Developmental Changes in the Excitation–Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals
Abstract
:1. Introduction
2. Action Potential Configuration and Membrane Currents in the Adult
3. Developmental Changes in the Action Potential
4. Excitation–Contraction Mechanisms in the Adult
5. Developmental Changes in Excitation–Contraction Mechanisms
6. Adrenoceptor-Mediated Inotropy in the Adult
7. Developmental Changes in β-Adrenoceptor-Mediated Regulation
8. Developmental Changes in α-Adrenoceptor-Mediated Regulation
9. Resemblance of the Diseased Myocardium to the Developing Myocardium
10. Functional Significance of the Developmental Changes
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barth, E.; Stämmler, G.; Speiser, B.; Schaper, J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell. Cardiol. 1992, 24, 669–681. [Google Scholar] [CrossRef]
- Blank, S.; Chen, V.; Hamilton, N.; Salerno, T.A.; Ianuzzo, C.D. Biochemical characteristics of mammalian myocardia. J. Mol. Cell. Cardiol. 1989, 21, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.; Lanuzzo, C.D. Contractile and calcium regulating capacities of myocardia of different sized mammals scale with resting heart rate. Mol. Cell. Biochem. 1991, 106, 133–141. [Google Scholar] [CrossRef]
- Milani-Nejad, N.; Janssen, P.M.L. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol. Ther. 2014, 141, 235–249. [Google Scholar] [CrossRef]
- Varro, A.; Lathrop, D.A.; Hester, S.B.; Nanasi, P.P.; Papp, J.G.Y. Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic. Res. Cardiol. 1993, 88, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Binah, O.; Arieli, R.; Beck, R.; Rosen, M.R.; Palti, Y. Ventricular electrophysiological properties: Is interspecies variability related to thyroid state? Am. J. Physiol. 1987, 252, H1265–H1274. [Google Scholar] [CrossRef]
- Joukar, S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: Extrapolation of experimental insights to clinic. Lab. Anim. Res. 2021, 37, 25. [Google Scholar] [CrossRef] [PubMed]
- Salameh, S.; Ogueri, V.; Posnack, N.G. Adapting to a new environment: Postnatal maturation of the human cardiomyocyte. J. Physiol. 2023, 601, 2593–2619. [Google Scholar] [CrossRef]
- Nerbonne, J.M. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J. Physiol. 2000, 525, 285–298. [Google Scholar] [CrossRef]
- Agata, N.; Tanaka, H.; Shigenobu, K. Developmental changes in action potential properties of the guinea-pig myocardium. Acta. Physiol. Scand. 1993, 149, 331–337. [Google Scholar] [CrossRef]
- Kato, Y.; Masumiya, H.; Agata, N.; Tanaka, H. Developmental changes in action potential and membrane currents in fetal, neonatal and adult guinea-pig ventricular myocytes. J. Mol. Cell. Cardiol. 1996, 28, 1515–1522. [Google Scholar] [CrossRef]
- Sun, L.S.; Rosen, M.R. The electrophysiologic effects of bupivacaine on adult, neonatal, and fetal guinea pig papillary muscles. Anesthesiology 1991, 74, 893–899. [Google Scholar] [CrossRef]
- Matsuoka, S.; Sarai, N.; Kuratomi, S.; Ono, K.; Noma, A. Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn. J. Physiol. 2003, 53, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Nilius, B.; Boldt, W.; Benndorf, K. Properties of aconitine-modified sodium channels in single cells of mouse ventricular myocardium. Gen. Physiol. Biophys. 1986, 5, 473–484. [Google Scholar]
- Wang, L.; Feng, Z.P.; Kondo, C.S.; Sheldon, R.S.; Duff, H.J. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ. Res. 1996, 79, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Duff, H. Developmental changes in transient outward current in mouse ventricle. Circ. Res. 1997, 81, 120–127. [Google Scholar] [CrossRef]
- Nishimaru, K.; Kobayashi, M.; Matsuda, T.; Tanaka, Y.; Tanaka, H.; Shigenobu, K. Alpha-Adrenoceptor stimulation-mediated negative inotropism and enhanced Na+/Ca2+ exchange in mouse ventricle. Am. J. Physiol. 2001, 280, H132–H141. [Google Scholar]
- Tanaka, H.; Namekata, I.; Takeda, K.; Kazama, A.; Shimizu, Y.; Moriwaki, R.; Hirayama, W.; Sato, A.; Kawanishi, T.; Shigenobu, K. Unique excitation-contraction characteristics of mouse myocardium as revealed by SEA0400, a specific inhibitor of Na+-Ca2+ exchanger. Naunyn Schmiedebergs Arch. Pharmacol. 2005, 371, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, S.; Kawakami, Y.; Honda, Y.; Nemoto, K.; Sano, A.; Namekata, I.; Tanaka, H. Developmental changes in excitation-contraction mechanisms of the mouse ventricular myocardium as revealed by functional and confocal imaging analyses. J. Pharmacol. Sci. 2013, 123, 167–175. [Google Scholar] [CrossRef]
- Grandy, S.A.; Trepanier-Boulay, V.; Fiset, C. Postnatal development has a marked effect on ventricular repolarization in mice. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H2168–H2177. [Google Scholar] [CrossRef]
- Kilborn, M.J.; Fedida, D. A study of the developmental changes in outward currents of rat ventricular myocytes. J. Physiol. 1990, 430, 37–60. [Google Scholar] [CrossRef]
- Demir, S.S. Computational modeling of cardiac ventricular action potentials in rat and mouse: Review. Jpn. J. Physiol. 2004, 54, 523–530. [Google Scholar] [CrossRef]
- Chen, B.; Guo, A.; Zhang, C.; Chen, R.; Zhu, Y.; Hong, J.; Kutschke, W.; Zimmerman, K.; Weiss, R.M.; Zingman, L.; et al. Critical roles of junctophilin-2 in T-tubule and excitation-contraction coupling maturation during postnatal development. Cardiovasc. Res. 2013, 100, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.O.; Chiang, D.Y.; Wang, W.; Beavers, D.L.; Dixit, S.S.; Skapura, D.G.; Landstrom, A.P.; Song, L.S.; Ackerman, M.J.; Wehrens, X.H. Junctophilin-2 is necessary for T-tubule maturation during mouse heart development. Cardiovasc. Res. 2013, 100, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Endoh, M. Cardiac α1-adrenoceptors and inotropy: Myofilament Ca2+ sensitivity, intracellular Ca2+ mobilization, signaling pathway, and pathophysiological relevance. Circ. Res. 2016, 119, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Manita, S.; Matsuda, T.; Adachi, M.; Shigenobu, K. Sustained negative inotropism mediated by alpha-adrenoceptors in adult mouse myocardia: Developmental conversion from positive response in the neonate. Br. J. Pharmacol. 1995, 114, 673–677. [Google Scholar] [CrossRef]
- Hamaguchi, S.; Morinou, I.; Shiseki, Y.; Mikami, A.; Seki, M.; Namekata, I.; Tanaka, H. Mechanisms for the α-adrenoceptor-mediated positive inotropy in mouse ventricular myocardium: Enhancing effect of action potential prolongation. Int. J. Mol. Sci. 2023, 24, 3926. [Google Scholar] [CrossRef]
- Harrell, M.D.; Harbi, S.; Hoffman, J.F.; Zavadil, J.; Coetzee, W.A. Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol. Genomics 2007, 28, 273–283. [Google Scholar] [CrossRef]
- Domínguez, J.N.; de la Rosa, A.; Navarro, F.; Franco, D.; Aránega, A.E. Tissue distribution and subcellular localization of the cardiac sodium channel during mouse heart development. Cardiovasc. Res. 2008, 78, 45–52. [Google Scholar] [CrossRef]
- Liu, W.; Yasui, K.; Opthof, T.; Ishiki, R.; Lee, J.K.; Kamiya, K.; Yokota, M.; Kodama, I. Developmental changes of Ca2+ handling in mouse ventricular cells from early embryo to adulthood. Life Sci. 2002, 71, 1279–1292. [Google Scholar] [CrossRef]
- Takemura, H.; Yasui, K.; Opthof, T.; Niwa, N.; Horiba, M.; Shimizu, A.; Lee, J.K.; Honjo, H.; Kamiya, K.; Ueda, Y.; et al. Subtype switching of L-Type Ca2+ channel from Cav1.3 to Cav1.2 in embryonic murine ventricle. Circ. J. 2005, 69, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, H.; Hoshino, S.; Yoshioka, K.; Ding, W.G.; Omatsu-Kanbe, M.; Nakagawa, M.; Maruo, Y.; Matsuura, H. Postnatal developmental changes in the sensitivity of L-type Ca2+ channel to inhibition by verapamil in a mouse heart model. Pediatr. Res. 2018, 83, 1207–1217. [Google Scholar] [CrossRef]
- Yasui, K.; Niwa, N.; Takemura, H.; Opthof, T.; Muto, T.; Horiba, M.; Shimizu, A.; Lee, J.K.; Honjo, H.; Kamiya, K.; et al. Pathophysiological significance of T-type Ca2+ channels: Expression of T-type Ca2+ channels in fetal and diseased heart. J. Pharmacol. Sci. 2005, 99, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Harrer, J.M.; Haghighe, K.; Kim, H.; Ferguson, D.; Kranias, E. Coordinate regulation of SR Ca2+-ATPase and phospholamban expression in developing murine heart. Am. J. Physiol. 1997, 272, H57–H66. [Google Scholar] [PubMed]
- Piquereau, J.; Novotova, M.; Fortin, D.; Garnier, A.; Ventura-Clapier, R.; Veksler, V.; Joubert, F. Postnatal development of mouse heart: Formation of energetic microdomains. J. Physiol. 2010, 588, 2443–2454. [Google Scholar] [CrossRef]
- de Diego, C.; Chen, F.; Xie, L.H.; Dave, A.S.; Thu, M.; Rongey, C.; Weiss, J.N.; Valderrábano, M. Cardiac alternans in embryonic mouse ventricles. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H433–H440. [Google Scholar] [CrossRef]
- Reppel, M.; Reuter, H.; Sasse, P.; Hescheler, J.; Fleischmann, B.K. NCX current in the murine embryonic heart: Development-dependent regulation by Na+. Ann. N. Y. Acad. Sci. 2007, 1099, 175–182. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, P.H.; Zhang, Z.; Ahmmed, G.U.; Chiamvimonvat, N. Presence of a calcium-activated chloride current in mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H302–H314. [Google Scholar] [CrossRef]
- Mitchel, M.R.; Powell, T.; Terrar, D.A.; Twist, V.W. The effects of ryanodine, EGTA and low-sodium on action potentials in rat and guinea-pig ventricular myocytes: Evidence for two inward currents during the plateau. Br. J. Pharmacol. 1984, 81, 543–550. [Google Scholar] [CrossRef]
- Kimura, J.; Watano, T.; Kawahara, M.; Sakai, E.; Yatabe, J. Direction-independent block of bi-directional Na+/Ca2+ exchange current by KB-R7943 in guinea-pig cardiac myocytes. Br. J. Pharmacol. 1999, 128, 969–974. [Google Scholar] [CrossRef]
- Matsuda, T.; Arakawa, N.; Takuma, K.; Kishida, Y.; Kawasaki, Y.; Sakaue, M.; Takahashi, K.; Takahashi, T.; Suzuki, T.; Takahashi, A.; et al. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 2001, 298, 249–256. [Google Scholar] [PubMed]
- Gadeberg, H.C.; Kong, C.H.T.; Bryant, S.M. Sarcolemmal distribution nof ICa and INCX and Ca2+ autoregulation in mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H190–H199. [Google Scholar] [CrossRef]
- Brette, F.; Sallé, L.; Orchard, C.H. Differential modulation of L-type Ca2+ current by SR Ca2+ release at the T-tubules and surface membrane of rat ventricular myocytes. Circ. Res. 2004, 95, e1–e7. [Google Scholar] [CrossRef]
- Ramos-Franco, J.; Aguilar-Sanchez, Y.; Escobar, A.L. Intact Heart Loose Patch Photolysis Reveals Ionic Current Kinetics During Ventricular Action Potentials. Circ. Res. 2016, 118, 203–215. [Google Scholar] [CrossRef]
- Agata, N.; Tanaka, H.; Shigenobu, K. Differential effects of hypoxia on electrical and mechanical activities of isolated ventricular muscles from fetal and adult guinea-pigs. Gen. Pharmacol. 1994, 25, 15–18. [Google Scholar] [CrossRef]
- Agata, N.; Kato, Y.; Hamaguchi, S.; Namekata, I.; Tanaka, H. Resistance of fetal guinea pig ventricular myocardium to hypoxia: Maintained intracellular ATP prevents the opening of ATP-sensitive potassium channels. Biol. Pharm. Bull. 2019, 42, 268–272. [Google Scholar] [CrossRef]
- Hirakow, R.; Goto, T. Quantitative studies on the ultrastructural differentiation and growth of mammalian cardiac muscle cells. II. The atria and ventricles of the guinea pig. Acta Anat. 1980, 108, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Kawanishi, T.; Shigenobu, K. Optical bioimaging: From living tissue to a single molecule: Atrio-ventricular difference in myocardial excitation-contraction coupling--sequential versus simultaneous activation of SR Ca2+ release units. J. Pharmacol. Sci. 2003, 93, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, R.A.; Clark, R.B.; Giles, W.R. Effects of Action Potential Duration on Excitation-Contractio Couplig in Rat Ventricular Myocytes. Action Potential Voltage-Clamp Measurements. Circ. Res. 1995, 76, 790–801. [Google Scholar] [CrossRef]
- Tanaka, H.; Shigenobu, K. Effect of ryanodine on neonatal and adult rat heart: Developmental increase in sarcoplasmic reticulum function. J. Mol. Cell. Cardiol. 1989, 21, 1305–1313. [Google Scholar] [CrossRef]
- Agata, N.; Tanaka, H.; Shigenobu, K. Inotropic effects of ryanodine and nicardipine on fetal, neonatal and adult guinea-pig myocardium. Eur. J. Pharmacol. 1994, 260, 47–55. [Google Scholar] [CrossRef]
- Orchard, C.; Brette, F. t-Tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovasc. Res. 2008, 77, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Dibb, K.M.; Louch, W.E.; Trafford, A.W. Cardiac Transverse Tubules in Physiology and Heart Failure. Annu. Rev. Physiol. 2022, 84, 229–255. [Google Scholar] [CrossRef]
- Lipsett, D.B.; Frisk, M.; Aronsen, J.M.; Nordén, E.S.; Buonarati, O.R.; Cataliotti, A.; Hell, J.W.; Sjaastad, I.; Christensen, G.; Louch, W.E. Cardiomyocyte substructure reverts to an immature phenotype during heart failure. J. Physiol. 2019, 597, 1833–1853. [Google Scholar] [CrossRef] [PubMed]
- Ziman, A.P.; Gómez-Viquez, N.L.; Bloch, R.J.; Lederer, W.J. Excitation-contraction coupling changes during postnatal cardiac development. J. Mol. Cell. Cardiol. 2010, 48, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Perdreau-Dahl, H.; Lipsett, D.B.; Frisk, M.; Kermani, F.; Carlson, C.R.; Brech, A.; Shen, X.; Bergan-Dahl, A.; Hou, Y.; Tuomainen, T.; et al. BIN1, Myotubularin, and Dynamin-2 Coordinate T-Tubule Growth in Cardiomyocytes. Circ. Res. 2023, 132, e188–e205. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, G.; Wang, X.; Huang, X.; Zhang, J.; Han, S.; Wang, J.; Hall, D.D.; Xu, R.; He, F.; et al. Ptpn23 Controls Cardiac T-Tubule Patterning by Promoting the Assembly of Dystrophin-Glycoprotein Complex. Circulation 2024, 149, 1375–1390. [Google Scholar] [CrossRef]
- Hofhuis, J.; Bersch, K.; Wagner, S.; Molina, C.; Fakuade, F.E.; Iyer, L.M.; Streckfuss-Bömeke, K.; Toischer, K.; Zelarayán, L.C.; Voigt, N.; et al. Dysferlin links excitation-contraction coupling to structure and maintenance of the cardiac transverse-axial tubule system. Europace 2020, 22, 1119–1131. [Google Scholar] [CrossRef]
- Kawamura, Y.; Ishiwata, T.; Takizawa, M.; Ishida, H.; Asano, Y.; Nonoyama, S. Fetal and neonatal development of Ca2+ transients and functional sarcoplasmic reticulum in beating mouse hearts. Circ. J. 2010, 74, 1442–1450. [Google Scholar] [CrossRef]
- Takizawa, M.; Ishiwata, T.; Kawamura, Y.; Kanai, T.; Kurokawa, T.; Nishiyama, M.; Ishida, H.; Asano, Y.; Nonoyama, S. Contribution of sarcoplasmic reticulum Ca2+ release and Ca2+ transporters on sarcolemmal channels to Ca2+ transient in fetal mouse heart. Pediatr. Res. 2011, 69, 306–311. [Google Scholar] [CrossRef]
- Ko, C.Y.; Smith, C.E.R.; Grandi, E. Calcium-Dependent Signaling in Cardiac Myocytes. In Cardiovascular Signaling in Health and Disease [Internet]; Parinandi, N.L., Hund, T.J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Pásek, M.; Bébarová, M.; Šimurdová, M.; Šimurda, J. Functional consequences of changes in the distribution of Ca2+ extrusion pathways between t-tubular and surface membranes in a model of human ventricular cardiomyocyte. J. Mol. Cell. Cardiol. 2024, 193, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Ruud, M.; Frisk, M.; Melleby, A.O.; Norseng, P.A.; Mohamed, B.A.; Li, J.; Aronsen, J.M.; Setterberg, I.E.; Jakubiczka, J.; van Hout, I.; et al. Regulation of cardiomyocyte t-tubule structure by preload and afterload: Roles in cardiac compensation and decompensation. J. Physiol. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Heinzel, F.R.; Bito, V.; Volders, P.G.; Antoons, G.; Mubagwa, K.; Sipido, K.R. Spatial and temporal inhomogeneities during Ca2+ release from the sarcoplasmic reticulum in pig ventricular myocytes. Circ. Res. 2002, 91, 1023–1130. [Google Scholar] [CrossRef] [PubMed]
- Biesmans, L.; Macquaide, N.; Heinzel, F.R.; Bito, V.; Smith, G.L.; Sipido, K.R. Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density. PLoS ONE. 2011, 6, e25100. [Google Scholar] [CrossRef] [PubMed]
- Erman, R.; Yamamura, H.; Roeske, W. The ontogeny of specific binding sites for the calcium channel antagonist, nitrendipine, in mouse heart and brain. Brain Res. 1983, 278, 327–331. [Google Scholar] [CrossRef]
- An, R.H.; Davies, M.F.; Doevendans, P.; Kubalak, S.W.; Bangalore, R.; Chien, K.R.; Kass, R.S. Developmental changes in beta-adrenergic modulation of L-type Ca2+ channels in embryonic mouse heart. Circ. Res. 1996, 78, 371–378. [Google Scholar] [CrossRef]
- Wibo, M.; Bravo, G.; Godfraind, T. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ. Res. 1991, 66, 662–673. [Google Scholar] [CrossRef]
- Seki, S.; Nagashima, M.; Yamada, Y.; Tsutsuura, M.; Kobayashi, T.; Namiki, A.; Tohse, N. Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes. Cardiovasc. Res. 2003, 58, 535–548. [Google Scholar] [CrossRef]
- Tohse, N.; Seki, S.; Kobayashi, T.; Tsutsuura, M.; Nagashima, M.; Yamada, Y. Development of excitation-contraction coupling in cardiomyocytes. Jpn. J. Physiol. 2004, 54, 1–6. [Google Scholar] [CrossRef]
- Kobayashi, T.; Maeda, S.; Ichise, N.; Sato, T.; Iwase, T.; Seki, S.; Yamada, Y.; Tohse, N. The beginning of the calcium transient in rat embryonic heart. J. Physiol. Sci. 2011, 61, 141–149. [Google Scholar] [CrossRef]
- Agata, N.; Tanaka, H.; Shigenobu, K. Possible action of cyclopiazonic acid on myocardial sarcoplasmic reticulum: Inotropic effects on neonatal and adult rat heart. Br. J. Pharmacol. 1993, 108, 571–572. [Google Scholar] [CrossRef]
- Seguchi, M.; Harding, J.A.; Jarmakani, J.M. Developmental change in the function of sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 1986, 18, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Terzic, A.; Puceat, M.; Vassort, G.; Vogel, S.M. Cardiac alpha 1-adrenoceptors: An overview. Pharmacol. Rev. 1993, 45, 147–175. [Google Scholar]
- Jensen, B.C.; O’Connell, T.D.; Simpson, P.C. Alpha-1-adrenergic receptors in heart failure: The adaptive arm of the cardiac response to chronic catecholamine stimulation. J. Cardiovasc. Pharmacol. 2014, 63, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Izumi, M.; Miyamoto, S.; Hori, M.; Ozaki, H.; Karaki, H. Negative inotropic effect of endothelin-1 in the mouse right ventricle. Eur. J. Pharmacol. 2000, 396, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Norota, I.; Tanaka, H.; Kubota, I.; Tomoike, H.; Endo, M. Negative inotropic effects of angiotensin II, endothelin-1 and phenylephrine in indo-1 loaded adult mouse ventricular myocytes. Life Sci. 2002, 70, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Kusakari, Y.; O-Uchi, J.; Morimoto, S.; Kawai, M.; Hongo, K.; Kurihara, S. Intracellular mechanism of the negative inotropic effect induced by alpha1-adrenoceptor stimulation in mouse myocardium. J. Physiol. Sci. 2006, 56, 297–304. [Google Scholar] [CrossRef]
- Sissman, N.J. Developmental landmarks in cardiac morphogenesis: Comparative chronology. Am. J. Cardiol. 1970, 25, 141–148. [Google Scholar] [CrossRef]
- Chen, F.; Yamamura, H.; Roeske, W. Ontogeny of mammalian myocardial beta-adrenergic receptors. Eur. J. Pharmacol. 1979, 58, 255–264. [Google Scholar] [CrossRef]
- Roeske, W.; Yamamura, H. Maturation of mammalian myocardial muscarinic cholinergic receptors. Life Sci. 1978, 23, 127–132. [Google Scholar] [CrossRef]
- Tanaka, H.; Manita, S.; Shigenobu, K. Increased sensitivity of neonatal mouse myocardia to autonomic transmitters. J. Auton. Pharmacol. 1994, 14, 123–128. [Google Scholar] [CrossRef]
- Shigenobu, K.; Tanaka, H.; Kasuya, Y. Changes in sensitivity of rat heart to norepinephrine and isoproterenol during pre- and postnatal development and its relation to sympathetic innervation. Dev. Pharmacol. Ther. 1988, 11, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Shigenobu, K. Electrophysiological properties of chick embryonic heart and some pharmacological studies with rat myocardium during pre- and postnatal development. In Developmental Cardiology: Morphogenesis and Function; Clark, E.B., Takao, A., Eds.; Futura Publishing Co.: London, UK, 1990; pp. 273–289. [Google Scholar]
- Tanaka, H.; Shigenobu, K. Role of beta-adrenoceptor-adenylate cyclase system in the developmental decrease in sensitivity to isoprenaline in foetal and neonatal rat heart. Br. J. Pharmacol. 1990, 100, 138–142. [Google Scholar] [CrossRef]
- Goto, K.; Longhurst, P.A.; Cassis, L.A.; Head, R.J.; Taylor, D.A.; Rice, P.J.; Fleming, W.W. Surgical sympathectomy of the heart in rodents and its effect on sensitivity to agonists. J. Pharmacol. Exp. Ther. 1985, 234, 280–287. [Google Scholar] [PubMed]
- Ishii, K.; Shigenobu, K.; Kasuya, Y. Postjunctional supersensitivity in young rat heart produced by immunological and chemical sympathectomy. J. Pharmacol. Exp. Ther. 1982, 220, 209–215. [Google Scholar] [PubMed]
- Goto, K.; Masaki, T.; Saito, A.; Kasuya, Y. Denervation-like supersensitivity in the rat vas deferens induced by local application of colchicine to the hypogastric plexus. J. Pharmacol. Exp. Ther. 1979, 209, 376–381. [Google Scholar]
- Ono, K.; Kasuya, Y.; Shigenobu, K. Organ culture of young rat vas deferens as an in vitro model for the study of denervation supersensitivity. Eur. J. Pharmacol. 1985, 117, 159–168. [Google Scholar] [CrossRef]
- de Lucia, C.; Eguchi, A.; Koch, W.J. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front. Pharmacol. 2018, 9, 904. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.; Shenoy, S.K. GPCR desensitization: Acute and prolonged phases. Cell Signal. 2018, 41, 9–16. [Google Scholar] [CrossRef]
- Maaliki, D.; Jaffa, A.A.; Nasser, S.; Sahebkar, A.; Eid, A.H. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol. Rev. 2024, 76, 358–387. [Google Scholar] [CrossRef]
- Dewenter, M.; Pan, J.; Knödler, L.; Tzschöckel, N.; Henrich, J.; Cordero, J.; Dobreva, G.; Lutz, S.; Backs, J.; Wieland, T.; et al. Chronic isoprenaline/phenylephrine vs. exclusive isoprenaline stimulation in mice: Critical contribution of alpha1-adrenoceptors to early cardiac stress responses. Basic Res. Cardiol. 2022, 117, 15. [Google Scholar] [CrossRef]
- Tanaka, H.; Matsuda, T.; Adachi, M.; Shigenobu, K. Effect of sympathectomy on inotropic responsiveness to alpha-adrenoceptor stimulation in developing mouse myocardia. Can. J. Physiol. Pharmacol. 1995, 73, 1285–1288. [Google Scholar] [CrossRef] [PubMed]
- Louch, W.E.; Koivumäki, J.T.L.; Tavi, P. Calcium signalling in developing cardiomyocytes: Implications for model systems and disease. J. Physiol. 2015, 593, 1047–1063. [Google Scholar] [CrossRef] [PubMed]
- Birkedal, R.; Laasmaa, M.; Branovets, J.; Vendelin, M. Ontogeny of cardiomyocytes: Ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210321. [Google Scholar] [CrossRef]
- Louch, W.E.; Bito, V.; Heinzel, F.R.; Macianskiene, R.; Vanhaecke, J.; Flameng, W.; Mubagwa, K.; Sipido, K.R. Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc. Res. 2004, 62, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.H.; Rozanski, G.J.; Patel, K.P.; Bidasee, K.R. Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J. Mol. Cell. Cardiol. 2007, 42, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.O.; Høydal, M.A.; Kemi, O.J.; Catalucci, D.; Ceci, M.; Aasum, E.; Larsen, T.; Rolim, N.; Condorelli, G.; Smith, G.L.; et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res. 2009, 105, 527–536. [Google Scholar] [CrossRef]
- Bers, D. Cardiac Sarcoplasmic Reticulum Calcium Leak: Basis and Roles in Cardiac Dysfunction. Annu. Rev. Physiol. 2014, 76, 107–127. [Google Scholar] [CrossRef]
- Namekata, I.; Hamaguchi, S.; Wakasugi, Y.; Ohhara, M.; Hirota, Y.; Tanaka, H. Ellagic acid and gingerol, activators of the sarco-endoplasmic reticulum Ca²⁺-ATPase, ameliorate diabetes mellitus-induced diastolic dysfunction in isolated murine ventricular myocardia. Eur. J. Pharmacol. 2013, 706, 48–55. [Google Scholar] [CrossRef]
- Kanae, H.; Hamaguchi, S.; Wakasugi, Y.; Kusakabe, T.; Kato, Y.; Namekata, I.; Tanaka, H. Pathological prolongation of action potential duration as a cause of the reduced alpha-adrenoceptor-mediated negative inotropy in streptozotocin-induced diabetic mice myocardium. J. Pharmacol. Sci. 2017, 135, 131–133. [Google Scholar] [CrossRef]
- Arici, M.; Ferrandi, M.; Barassi, P.; Hsu, S.C.; Torre, E.; Luraghi, A.; Ronchi, C.; Chang, G.J.; Peri, F.; Ferrari, P.; et al. Istaroxime Metabolite PST3093 Selectively Stimulates SERCA2a and Reverses Disease-Induced Changes in Cardiac Function. J. Pharmacol. Exp. Ther. 2023, 384, 231–244. [Google Scholar] [CrossRef]
- Arici, M.; Hsu, S.C.; Ferrandi, M.; Barassi, P.; Ronchi, C.; Torre, E.; Luraghi, A.; Chang, G.J.; Ferrari, P.; Bianchi, G.; et al. Selective SERCA2a activator as a candidate for chronic heart failure therapy. J. Transl. Med. 2024, 22, 77. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, S.; Abe, K.; Komatsu, M.; Kainuma, J.; Namekata, I.; Tanaka, H. Positive Lusitropic Effect of Quercetin on Isolated Ventricular Myocardia from Normal and Streptozotocin-Induced Diabetic Mice. Biol. Pharm. Bull. 2021, 44, 1894–1897. [Google Scholar] [CrossRef]
- Keylani, K.; Mojeni, F.A.; Khalaji, A.; Rasouli, A.; Aminzade, D.; Karimi, M.A.; Sanaye, P.M.; Khajevand, N.; Nemayandeh, N.; Poudineh, M.; et al. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front. Pharmacol. 2023, 13, 1027633. [Google Scholar] [CrossRef]
- Roopnarine, O.; Yuen, S.L.; Thompson, A.R.; Roelike, L.N.; Rebbeck, R.T.; Bidwell, P.A.; Aldrich, C.C.; Cornea, R.L.; Thomas, D.D. Fluorescence lifetime FRET assay for live-cell high-throughput screening of the cardiac SERCA pump yields multiple classes of small-molecule allosteric modulators. Sci. Rep. 2023, 13, 10673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Simpson, B.C.; Jensen, B.C. Cardiac α1A-adrenergic receptors: Emerging protective roles in cardiovascular diseases. Am. J. Physiol. Heart. Circ. Physiol. 2021, 320, H725–H733. [Google Scholar] [CrossRef] [PubMed]
- Cowley, P.M.; Wang, G.; Swigart, P.M.; Raghunathan, A.; Reddy, N.; Dulam, P.; Lovett, D.H.; Simpson, P.C.; Baker, A.J. Reversal of right ventricular failure by chronic α1A-subtype adrenergic agonist therapy. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H224–H232. [Google Scholar] [CrossRef]
- Gautam, S.; Lamichhane, S.; Sharma, N.R.; Prabal, K.C.; Basnet, A.; Kansakar, S.; Pokhrel, M.; Shetty, V.; Moskovits, N. Use of midodrine in heart failure: A review. Ann. Med. Surg. 2023, 85, 2808–2813. [Google Scholar] [CrossRef]
Fetus | Neonate | Adult | References | |
---|---|---|---|---|
T-tubule | none | immature | mature | [19,23,24] |
Action potential duration | [15,16,19,20] | |||
Ca2+ transient amplitude | [19] | |||
Nifedipine sensitivity in Ca2+ transient | [19] | |||
Ryanodine sensitivity in Ca2+ transient | [19] | |||
α-Adrenergic inotropism | positive | positive | negative | [18,25,26,27] |
INa | [28,29] | |||
Ito | [16,20,28] | |||
IK | [15,16,20,28] | |||
ICa-L | [28,30,31,32] | |||
ICa-T | [28,33] | |||
RyR2 | [28,30] | |||
SERCA2 | [28,30,34,35,36] | |||
Phospholamban | [28,30,34,35] | |||
NCX | [28,30,34,37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamaguchi, S.; Agata, N.; Seki, M.; Namekata, I.; Tanaka, H. Developmental Changes in the Excitation–Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals. J. Cardiovasc. Dev. Dis. 2024, 11, 267. https://doi.org/10.3390/jcdd11090267
Hamaguchi S, Agata N, Seki M, Namekata I, Tanaka H. Developmental Changes in the Excitation–Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals. Journal of Cardiovascular Development and Disease. 2024; 11(9):267. https://doi.org/10.3390/jcdd11090267
Chicago/Turabian StyleHamaguchi, Shogo, Naoki Agata, Maika Seki, Iyuki Namekata, and Hikaru Tanaka. 2024. "Developmental Changes in the Excitation–Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals" Journal of Cardiovascular Development and Disease 11, no. 9: 267. https://doi.org/10.3390/jcdd11090267
APA StyleHamaguchi, S., Agata, N., Seki, M., Namekata, I., & Tanaka, H. (2024). Developmental Changes in the Excitation–Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals. Journal of Cardiovascular Development and Disease, 11(9), 267. https://doi.org/10.3390/jcdd11090267