholar] [CrossRef] [PubMed]
- Quader, M.A.; Wolfe, L.G.; Kasirajan, V. Heart transplantation outcomes from cardiac arrest-resuscitated donors. J. Heart Lung Transplant. 2013, 32, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Galeone, A.; Varnous, S.; Lebreton, G.; Barreda, E.; Hariri, S.; Pavie, A.; Leprince, P. Impact of cardiac arrest resuscitated donors on heart transplant recipients’ outcome. J. Thorac. Cardiovasc. Surg. 2017, 153, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, K.; Greenberg, J.W.; Guzman-Gomez, A.M.; Kennedy, J.T.; Hossain, M.; Zhang, Y.; Zafar, F.; Morales, D.L. Up to an Hour of Donor Resuscitation Does Not Affect Pediatric Heart Transplantation Survival. Ann. Thorac. Surg. 2024, 117, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.; Shudo, Y. Optimizing Donor Heart Utilization Amidst Organ Shortage: Feasibility of Using Hearts Post-Long CPR. Ann. Thorac. Surg. 2024, 24. [Google Scholar] [CrossRef]
- Copeland, H.; Knezevic, I.; Baran, D.A.; Rao, V.; Pham, M.; Gustafsson, F.; Pinney, S.; Lima, B.; Masetti, M.; Ciarka, A.; et al. Donor heart selection: Evidence-based guidelines for providers. J. Heart Lung Transplant. 2023, 42, 7–29. [Google Scholar] [CrossRef]
- Gaffey, A.C.; Doll, S.L.; Thomasson, A.M.; Venkataraman, C.; Chen, C.W.; Goldberg, L.R.; Blumberg, E.A.; Acker, M.A.; Stone, F.; Atluri, P. Transplantation of “high-risk” donor hearts: Implications for infection. J. Thorac. Cardiovasc. Surg. 2016, 152, 213–220. [Google Scholar] [CrossRef]
- Gaffey, A.C.; Cucchiara, A.J.; Goldberg, L.R.; Blumberg, E.A.; Acker, M.A.; Atluri, P. Transplantation of Center for Disease Control “High-Risk” Donor Hearts Does Not Adversely Impact Long-Term Outcomes in Adults. J. Card. Fail. 2016, 22, 376–382. [Google Scholar] [CrossRef]
- Gasink, L.B.; Blumberg, E.A.; Localio, A.R.; Desai, S.S.; Israni, A.K.; Lautenbach, E. Hepatitis C virus seropositivity in organ donors and survival in heart transplant recipients. JAMA 2006, 296, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Grossi, P.; Schlendorf, K.H.; Holm, A.M.; Woolley, A.E.; Blumberg, E.; Mehra, M.R. Utilization of hepatitis C virus-infected organ donors in cardiothoracic transplantation: An ISHLT expert consensus statement. J. Heart Lung Transplant. 2020, 39, 418–432. [Google Scholar] [CrossRef]
- Huckaby, L.V.; Seese, L.M.; Handzel, R.; Wang, Y.; Hickey, G.; Kilic, A. Center-level Utilization of Hepatitis C Virus-positive Donors for Orthotopic Heart Transplantation. Transplantation 2021, 105, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gustafson, S.K.; Skeans, M.A.; Lake, J.R.; Kim, W.R.; Kasiske, B.L.; Israni, A.K.; Hart, A. OPTN/SRTR 2018 Annual Data Report: Hepatitis C. Am. J. Transplant. 2020, 20 (Suppl. S1), 542–568. [Google Scholar] [CrossRef] [PubMed]
- Gernhofer, Y.K.; Brambatti, M.; Greenberg, B.H.; Adler, E.; Aslam, S.; Pretorius, V. The impact of using hepatitis c virus nucleic acid test-positive donor hearts on heart transplant waitlist time and transplant rate. J. Heart Lung Transplant. 2019, 38, 1178–1188. [Google Scholar] [CrossRef]
- Mohiuddin, M.M.; Singh, A.K.; Scobie, L.; Goerlich, C.E.; Grazioli, A.; Saharia, K.; Crossan, C.; Burke, A.; Drachenberg, C.; Oguz, C.; et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: A case report. Lancet 2023, 402, 397–410. [Google Scholar] [CrossRef]
- Peterson, L.; Yacoub, M.H.; Ayares, D.; Yamada, K.; Eisenson, D.; Griffith, B.P.; Mohiuddin, M.M.; Eyestone, W.; Venter, J.C.; Smolenski, R.T.; et al. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol. Rev. 2024, 104, 1409–1459. [Google Scholar] [CrossRef]
- Schmauch, E.; Piening, B.; Mohebnasab, M.; Xia, B.; Zhu, C.; Stern, J.; Zhang, W.; Dowdell, A.K.; Kim, J.I.; Andrijevic, D.; et al. Integrative multi-omics profiling in human decedents receiving pig heart xenografts. Nat. Med. 2024, 30, 1448–1460. [Google Scholar] [CrossRef]
- Brahmbhatt, D.H.; Blitzer, D.; Billia, F.; Copeland, H. Acute complication posttransplant: Primary allograft dysfunction. Curr. Opin. Organ. Transplant. 2023, 28, 376–383. [Google Scholar] [CrossRef]
- Ayer, A.; Truby, L.K.; Schroder, J.N.; Casalinova, S.; Green, C.L.; Bishawi, M.A.; Bryner, B.S.; Milano, C.A.; Patel, C.B.; Devore, A.D. Improved Outcomes in Severe Primary Graft Dysfunction after Heart Transplantation Following Donation after Circulatory Death Compared with Donation after Brain Death. J. Card. Fail. 2023, 29, 67–75. [Google Scholar] [CrossRef]
- Truby, L.K.; Kwee, L.C.; Bowles, D.E.; Casalinova, S.; Ilkayeva, O.; Muehlbauer, M.J.; Huebner, J.L.; Holley, C.L.; DeVore, A.D.; Patel, C.B.; et al. Metabolomic profiling during ex situ normothermic perfusion before heart transplantation defines patterns of substrate utilization and correlates with markers of allograft injury. J. Heart Lung Transplant. 2024, 43, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Linse, B.; Ohlsson, M.; Stehlik, J.; Lund, L.H.; Andersson, B.; Nilsson, J. A machine learning model for prediction of 30-day primary graft failure after heart transplantation. Heliyon 2023, 9, e14282. [Google Scholar] [CrossRef] [PubMed]
- Grzyb, C.; Du, D.; Nair, N. Artificial Intelligence Approaches for Predicting the Risks of Durable Mechanical Circulatory Support Therapy and Cardiac Transplantation. J. Clin. Med. 2024, 13, 2076. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon, M. Revolutionizing Donor Heart Procurement: Innovations and Future Directions for Enhanced Transplantation Outcomes. J. Cardiovasc. Dev. Dis. 2024, 11, 235. https://doi.org/10.3390/jcdd11080235
Leon M. Revolutionizing Donor Heart Procurement: Innovations and Future Directions for Enhanced Transplantation Outcomes. Journal of Cardiovascular Development and Disease. 2024; 11(8):235. https://doi.org/10.3390/jcdd11080235
Chicago/Turabian StyleLeon, Marc. 2024. "Revolutionizing Donor Heart Procurement: Innovations and Future Directions for Enhanced Transplantation Outcomes" Journal of Cardiovascular Development and Disease 11, no. 8: 235. https://doi.org/10.3390/jcdd11080235
APA StyleLeon, M. (2024). Revolutionizing Donor Heart Procurement: Innovations and Future Directions for Enhanced Transplantation Outcomes. Journal of Cardiovascular Development and Disease, 11(8), 235. https://doi.org/10.3390/jcdd11080235