Comparison of Two Generations of Self-Expandable Transcatheter Heart Valves in Nine Surgical Valves: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aortic Valve Bioprostheses
2.2. Hydrodynamic Measurement
- (1)
- The valves’ maximal geometrical orifice area (GOA) was determined in cm2 at each frame by tracing the edges of the opening area (the black area inside the valve).
- (2)
- The minimal internal diameter (MID) to evaluate the expansion of the THV is calculated using the following formula, where the GOAmax represents the maximal opening of the THV, and the MID considers the kinematic of all three leaflets:
- (3)
2.3. Statistical Analysis
3. Results
3.1. Hydrodynamic Comparison of Evolut R versus Evolut PRO as ViV
3.2. Hydrodynamic Performance of Evolut R Regarding SAV Model
3.3. Hydrodynamic Performance of Evolut PRO Regarding the SAV Model
3.4. Leaflet Kinematic of Evolut R and Evolut PRO
4. Discussion
- (1)
- Generally, Evolut R performed significantly better than Evolut PRO in terms of EOA and MPG.
- (2)
- The design of the SAV in which the two THVs were deployed significantly influenced the performance of both THVs. Both valves performed similarly in porcine valves; Evolut R was superior to Evolut PRO in stented bovine valves and Evolut PRO performed better within the Intuity valve.
4.1. Comparison of Evolut R vs. Evolut PRO
4.2. Impact of the SAV Model on the THV as Valve-in-Valve
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoon, S.H.; Bleiziffer, S.; De Backer, O.; Delgado, V.; Arai, T.; Ziegelmueller, J.; Barbanti, M.; Sharma, R.; Perlman, G.Y.; Khalique, O.K.; et al. Outcomes in Transcatheter Aortic Valve Replacement for Bicuspid Versus Tricuspid Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2017, 69, 2579–2589. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Dvir, D.; Webb, J.G.; Bleiziffer, S.; Pasic, M.; Waksman, R.; Kodali, S.; Barbanti, M.; Latib, A.; Schaefer, U.; Rodés-Cabau, J.; et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 2014, 312, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Thyregod, H.G.; Søndergaard, L.; Ihlemann, N.; Franzen, O.; Andersen, L.W.; Hansen, P.B.; Olsen, P.S.; Nissen, H.; Winkel, P.; Gluud, C.; et al. The Nordic aortic valve intervention (NOTION) trial comparing transcatheter versus surgical valve implantation: Study protocol for a randomised controlled trial. Trials 2013, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Serruys, P.W.; Modolo, R.; Reardon, M.; Miyazaki, Y.; Windecker, S.; Popma, J.; Chang, Y.; Kleiman, N.S.; Lilly, S.; Amrane, H.; et al. One-year outcomes of patients with severe aortic stenosis and an STS PROM of less than three percent in the SURTAVI trial. EuroIntervention 2018, 14, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, M.; Treede, H.; Schofer, J.; Linke, A.; Woehrle, J.; Baumbach, H.; Mehilli, J.; Bapat, V.; Simonato, M.; Walther, T.; et al. Matched comparison of next- and early-generation balloon-expandable transcatheter heart valve implantations in failed surgical aortic bioprostheses. EuroIntervention 2018, 14, e397–e404. [Google Scholar] [CrossRef]
- Bapat, V. Valve-in-valve apps: Why and how they were developed and how to use them. EuroIntervention 2014, 10, U44–U51. [Google Scholar] [CrossRef]
- Scharfschwerdt, M.; Misfeld, M.; Sievers, H.H. The influence of a nonlinear resistance element upon in vitro aortic pressure tracings and aortic valve motions. Asaio J. 2004, 50, 498–502. [Google Scholar] [CrossRef]
- ISO 5840-1; Cardiovascular implants—Cardiac Valve Prostheses. International Organization for Standardization (ISO): Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/77033.html (accessed on 7 August 2024).
- Midha, P.A.; Raghav, V.; Condado, J.F.; Okafor, I.U.; Lerakis, S.; Thourani, V.H.; Babaliaros, V.; Yoganathan, A.P. Valve Type, Size, and Deployment Location Affect Hemodynamics in an In Vitro Valve-in-Valve Model. JACC Cardiovasc. Interv. 2016, 9, 1618–1628. [Google Scholar] [CrossRef]
- Yudi, M.B.; Sharma, S.K.; Tang, G.H.L.; Kini, A. Coronary Angiography and Percutaneous Coronary Intervention After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 71, 1360–1378. [Google Scholar] [CrossRef]
- Chan, V.; Rubens, F.; Boodhwani, M.; Mesana, T.; Ruel, M. Determinants of persistent or recurrent congestive heart failure after contemporary surgical aortic valve replacement. J. Heart Valve Dis. 2014, 23, 665–670. [Google Scholar] [PubMed]
- Sadat, N.; Scharfschwerdt, M.; Schaller, T.; Aboud, A.; Saisho, H.; Ensminger, S.; Fujita, B. Functional performance of 8 small surgical aortic valve bioprostheses: An in vitro study. Eur. J. Cardiothorac. Surg. 2022, 62, ezac426. [Google Scholar] [CrossRef]
- Doose, C.; Kütting, M.; Egron, S.; Farhadi Ghalati, P.; Schmitz, C.; Utzenrath, M.; Sedaghat, A.; Fujita, B.; Schmitz-Rode, T.; Ensminger, S.; et al. Valve-in-valve outcome: Design impact of a pre-existing bioprosthesis on the hydrodynamics of an Edwards Sapien XT valve. Eur. J. Cardiothorac. Surg. 2017, 51, 562–570. [Google Scholar] [CrossRef]
- Dumesnil, J.G.; LeBlanc, M.H.; Cartier, P.C.; Métras, J.; Desaulniers, D.; Doyle, D.P.; Lemieux, M.D.; Raymond, G. Hemodynamic features of the freestyle aortic bioprosthesis compared with stented bioprosthesis. Ann. Thorac. Surg. 1998, 66, S130–S133. [Google Scholar] [CrossRef] [PubMed]
- Sadat, N.; Bruhn, D.; Scharfschwerdt, M.; Schaller, T.; Aboud, A.; Saisho, H.; Eitel, I.; Ensminger, S.; Fujita, B. Impact of high-pressure balloon aortic valvuloplasty on the hydrodynamic result after a transcatheter valve-in-valve procedure. Catheter. Cardiovasc. Interv. 2022, 100, 841–849. [Google Scholar] [CrossRef]
- Sadat, N.; Bruhn, D.; Scharfschwerdt, M.; Schaller, T.; Aboud, A.; Saisho, H.; Eitel, I.; Ensminger, S.; Fujita, B. Impact of different valve-in-valve positions on the hydrodynamic performance of the newest-generation self-expanding transcatheter heart valve. Eur. J. Cardiothorac. Surg. 2022, 62, ezac158. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.B.; Chhatriwalla, A.K.; Saxon, J.T.; Cohen, D.J.; Nguyen, T.C.; Webb, J.; Loyalka, P.; Bavry, A.A.; Rovin, J.D.; Whisenant, B.; et al. Bioprosthetic valve fracture: Technical insights from a multicenter study. J. Thorac. Cardiovasc. Surg. 2019, 158, 1317–1328. [Google Scholar] [CrossRef]
- Chhatriwalla, A.K.; Sorajja, P. Expanding Indications for Bioprosthetic Valve Fracture and Bioprosthetic Valve Remodeling. Circ. Cardiovasc. Interv. 2018, 11, e007017. [Google Scholar] [CrossRef]
- Meier, D.; Puehler, T.; Lutter, G.; Shen, C.; Lai, A.; Gill, H.; Akodad, M.; Tzimas, G.; Chhatriwalla, A.; Allen, K.B.; et al. Bioprosthetic Valve Remodeling in Nonfracturable Surgical Valves: Impact on THV Expansion and Hydrodynamic Performance. JACC Cardiovasc. Interv. 2023, 16, 1594–1608. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadat, N.; Scharfschwerdt, M.; Ensminger, S.; Fujita, B. Comparison of Two Generations of Self-Expandable Transcatheter Heart Valves in Nine Surgical Valves: An In Vitro Study. J. Cardiovasc. Dev. Dis. 2024, 11, 244. https://doi.org/10.3390/jcdd11080244
Sadat N, Scharfschwerdt M, Ensminger S, Fujita B. Comparison of Two Generations of Self-Expandable Transcatheter Heart Valves in Nine Surgical Valves: An In Vitro Study. Journal of Cardiovascular Development and Disease. 2024; 11(8):244. https://doi.org/10.3390/jcdd11080244
Chicago/Turabian StyleSadat, Najla, Michael Scharfschwerdt, Stephan Ensminger, and Buntaro Fujita. 2024. "Comparison of Two Generations of Self-Expandable Transcatheter Heart Valves in Nine Surgical Valves: An In Vitro Study" Journal of Cardiovascular Development and Disease 11, no. 8: 244. https://doi.org/10.3390/jcdd11080244
APA StyleSadat, N., Scharfschwerdt, M., Ensminger, S., & Fujita, B. (2024). Comparison of Two Generations of Self-Expandable Transcatheter Heart Valves in Nine Surgical Valves: An In Vitro Study. Journal of Cardiovascular Development and Disease, 11(8), 244. https://doi.org/10.3390/jcdd11080244