Remote Monitoring: How to Maximize Efficiency through Appropriate Organization in a Device Clinic
Abstract
:1. Introduction
2. Materials and Methods
- In January 2020, we eliminated scheduled loop recorder transmissions, retaining only alert transmissions [13].
- In January 2021, following the publication of our analysis on the volume of transmissions generated by scheduled interrogations [14], we reduced the frequency of the scheduled transmissions of pacemakers from four to one per year and the scheduled transmissions for defibrillators from four to two per year.
- Since January 2022, we have been optimizing and personalizing the programming of device alerts with two primary interventions:
Statistical Analysis
3. Results
4. Discussion
- Maintaining clinically meaningful transmissions with events and reducing redundant ones: Indeed, our work published in 2021 demonstrated that alert transmissions generate a greater need for medical supervision and additional in-person evaluations compared to scheduled ones. Therefore, in our model, we reduced scheduled transmissions (one/year for pacemakers, two/year for defibrillators and biventricular devices, and no scheduled transmissions for loop recorders) [14].
- Correctly programming the devices and reprogramming those that transmit frequently [13] or optimizing the alerts that are no longer clinically meaningful: for example, if the patient goes into permanent atrial fibrillation, the atrial fibrillation alert can be turned off.
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crossley, G.H.; Boyle, A.; Vitense, H.; Chang, Y.; Mead, R.H. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: The value of wireless remote monitoring with automatic clinician alerts. J. Am. Coll. Cardiol. 2011, 57, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Varma, N.; Michalski, J.; Epstein, A.E.; Schweikert, R. Automatic remote monitoring of implantable cardioverter-defibrillator lead and generator performance: The Lumos-T Safely RedUceS RouTine Office Device Follow-Up (TRUST) trial. Circ. Arrhythm. Electrophysiol. 2010, 3, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Saxon, L.A.; Hayes, D.L.; Gilliam, F.R.; Heidenreich, P.A.; Day, J.; Seth, M.; Meyer, T.E.; Jones, P.W.; Boehmer, J.P. Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: The ALTITUDE survival study. Circulation 2010, 122, 2359–2367. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Taborsky, M.; Glikson, M.; Heinrich, U.; Schumacher, B.; Katz, A.; Brachmann, J.; Lewalter, T.; Goette, A.; Block, M.; et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): A randomised controlled trial. Lancet 2014, 384, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Da Costa, A.; Quesada, A.; Ricci, R.P.; Favale, S.; Boscolo, G.; Clementy, N.; Amori, V.; Mangoni di, S.; Stefano, L.; et al. Effects of remote monitoring on clinical outcomes and use of healthcare resources in heart failure patients with biventricular defibrillators: Results of the MORE-CARE multicentre randomized controlled trial. Eur. J. Heart Fail. 2017, 19, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Landolina, M.; Perego, G.B.; Lunati, M.; Curnis, A.; Guenzati, G.; Vicentini, A.; Marzegalli, M. Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: The evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study. Circulation 2012, 125, 2985–2992. [Google Scholar] [CrossRef] [PubMed]
- Guédon-Moreau, L.; Lacroix, D.; Sadoul, N.; Clémenty, J.; Kouakam, C.; Hermida, J.-S.; Aliot, E.; Boursier, M.; Bizeau, O.; Kacet, S.; et al. A randomized study of remote follow-up of implantable cardioverter defibrillators: Safety and efficacy report of the ECOST trial. Eur. Heart J. 2013, 34, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, A.; Palazzini, M.; Trimarchi, G.; Conti, N.; Di Spigno, F.; Gentile, P.; D’Angelo, L.; Garascia, A.; Ammirati, E.; Morici, N.; et al. Heart Failure Management through Telehealth: Expanding Care and Connecting Hearts. J. Clin. Med. 2024, 13, 2592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrick, A.M.; Raj, S.R.; Deneke, T.; Kojodjojo, P.; Lopez-Cabanillas, N.; Abe, H.; Boveda, S.; Chew, D.S.; Choi, J.I.; Dagres, N.; et al. 2023 HRS/EHRA/APHRS/LAHRS Expert Consensus Statement on Practical Management of the Remote Device Clinic. Europace 2023, 25, euad123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maines, M.; Palmisano, P.; Del Greco, M.; Melissano, D.; De Bonis, S.; Baccillieri, S.; Zanotto, G.; D’Onofrio, A.; Ricci, R.P.; De Ponti, R.; et al. Impact of COVID-19 Pandemic on Remote Monitoring of Cardiac Implantable Electronic Devices in Italy: Results of a Survey Promoted by AIAC (Italian Association of Arrhythmology and Cardiac Pacing). J. Clin. Med. 2021, 10, 4086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zanotto, G.; Melissano, D.; Baccillieri, S.; Campana, A.; Caravati, F.; Maines, M.; Platania, F.; Zuccaro, L.; Landolina, M.; Berisso, M.Z.; et al. Intrahospital organizational model of remote monitoring data sharing, for a global management of patients with cardiac implantable electronic devices: A document of the Italian Association of Arrhythmology and Cardiac Pacing. J. Cardiovasc. Med. 2020, 21, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Maines, M.; Tomasi, G.; Moggio, P.; Peruzza, F.; Catanzariti, D.; Angheben, C.; Simoncelli, M.; Degiampietro, M.; Piffer, L.; Valsecchi, S.; et al. Implementation of remote follow-up of cardiac implantable electronic devices in clinical practice: Organizational implications and resource consumption. J. Cardiovasc. Med. 2020, 21, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Maines, M.; Degiampietro, M.; Tomasi, G.; Poian, L.; Cont, N.; Peruzza, F.; Moggio, P.; Triglione, F.; Giacopelli, D.; Del Greco, M. Strategic reprogramming of implantable cardiac monitors reduces the false-positive remote alert burden in a nurse-led service. Eur. J. Cardiovasc. Nurs. 2023, 22, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Maines, M.; Tomasi, G.; Moggio, P.; Poian, L.; Peruzza, F.; Catanzariti, D.; Angheben, C.; Cont, N.; Valsecchi, S.; Del Greco, M. Scheduled versus alert transmissions for remote follow-up of cardiac implantable electronic devices: Clinical relevance and resource consumption. Int. J. Cardiol. 2021, 334, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Varma, N.; Love, C.J.; Michalski, J.; Epstein, A.E.; TRUST Investigators. Alert-Based ICD Follow-Up: A Model of Digitally Driven Remote Patient Monitoring. JACC Clin. Electrophysiol. 2021, 7, 976–987. [Google Scholar] [CrossRef] [PubMed]
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|
Patients with monitored devices | 1887 | 2029 | 2309 | 2378 | 2625 | 2741 |
Pacemaker | 1078 | 1120 | 1274 | 1337 | 1485 | 1571 |
Defibrillators | 402 | 406 | 423 | 393 | 402 | 418 |
ILR | 407 | 503 | 612 | 648 | 738 | 752 |
Transmissions | 13,859 | 15,414 | 14,954 | 12,453 | 13,084 | 12,775 |
Pacemaker | 5714 | 5996 | 5991 | 4107 | 4823 | 4837 |
Defibrillators | 2416 | 2376 | 2554 | 1672 | 1693 | 1546 |
ILR | 5729 | 7042 | 6409 | 6674 | 6568 | 6392 |
Nurses | 1 | 2 | 2 | 2 | 2 | 2 |
Transmissions/patient year # | 7.3 (7.2–7.5) | 7.6 (7.5–7.7) * | 6.5 (6.4–6.6) * | 5.2 (5.1–5.3) * | 5.0 (4.9–5.1) * | 4.7 (4.6–4.7) * |
Pacemaker | 5.3 (5.2–5.4) | 5.4 (5.2–5.5) | 4.7 (4.6–4.8) * | 3.1 (3.0–3.2) * | 3.2 (3.2–3.3) * | 3.1 (3.0–3.2) * |
Defibrillators | 6.0 (5.8–6.3) | 5.9 (5.6–6.1) | 6.0 (5.8–6.3) | 4.3 (4.1–4.5) * | 4.2 (4.0–4.4) * | 3.7 (3.5–3.9) * |
ILR | 14.1 (13.7–14.4) | 14.0 (13.7–14.3) | 10.4 (10.2–10.7) * | 10.2 (10.0–10.5) * | 8.9 (8.7–9.1) * | 8.5 (8.3–8.7) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maines, M.; Tomasi, G.; Poian, L.; Simoncelli, M.; Zeni, D.; Santini, M.; Del Greco, M. Remote Monitoring: How to Maximize Efficiency through Appropriate Organization in a Device Clinic. J. Cardiovasc. Dev. Dis. 2024, 11, 270. https://doi.org/10.3390/jcdd11090270
Maines M, Tomasi G, Poian L, Simoncelli M, Zeni D, Santini M, Del Greco M. Remote Monitoring: How to Maximize Efficiency through Appropriate Organization in a Device Clinic. Journal of Cardiovascular Development and Disease. 2024; 11(9):270. https://doi.org/10.3390/jcdd11090270
Chicago/Turabian StyleMaines, Massimiliano, Giancarlo Tomasi, Luisa Poian, Marzia Simoncelli, Debora Zeni, Monica Santini, and Maurizio Del Greco. 2024. "Remote Monitoring: How to Maximize Efficiency through Appropriate Organization in a Device Clinic" Journal of Cardiovascular Development and Disease 11, no. 9: 270. https://doi.org/10.3390/jcdd11090270
APA StyleMaines, M., Tomasi, G., Poian, L., Simoncelli, M., Zeni, D., Santini, M., & Del Greco, M. (2024). Remote Monitoring: How to Maximize Efficiency through Appropriate Organization in a Device Clinic. Journal of Cardiovascular Development and Disease, 11(9), 270. https://doi.org/10.3390/jcdd11090270