Socioeconomic Status and Access to Care for Pediatric and Adult Congenital Heart Disease in Universal Health Coverage Models
Abstract
:1. Background
2. Global Burden of CHD/ACHD
3. Defining Access to Care
4. Socioeconomic Status and Disease Detection
5. Socioeconomic Status and Access to Care
6. Socioeconomic Status and Lifelong Care
7. Challenges and Opportunities
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACHD | Adult congenital heart disease |
CHD | Congenital heart disease |
HIC | High-income country |
OR | Odds ratio |
SES | Socioeconomic status |
UHC | Universal health coverage |
References
- Hoffman, J.I.E.; Kaplan, S.; Liberthson, R.R. Prevalence of congenital heart disease. Am. Heart J. 2004, 147, 425–439. [Google Scholar] [CrossRef]
- Vervoort, D.; Jin, H.; Edwin, F.; Kumar, R.K.; Malik, M.; Tapaua, N.; Verstappen, A.; Hasan, B.S. Global Access to Comprehensive Care for Paediatric and Congenital Heart Disease. CJC Pediatr. Congenit. Heart Dis. 2023, 2, 453–463. [Google Scholar] [CrossRef]
- Higashi, H.; Barendregt, J.J.; Kassebaum, N.J.; Weiser, T.G.; Bickler, S.W.; Vos, T. The burden of selected congenital anomalies amenable to surgery in low and middle-income regions: Cleft lip and palate, congenital heart anomalies and neural tube defects. Arch. Dis. Child. 2015, 100, 233–238. [Google Scholar] [CrossRef]
- Zheleva, B.; Atwood, J.B. The invisible child: Childhood heart disease in global health. Lancet 2017, 389, 16–18. [Google Scholar] [CrossRef]
- Lopez, K.N.; Allen, K.Y.; Baker-Smith, C.M.; Bravo-Jaimes, K.; Burns, J.; Cherestal, B.; Deen, J.F.; Hills, B.K.; Huang, J.H.; Santamaria, R.W.L.; et al. Health Equity and Policy Considerations for Pediatric and Adult Congenital Heart Disease Care among Minoritized Populations in the United States. J. Cardiovasc. Dev. Dis. 2024, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Ludomirsky, A.B.; Bucholz, E.M.; Newburger, J.W. Association of Financial Hardship Because of Medical Bills with Adverse Outcomes Among Families of Children with Congenital Heart Disease. JAMA Cardiol. 2021, 6, 713–717. [Google Scholar] [CrossRef]
- Vervoort, D.; Chung, J.C.Y.; Ouzounian, M. Access to thoracic aortic care: Challenges and opportunities in universal health coverage systems. Can. J. Cardiol. 2022, 38, 726–728. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, D.; Afzal, A.M.; Ruiz, G.Z.L.; Mutema, C.; Wijeysundera, H.C.; Ouzounian, M.; Fremes, S.E. Barriers to access to cardiac surgery: Canadian situation and global context. Can. J. Cardiol. 2023, 40, 1110–1122. [Google Scholar] [CrossRef]
- Rosengren, A.; Smyth, A.; Rangarajan, S.; Ramasundarahettige, C.; Bangdiwala, S.I.; AlHabib, K.F.; Avezum, A.; Boström, K.B.; Chifamba, J.; Gulec, S.; et al. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: The Prospective Urban Rural Epidemiologic (PURE) study. Lancet Glob. Health 2019, 7, e748–e760. [Google Scholar] [CrossRef]
- Zimmerman, M.S.; Smith, A.G.C.; Sable, C.A.; Echko, M.M.; Wilner, L.B.; Olsen, H.E.; Atalay, H.T.; Awasthi, A.; Bhutta, Z.A.; Boucher, J.L.; et al. Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef]
- Institute for Health Metrics and Evaluation. Global Burden of Disease Results Tool. GBD Results Tool. 2021. Available online: http://ghdx.healthdata.org/gbd-results-tool%20 (accessed on 25 October 2021).
- Webb, G.; Mulder, B.J.; Aboulhosn, J.; Daniels, C.J.; Elizari, M.A.; Hong, G.; Horlick, E.; Landzberg, M.J.; Marelli, A.J.; O’Donnell, C.P.; et al. The care of adults with congenital heart disease across the globe: Current assessment and future perspective: A position statement from the International Society for Adult Congenital Heart Disease (ISACHD). Int. J. Cardiol. 2015, 195, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, S.; Baer, R.J.; Chambers, C.D.; Norton, M.E.; Rajagopal, S.; Ryckman, K.K.; Moon-Grady, A.; Jelliffe-Pawlowski, L.L.; Steurer, M.A. Environmental and Socioeconomic Factors Influence the Live-Born Incidence of Congenital Heart Disease: A Population-Based Study in California. J. Am. Heart Assoc. 2020, 9, e015255. [Google Scholar] [CrossRef]
- Knowles, R.L.; Ridout, D.; Crowe, S.; Bull, C.; Wray, J.; Tregay, J.; Franklin, R.C.; Barron, D.J.; Cunningham, D.; Parslow, R.C.; et al. Ethnic and socioeconomic variation in incidence of congenital heart defects. Arch. Dis. Child. 2017, 102, 496–502. [Google Scholar] [CrossRef]
- Miao, Q.; Dunn, S.; Wen, S.W.; Lougheed, J.; Yang, P.; Davies, M.; Venegas, C.L.; Walker, M. Association between maternal marginalization and infants born with congenital heart disease in Ontario Canada. BMC Public Health 2023, 23, 790. [Google Scholar] [CrossRef]
- Agha, M.M.; Glazier, R.H.; Moineddin, R.; Moore, A.M.; Guttmann, A. Socioeconomic status and prevalence of congenital heart defects: Does universal access to health care system eliminate the gap? Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, S.L.; Yang, W.; Herring, A.; Abrams, B.; Shaw, G.M. Maternal food insecurity is associated with increased risk of certain birth defects. J. Nutr. 2007, 137, 2087–2092. [Google Scholar] [CrossRef]
- Miao, Q.; Dunn, S.; Wen, S.W.; Lougheed, J.; Reszel, J.; Venegas, C.L.; Walker, M. Neighbourhood maternal socioeconomic status indicators and risk of congenital heart disease. BMC Pregnancy Childbirth 2021, 21, 72. [Google Scholar] [CrossRef]
- Smith, C.; Olugbuyi, O.; Kaul, P.; Dover, D.C.; Mackie, A.S.; Islam, S.; Eckersley, L.; Hornberger, L.K. Lower Socioeconomic Status is Associated with an Increased Incidence and Spectrum of Major Congenital Heart Disease and Associated Extracardiac Pathology. Pediatr. Cardiol. 2024, 45, 433–440. [Google Scholar] [CrossRef]
- Li, X.; Sundquist, J.; Hamano, T.; Zöller, B.; Sundquist, K. Neighbourhood Deprivation, Individual-Level and Familial-Level Socio-demographic Factors and Risk of Congenital Heart Disease: A Nationwide Study from Sweden. Int. J. Behav. Med. 2016, 23, 112–120. [Google Scholar] [CrossRef]
- Meara, J.G.; Leather, A.J.M.; Hagander, L.; Alkire, B.C.; Alonso, N.; Ameh, E.A.; Bickler, S.W.; Conteh, L.; Dare, A.J.; Davies, J.; et al. Global Surgery 2030: Evidence and solutions for achieving health, welfare, and economic development. Lancet 2015, 386, 569–624. [Google Scholar] [CrossRef]
- Vervoort, D. Moving the Needle: A Guide to Solving the Global Cardiac Surgery Puzzle for Surgeons, Societies, Students, and Researchers; CTSNet, Inc.: Chicago, IL, USA, 2020. [Google Scholar] [CrossRef]
- Gulliford, M.; Figueroa-Munoz, J.; Morgan, M.; Hughes, D.; Gibson, B.; Beech, R.; Hudson, M. What does “access to health care” mean? J. Health Serv. Res. Policy 2002, 7, 186–188. [Google Scholar] [CrossRef]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Dearani, J.A.; Fuller, S.; Gurvitz, M.; et al. 2018 AHA/ACC Guideline for the Management of Adults with Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e698–e800. [Google Scholar]
- Holland, B.J.; Myers, J.A.; Woods, C.R., Jr. Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: A meta-analysis. Ultrasound Obs. Gynecol. 2015, 45, 631–638. [Google Scholar] [CrossRef]
- Bakker, M.K.; Bergman, J.E.H.; Krikov, S.; Amar, E.; Cocchi, G.; Cragan, J.; De Walle, H.E.K.; Gatt, M.; Groisman, B.; Liu, S.; et al. Prenatal diagnosis and prevalence of critical congenital heart defects: An international retrospective cohort study. BMJ Open 2019, 9, e028139. [Google Scholar] [CrossRef]
- Trines, J.; Fruitman, D.; Zuo, K.J.; Smallhorn, J.F.; Hornberger, L.K.; Mackie, A.S. Effectiveness of prenatal screening for congenital heart disease: Assessment in a jurisdiction with universal access to health care. Can. J. Cardiol. 2013, 29, 879–885. [Google Scholar] [CrossRef]
- Kaur, A.; Hornberger, L.K.; Fruitman, D.; Ngwezi, D.; Eckersley, L.G. Impact of rural residence and low socioeconomic status on rate and timing of prenatal detection of major congenital heart disease in a jurisdiction of universal health coverage. Ultrasound Obs. Gynecol. 2022, 60, 359–366. [Google Scholar] [CrossRef]
- Krishnan, A.; Jacobs, M.B.; Morris, S.A.; Peyvandi, S.; Bhat, A.H.; Chelliah, A.; Chiu, J.S.; Cuneo, B.F.; Freire, G.; Hornberger, L.K.; et al. Impact of Socioeconomic Status, Race and Ethnicity, and Geography on Prenatal Detection of Hypoplastic Left Heart Syndrome and Transposition of the Great Arteries. Circulation 2021, 143, 2049–2060. [Google Scholar] [CrossRef]
- Olugbuyi, O.; Smith, C.; Kaul, P.; Dover, D.C.; Mackie, A.S.; Islam, S.; Eckersley, L.; Hornberger, L.K. Impact of Socioeconomic Status and Residence Distance on Infant Heart Disease Outcomes in Canada. J. Am. Heart Assoc. 2022, 11, e026627. [Google Scholar] [CrossRef] [PubMed]
- Eckersley, L. Socioeconomic determinants of health: Remoteness from care. Can. J. Cardiol. 2024, 40, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Best, K.E.; Miller, N.; Draper, E.; Tucker, D.; Luyt, K.; Rankin, J. The Improved Prognosis of Hypoplastic Left Heart: A Population-Based Register Study of 343 Cases in England and Wales. Front. Pediatr. 2021, 9, 635776. [Google Scholar] [CrossRef] [PubMed]
- Atallah, J.; Guerra, G.G.; Joffe, A.R.; Bond, G.Y.; Islam, S.; Ricci, M.F.; AlAklabi, M.; Rebeyka, I.M.; Robertson, C.M.T. Survival, Neurocognitive, and Functional Outcomes After Completion of Staged Surgical Palliation in a Cohort of Patients with Hypoplastic Left Heart Syndrome. J. Am. Heart Assoc. 2020, 9, e013632. [Google Scholar] [CrossRef] [PubMed]
- Kasmi, L.; Calderon, J.; Montreuil, M.; Geronikola, N.; Lambert, V.; Belli, E.; Bonnet, D.; Kalfa, D. Neurocognitive and Psychological Outcomes in Adults with Dextro-Transposition of the Great Arteries Corrected by the Arterial Switch Operation. Ann. Thorac. Surg. 2018, 105, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Moons, P.; Bovijn, L.; Budts, W.; Belmans, A.; Gewillig, M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 2010, 122, 2264–2272. [Google Scholar] [CrossRef]
- Diller, G.-P.; Orwat, S.; Lammers, A.E.; Radke, R.M.; De-Torres-Alba, F.; Schmidt, R.; Marschall, U.; Bauer, U.M.; Enders, D.; Bronstein, L.; et al. Lack of specialist care is associated with increased morbidity and mortality in adult congenital heart disease: A population-based study. Eur. Heart J. 2021, 42, 4241–4248. [Google Scholar] [CrossRef] [PubMed]
- Moons, P.; Skogby, S.; Bratt, E.L.; Zühlke, L.; Marelli, A.; Goossens, E. Discontinuity of Cardiac Follow-Up in Young People with Congenital Heart Disease Transitioning to Adulthood: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2021, 10, e019552. [Google Scholar] [CrossRef] [PubMed]
- Stewart, K.T.; Chahal, N.; Kovacs, A.H.; Manlhiot, C.; Jelen, A.; Collins, T.; McCrindle, B.W. Readiness for Transition to Adult Health Care for Young Adolescents with Congenital Heart Disease. Pediatr. Cardiol. 2017, 38, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Mackie, A.S.; Fournier, A.; Swan, L.; Marelli, A.J.; Kovacs, A.H. Transition and Transfer from Pediatric to Adult Congenital Heart Disease Care in Canada: Call for Strategic Implementation. Can. J. Cardiol. 2019, 35, 1640–1651. [Google Scholar] [CrossRef]
- Mackie, A.S.; Ionescu-Ittu, R.; Therrien, J.; Pilote, L.; Abrahamowicz, M.; Marelli, A.J. Children and adults with congenital heart disease lost to follow-up: Who and when? Circulation 2009, 120, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Goossens, E.; Stephani, I.; Hilderson, D.; Gewillig, M.; Budts, W.; Van Deyk, K.; Moons, P. Transfer of adolescents with congenital heart disease from pediatric cardiology to adult health care: An analysis of transfer destinations. J. Am. Coll. Cardiol. 2011, 57, 2368–2374. [Google Scholar] [CrossRef]
- Mackie, A.S.; Rempel, G.R.; Rankin, K.N.; Nicholas, D.; Magill-Evans, J. Risk factors for loss to follow-up among children and young adults with congenital heart disease. Cardiol. Young. 2012, 22, 307–315. [Google Scholar] [CrossRef]
- Reid, G.J.; Irvine, M.J.; McCrindle, B.W.; Sananes, R.; Ritvo, P.G.; Siu, S.C.; Webb, G.D. Prevalence and correlates of successful transfer from pediatric to adult health care among a cohort of young adults with complex congenital heart defects. Pediatrics 2004, 113 Pt 1, e197–e205. [Google Scholar] [CrossRef] [PubMed]
- Cave, D.G.W.; Wands, Z.E.; Cromie, K.; Hough, A.; Johnson, K.; Mon-Williams, M.; Bentham, J.R.; Feltbower, R.G.; Glaser, A.W. Educational attainment of children with congenital heart disease in the United Kingdom. Eur. Heart J. Qual. Care Clin. Outcomes 2023, 10, 456–466. [Google Scholar] [CrossRef]
- Karsenty, C.; Maury, P.; Blot-Souletie, N.; Ladouceur, M.; Leobon, B.; Senac, V.; Mondoly, P.; Elbaz, M.; Galinier, M.; Dulac, Y.; et al. The medical history of adults with complex congenital heart disease affects their social development and professional activity. Arch. Cardiovasc. Dis. 2015, 108, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Raissadati, A.; Knihtilä, H.; Pätilä, T.; Nieminen, H.; Jokinen, E. Long-term Social Outcomes After Congenital Heart Surgery. Pediatrics 2020, 146, e20193745. [Google Scholar] [CrossRef]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Likhar, A.; Baghel, P.; Patil, M. Early Childhood Development and Social Determinants. Cureus 2022, 14, e29500. [Google Scholar] [CrossRef]
- Ross, S.; Verstappen, A. The role of congenital heart disease patient organizations in advocacy, resources, and support across the lifespan. CJC Pediatr. Congenit. Heart Dis. 2023, 2, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Buse, K.; Bernstein, R.S.; Bilimoria, D. The Influence of Board Diversity, Board Diversity Policies and Practices, and Board Inclusion Behaviors on Nonprofit Governance Practices. J. Bus. Ethics 2016, 133, 179–191. [Google Scholar] [CrossRef]
- Welke, K.F.; Pasquali, S.K.; Lin, P.; Backer, C.L.; Overman, D.M.; Romano, J.C.; Karamlou, T. Theoretical Model for Delivery of Congenital Heart Surgery in the United States. Ann. Thorac. Surg. 2021, 111, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Welke, K.F.; Pasquali, S.K.; Lin, P.; Backer, C.L.; Overman, D.M.; Romano, J.C.; Jacobs, J.P.; Karamlou, T. Hospital Distribution and Patient Travel Patterns for Congenital Cardiac Surgery in the United States. Ann. Thorac. Surg. 2019, 107, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Woolf-King, S.E.; Anger, A.; Arnold, E.A.; Weiss, S.J.; Teitel, D. Mental Health Among Parents of Children with Critical Congenital Heart Defects: A Systematic Review. J. Am. Heart Assoc. 2017, 6, e004862. [Google Scholar] [CrossRef] [PubMed]
Population | Prevalence | Incidence | Death | DALYs | |
---|---|---|---|---|---|
Canada | Overall | 136.0 | 7.4 | 0.7 | 56.4 |
Male | 126.3 | 6.8 | 0.8 | 66.0 | |
Female | 145.4 | 7.9 | 0.5 | 47.2 | |
<20 y.o. | 298.8 | 33.7 | 1.6 | 175.6 | |
>20 y.o. | 90.2 | - | 0.4 | 22.9 | |
South Korea | Overall | 219.4 | 6.2 | 0.3 | 33.6 |
Male | 203.5 | 6.0 | 0.3 | 33.3 | |
Female | 235.4 | 6.4 | 0.3 | 33.9 | |
<20 y.o. | 339.9 | 38.0 | 1.0 | 118.8 | |
>20 y.o. | 196.0 | - | 0.2 | 17.0 | |
United Kingdom | Overall | 213.2 | 10.5 | 0.7 | 62.3 |
Male | 204.6 | 11.1 | 0.8 | 71.9 | |
Female | 221.4 | 9.9 | 0.6 | 53.0 | |
<20 y.o. | 322.8 | 45.4 | 1.8 | 182.5 | |
>20 y.o. | 180.3 | - | 0.4 | 26.2 | |
Japan | Overall | 295.4 | 9.5 | 0.4 | 44.4 |
Male | 290.6 | 9.7 | 0.5 | 50.0 | |
Female | 299.9 | 9.4 | 0.4 | 39.1 | |
<20 y.o. | 417.9 | 57.4 | 1.3 | 148.8 | |
>20 y.o. | 270.9 | - | 0.3 | 23.6 | |
Germany | Overall | 285.3 | 11.8 | 0.6 | 55.5 |
Male | 286.3 | 12.6 | 0.6 | 61.2 | |
Female | 284.3 | 11.0 | 0.5 | 49.8 | |
<20 y.o. | 434.3 | 63.0 | 1.8 | 198.1 | |
>20 y.o. | 251.1 | - | 0.3 | 22.7 | |
Australia | Overall | 159.3 | 10.3 | 0.6 | 50.8 |
Male | 152.6 | 10.6 | 0.7 | 59.3 | |
Female | 165.9 | 10.1 | 0.5 | 42.4 | |
<20 y.o. | 291.6 | 42.8 | 1.3 | 143.2 | |
>20 y.o. | 117.1 | - | 0.3 | 21.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greenwell, A.A.; Deng, M.X.; Ross, S.; Weixler, V.; Vervoort, D. Socioeconomic Status and Access to Care for Pediatric and Adult Congenital Heart Disease in Universal Health Coverage Models. J. Cardiovasc. Dev. Dis. 2024, 11, 250. https://doi.org/10.3390/jcdd11080250
Greenwell AA, Deng MX, Ross S, Weixler V, Vervoort D. Socioeconomic Status and Access to Care for Pediatric and Adult Congenital Heart Disease in Universal Health Coverage Models. Journal of Cardiovascular Development and Disease. 2024; 11(8):250. https://doi.org/10.3390/jcdd11080250
Chicago/Turabian StyleGreenwell, Amanda A., Mimi X. Deng, Shelagh Ross, Viktoria Weixler, and Dominique Vervoort. 2024. "Socioeconomic Status and Access to Care for Pediatric and Adult Congenital Heart Disease in Universal Health Coverage Models" Journal of Cardiovascular Development and Disease 11, no. 8: 250. https://doi.org/10.3390/jcdd11080250
APA StyleGreenwell, A. A., Deng, M. X., Ross, S., Weixler, V., & Vervoort, D. (2024). Socioeconomic Status and Access to Care for Pediatric and Adult Congenital Heart Disease in Universal Health Coverage Models. Journal of Cardiovascular Development and Disease, 11(8), 250. https://doi.org/10.3390/jcdd11080250