Mortality Predictors and Neurological Outcomes Following Extracorporeal Cardiopulmonary Resuscitation (eCPR): A Single-Center Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. eCPR Programme and Management
2.3. Data Acquisition
2.4. Outcomes
2.5. Statistical Analyses
3. Results
3.1. Patient and ECMO Characteristics
3.2. Mortality
3.3. Neurological Outcomes
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brogan, T.V.; Lequier, L.; MacLaren, G.; Lorusso, R.; Peek, G.; Brodie, D.; Thiagarajan, R.; Vercaemst, L.; ELOS. Extracorporeal Life Support: The ELSO Red Book 6th Edition; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2022. [Google Scholar]
- Rajsic, S.; Breitkopf, R.; Bukumiric, Z.; Treml, B. ECMO Support in Refractory Cardiogenic Shock: Risk Factors for Mortality. J. Clin. Med. 2022, 11, 6821. [Google Scholar] [CrossRef]
- Rajsic, S.; Treml, B.; Jadzic, D.; Breitkopf, R.; Oberleitner, C.; Popovic Krneta, M.; Bukumiric, Z. Extracorporeal membrane oxygenation for cardiogenic shock: A meta-analysis of mortality and complications. Ann. Intensive Care 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.; MacLaren, G.; Lorusso, R.; Price, S.; Yannopoulos, D.; Vercaemst, L.; Bělohlávek, J.; Taccone, F.S.; Aissaoui, N.; Shekar, K.; et al. Extracorporeal cardiopulmonary resuscitation in adults: Evidence and implications. Intensive Care Med. 2022, 48, 1–15. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Singletary, E.M.; Soar, J.; Olasveengen, T.M.; Greif, R.; Liley, H.G.; Zideman, D.; Bhanji, F.; Andersen, L.W.; Avis, S.R.; et al. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Summary from the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group. Resuscitation 2021, 169, 229–311. [Google Scholar] [CrossRef]
- Perkins, G.D.; Gräsner, J.-T.; Semeraro, F.; Olasveengen, T.; Soar, J.; Lott, C.; Van de Voorde, P.; Madar, J.; Zideman, D.; Mentzelopoulos, S.; et al. European Resuscitation Council Guidelines 2021: Executive summary. Resuscitation 2021, 161, 1–60. [Google Scholar] [CrossRef]
- Soar, J.; Maconochie, I.; Wyckoff, M.H.; Olasveengen, T.M.; Singletary, E.M.; Greif, R.; Aickin, R.; Bhanji, F.; Donnino, M.W.; Mancini, M.E.; et al. 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Summary from the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2019, 140, e826–e880. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Hifumi, T.; Sakamoto, T.; Kuroda, Y. Extracorporeal Cardiopulmonary Resuscitation for Out-of-Hospital Cardiac Arrest in Adult Patients. J. Am. Heart Assoc. 2020, 9, e015291. [Google Scholar] [CrossRef] [PubMed]
- Low, C.J.W.; Ramanathan, K.; Ling, R.R.; Ho, M.J.C.; Chen, Y.; Lorusso, R.; MacLaren, G.; Shekar, K.; Brodie, D. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with cardiac arrest: A comparative meta-analysis and trial sequential analysis. Lancet Respir. Med. 2023, 11, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, M.J.; Granfeldt, A.; Guerguerian, A.M.; Sandroni, C.; Hsu, C.H.; Gardner, R.M.; Lind, P.C.; Eggertsen, M.A.; Johannsen, C.M.; Andersen, L.W. Extracorporeal cardiopulmonary resuscitation for cardiac arrest: An updated systematic review. Resuscitation 2023, 182, 109665. [Google Scholar] [CrossRef]
- Berg, K.M.; Bray, J.E.; Ng, K.C.; Liley, H.G.; Greif, R.; Carlson, J.N.; Morley, P.T.; Drennan, I.R.; Smyth, M.; Scholefield, B.R.; et al. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Summary from the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Resuscitation 2024, 195, 109992. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. (Am. Soc. Artif. Internal Organs 1992) 2022, 68, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Lequier, L.; Annich, G.; Al-Ibrahim, O.; Bembea, M.; Brodie, D.; Brogan, T.; Buckvold, S.; Chicoine, L.; Conrad, S.; Cooper, D.; et al. ELSO Anticoagulation Guideline; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Jennett, B.; Bond, M. Assessment of outcome after severe brain damage: A Practical Scale. Lancet 1975, 305, 480–484. [Google Scholar] [CrossRef]
- Perkins, G.D.; Jacobs, I.G.; Nadkarni, V.M.; Berg, R.A.; Bhanji, F.; Biarent, D.; Bossaert, L.L.; Brett, S.J.; Chamberlain, D.; de Caen, A.R.; et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for Healthcare Professionals from a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation 2015, 96, 328–340. [Google Scholar] [CrossRef]
- Fagnoul, D.; Combes, A.; De Backer, D. Extracorporeal cardiopulmonary resuscitation. Curr. Opin. Crit. Care 2014, 20, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Lin, J.W.; Yu, H.Y.; Ko, W.J.; Jerng, J.S.; Chang, W.T.; Chen, W.J.; Huang, S.C.; Chi, N.H.; Wang, C.H.; et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: An observational study and propensity analysis. Lancet 2008, 372, 554–561. [Google Scholar] [CrossRef]
- Kagawa, E.; Dote, K.; Kato, M.; Sasaki, S.; Nakano, Y.; Kajikawa, M.; Higashi, A.; Itakura, K.; Sera, A.; Inoue, I.; et al. Should we emergently revascularize occluded coronaries for cardiac arrest?: Rapid-response extracorporeal membrane oxygenation and intra-arrest percutaneous coronary intervention. Circulation 2012, 126, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Haneya, A.; Philipp, A.; Diez, C.; Schopka, S.; Bein, T.; Zimmermann, M.; Lubnow, M.; Luchner, A.; Agha, A.; Hilker, M.; et al. A 5-year experience with cardiopulmonary resuscitation using extracorporeal life support in non-postcardiotomy patients with cardiac arrest. Resuscitation 2012, 83, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Guru, P.K.; Seelhammer, T.G.; Singh, T.D.; Sanghavi, D.K.; Chaudhary, S.; Riley, J.B.; Friedrich, T.; Stulak, J.M.; Haile, D.T.; Kashyap, R.; et al. Outcomes of adult patients supported by extracorporeal membrane oxygenation (ECMO) following cardiopulmonary arrest. The Mayo Clinic experience. J. Card Surg. 2021, 36, 3528–3539. [Google Scholar] [CrossRef] [PubMed]
- Zakhary, B.; Nanjayya, V.B.; Sheldrake, J.; Collins, K.; Ihle, J.F.; Pellegrino, V. Predictors of mortality after extracorporeal cardiopulmonary resuscitation. Crit. Care Resusc. J. Australas. Acad. Crit. Care Med. 2018, 20, 223–230. [Google Scholar] [CrossRef]
- Lunz, D.; Calabrò, L.; Belliato, M.; Contri, E.; Broman, L.M.; Scandroglio, A.M.; Patricio, D.; Malfertheiner, M.; Creteur, J.; Philipp, A.; et al. Extracorporeal membrane oxygenation for refractory cardiac arrest: A retrospective multicenter study. Intensive Care Med. 2020, 46, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Downing, J.; Al Falasi, R.; Cardona, S.; Fairchild, M.; Lowie, B.; Chan, C.; Powell, E.; Pourmand, A.; Tran, Q.K. How effective is extracorporeal cardiopulmonary resuscitation (ECPR) for out-of-hospital cardiac arrest? A systematic review and meta-analysis. Am. J. Emerg. Med. 2022, 51, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Daou, O.; Winiszewski, H.; Besch, G.; Pili-Floury, S.; Belon, F.; Guillon, B.; Marx, T.; Chocron, S.; Capellier, G.; Perrotti, A.; et al. Initial pH and shockable rhythm are associated with favorable neurological outcome in cardiac arrest patients resuscitated with extracorporeal cardiopulmonary resuscitation. J. Thorac. Dis. 2020, 12, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Zdenka, F.; Daniel, R.; Jana, S.; Petra, K.; Ondrej, F.; Ondrej, S.; Michal, H.; Milan, D.; Ales, L.; et al. Initial rhythm and survival in refractory out-of-hospital cardiac arrest. Post-hoc analysis of the Prague OHCA randomized trial. Resuscitation 2022, 181, 289–296. [Google Scholar] [CrossRef]
- Li, Z.; Gao, J.; Wang, J.; Xie, H.; Guan, Y.; Zhuang, X.; Liu, Q.; Fu, L.; Hou, X.; Hei, F. Mortality risk factors in patients receiving ECPR after cardiac arrest: Development and validation of a clinical prognostic prediction model. Am. J. Emerg. Med. 2024, 76, 111–122. [Google Scholar] [CrossRef]
- Erdoes, G.; Weber, D.; Bloch, A.; Heinisch, P.P.; Huber, M.; Friess, J.O. The impact of on-site cardiac rhythm on mortality in patients supported with extracorporeal cardiopulmonary resuscitation: A retrospective cohort study. Artif. Organs 2022, 46, 1649–1658. [Google Scholar] [CrossRef]
- Daubin, C.; Brunet, J.; Huet, J.; Valette, X.; Charbonnier, C.; Sabatier, R.; Joret, A.; Dupeyrat, J.; Saplacan, V.; Courtois, S.; et al. Extracorporeal Cardiopulmonary Resuscitation and Survival After Refractory Cardiac Arrest: Is ECPR Beneficial? ASAIO J. (Am. Soc. Artif. Internal Organs 1992) 2021, 67, 1232–1239. [Google Scholar] [CrossRef]
- Cheema, M.A.; Ullah, W.; Abdullah, H.M.A.; Haq, S.; Ahmad, A.; Balaratna, A. Duration of in-hospital cardiopulmonary resuscitation and its effect on survival. Indian Heart J. 2019, 71, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Funada, A.; Goto, Y. Relationship Between the Duration of Cardiopulmonary Resuscitation and Favorable Neurological Outcomes After Out-of-Hospital Cardiac Arrest: A Prospective, Nationwide, Population-Based Cohort Study. J. Am. Heart Assoc. 2016, 5, e002819. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.W.; Han, K.S.; Lee, E.J.; Jang, D.H.; Lee, S.J.; Lee, J.S.; Kim, S.J. Optimal cardiopulmonary resuscitation duration for favorable neurological outcomes after out-of-hospital cardiac arrest. Scand. J. Trauma Resusc. Emerg. Med. 2022, 30, 5. [Google Scholar] [CrossRef] [PubMed]
- Wengenmayer, T.; Rombach, S.; Ramshorn, F.; Biever, P.; Bode, C.; Duerschmied, D.; Staudacher, D.L. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit. Care 2017, 21, 157. [Google Scholar] [CrossRef]
- Bougouin, W.; Dumas, F.; Lamhaut, L.; Marijon, E.; Carli, P.; Combes, A.; Pirracchio, R.; Aissaoui, N.; Karam, N.; Deye, N.; et al. Extracorporeal cardiopulmonary resuscitation in out-of-hospital cardiac arrest: A registry study. Eur. Heart J. 2020, 41, 1961–1971. [Google Scholar] [CrossRef]
- Bartos, J.A.; Grunau, B.; Carlson, C.; Duval, S.; Ripeckyj, A.; Kalra, R.; Raveendran, G.; John, R.; Conterato, M.; Frascone, R.J.; et al. Improved Survival with Extracorporeal Cardiopulmonary Resuscitation Despite Progressive Metabolic Derangement Associated with Prolonged Resuscitation. Circulation 2020, 141, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Scquizzato, T.; Bernard, S.A. Extracorporeal CPR: Now a standard of care? Resusc. Plus 2022, 10, 100235. [Google Scholar] [CrossRef]
- Mørk, S.R.; Bøtker, M.T.; Christensen, S.; Tang, M.; Terkelsen, C.J. Survival and neurological outcome after out-of-hospital cardiac arrest treated with and without mechanical circulatory support. Resusc. Plus 2022, 10, 100230. [Google Scholar] [CrossRef]
- Richardson, A.S.C.; Tonna, J.E.; Nanjayya, V.; Nixon, P.; Abrams, D.C.; Raman, L.; Bernard, S.; Finney, S.J.; Grunau, B.; Youngquist, S.T.; et al. Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement from the Extracorporeal Life Support Organization. ASAIO J. (Am. Soc. Artif. Internal Organs 1992) 2021, 67, 221–228. [Google Scholar] [CrossRef]
- Kelly, R.B.; Porter, P.A.; Meier, A.H.; Myers, J.L.; Thomas, N.J. Duration of cardiopulmonary resuscitation before extracorporeal rescue: How long is not long enough? ASAIO J. (Am. Soc. Artif. Internal Organs 1992) 2005, 51, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Chao, A.; Yu, H.Y.; Ko, W.J.; Wu, I.H.; Chen, R.J.; Huang, S.C.; Lin, F.Y.; Wang, S.S. Analysis and results of prolonged resuscitation in cardiac arrest patients rescued by extracorporeal membrane oxygenation. J. Am. Coll. Cardiol. 2003, 41, 197–203. [Google Scholar] [CrossRef]
- Rajsic, S.; Treml, B.; Rugg, C.; Innerhofer, N.; Eckhardt, C.; Breitkopf, R. Organ Utilization From Donors Following Extracorporeal Cardiopulmonary Resuscitation: A Systematic Review of Graft and Recipient Outcome. Transplantation 2024. [Google Scholar] [CrossRef]
- Aylin, P.; Alexandrescu, R.; Jen, M.H.; Mayer, E.K.; Bottle, A. Day of week of procedure and 30 day mortality for elective surgery: Retrospective analysis of hospital episode statistics. BMJ (Clin. Res. Ed.) 2013, 346, f2424. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.S.; Wills, R.-A.; Bowman, R.V.; Zimmerman, P.V.; Fong, K.M.; Coory, M.D.; Yang, I.A. Exploratory study of the ‘weekend effect’ for acute medical admissions to public hospitals in Queensland, Australia. Intern. Med. J. 2010, 40, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ørbo, M.C.; Karlsen, S.F.; Pedersen, E.P.; Hermansen, S.E.; Rønning, P.B.; Nergaard, K.A.; Naesheim, T.; Myrmel, T. Health-related quality of life after extracorporeal membrane oxygenation: A single centre’s experience. ESC Heart Fail. 2019, 6, 701–710. [Google Scholar] [CrossRef]
- Stadlbauer, A.; Philipp, A.; Blecha, S.; Lubnow, M.; Lunz, D.; Li, J.; Terrazas, A.; Schmid, C.; Lange, T.J.; Camboni, D. Long-term follow-up and quality of life in patients receiving extracorporeal membrane oxygenation for pulmonary embolism and cardiogenic shock. Ann. Intensive Care 2021, 11, 181. [Google Scholar] [CrossRef]
- Rajsic, S.; Breitkopf, R.; Oezpeker, U.C.; Bukumirić, Z.; Dobesberger, M.; Treml, B. The Role of Excessive Anticoagulation and Missing Hyperinflammation in ECMO-Associated Bleeding. J. Clin. Med. 2022, 11, 2314. [Google Scholar] [CrossRef] [PubMed]
- Aubron, C.; DePuydt, J.; Belon, F.; Bailey, M.; Schmidt, M.; Sheldrake, J.; Murphy, D.; Scheinkestel, C.; Cooper, D.J.; Capellier, G.J.A.o.i.c. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann. Intensive Care 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Arachchillage, D.J.; Rajakaruna, I.; Scott, I.; Gaspar, M.; Odho, Z.; Banya, W.; Vlachou, A.; Isgro, G.; Cagova, L.; Wade, J.; et al. Impact of major bleeding and thrombosis on 180-day survival in patients with severe COVID-19 supported with veno-venous extracorporeal membrane oxygenation in the United Kingdom: A multicentre observational study. Br. J. Haematol. 2022, 196, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Breitkopf, R.; Jadzic, D.; Popovic Krneta, M.; Tauber, H.; Treml, B. Anticoagulation Strategies during Extracorporeal Membrane Oxygenation: A Narrative Review. J. Clin. Med. 2022, 11, 5147. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Breitkopf, R.; Bachler, M.; Treml, B. Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics 2021, 11, 2202. [Google Scholar] [CrossRef]
- Rajsic, S.; Breitkopf, R.; Oezpeker, U.C.; Treml, B. ECMO in Cardiogenic Shock: Time Course of Blood Biomarkers and Associated Mortality. Diagnostics 2022, 12, 2963. [Google Scholar] [CrossRef]
- Zeymer, U.; Freund, A.; Hochadel, M.; Ostadal, P.; Belohlavek, J.; Rokyta, R.; Massberg, S.; Brunner, S.; Lüsebrink, E.; Flather, M.; et al. Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: An individual patient data meta-analysis of randomised trials. Lancet 2023, 402, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Smith, A.R.; Bogdanova, Y.; Roydhouse, S.; Phan, K.; Tian, D.H.; Yan, T.D.; Loforte, A. Outcomes of venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock: Systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2019, 8, 1–8. [Google Scholar] [CrossRef]
- Chahine, J.; Kosmopoulos, M.; Raveendran, G.; Yannopoulos, D.; Bartos, J.A. Impact of age on survival for patients receiving ECPR for refractory out-of-hospital VT/VF cardiac arrest. Resuscitation 2023, 193, 109998. [Google Scholar] [CrossRef]
- Yu, H.Y.; Wang, C.H.; Chi, N.H.; Huang, S.C.; Chou, H.W.; Chou, N.K.; Chen, Y.S. Effect of interplay between age and low-flow duration on neurologic outcomes of extracorporeal cardiopulmonary resuscitation. Intensive Care Med. 2019, 45, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Morita, S.; Kitamura, T.; Natsukawa, T.; Sawano, H.; Hayashi, Y.; Kai, T. Impact of extracorporeal cardiopulmonary resuscitation on outcomes of elderly patients who had out-of-hospital cardiac arrests: A single-centre retrospective analysis. BMJ Open 2018, 8, e019811. [Google Scholar] [CrossRef]
- George, N.; Stephens, K.; Ball, E.; Crandall, C.; Ouchi, K.; Unruh, M.; Kamdar, N.; Myaskovsky, L. Extracorporeal Membrane Oxygenation for Cardiac Arrest: Does Age Matter? Crit Care Med. 2024, 52, 20–30. [Google Scholar] [CrossRef]
- Bjertnæs, L.J.; Hindberg, K.; Næsheim, T.O.; Suborov, E.V.; Reierth, E.; Kirov, M.Y.; Lebedinskii, K.M.; Tveita, T.J.F.i.M. Rewarming from hypothermic cardiac arrest applying extracorporeal life support: A systematic review and meta-analysis. Front. Med. 2021, 8, 641633. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 90) | Survivors (n = 41) | Non-Survivors (n = 49) | p-Value | Missing Data (n/Total) | |
---|---|---|---|---|---|
Age (years) | 53.3 ± 17 | 54.2 ± 14 | 52.6 ± 19 | 0.656 | 0/90 |
0–30 | 8 (9) | 2 (5) | 6 (12) | 0.067 | 0/90 |
31–60 | 53 (59) | 29 (71) | 24 (49) | ||
61–70 | 15 (17) | 3 (7) | 12 (25) | ||
>71 | 14 (16) | 7 (17) | 7 (14) | ||
Sex (male) | 59 (66) | 29 (71) | 30 (61) | 0.380 | 0/90 |
Height (m) | 1.70 ± 0.17 | 1.73 ± 0.14 | 1.68 ± 0.20 | 0.153 | 11/90 |
Weight (kg) | 77.8 ± 20.7 | 80.1 ± 20.6 | 75.6 ± 20.8 | 0.320 | 8/90 |
Body mass index (kg/m2) | 25.9 ± 5.1 | 26.1 ± 5.0 | 25.7 ± 5.1 | 0.766 | 11/90 |
SOFA score | 13 (7–17) | 13 (7–16) | 13 (11–17) | 0.044 | 1/90 |
SAPS III score | 80 (50–129) | 76 (50–96) | 83 (67–129) | <0.001 | 1/90 |
SAPS III score predicted mortality (%) | 74 (17–98) | 67 (17–89) | 77 (50–98) | <0.001 | 1/90 |
Cardiac arrest aetiology | |||||
Myocardial infarction | 42 (47) | 20 (49) | 22 (45) | 0.032 | 0/90 |
Hypothermia | 14 (16) | 2 (5) | 12 (25) | ||
Heart intervention | 10 (11) | 5 (12) | 5 (10) | ||
Cardiomyopathy | 6 (7) | 3 (7) | 3 (6) | ||
Pulmonary embolism | 3 (3) | 0 (0) | 3 (6) | ||
Other (cardiac) | 6 (7) | 5 (12) | 1 (2) | ||
Other (primary non-cardiac) * | 9 (10) | 6 (15) | 3 (6) | ||
Location of cardiac arrest | |||||
Out-of-hospital | 26 (29) | 4 (10) | 22 (45) | <0.001 | 0/90 |
In-hospital | 58 (64) | 32 (78) | 26 (53) | ||
Retrieved from another centre on ECMO | 6 (7) | 5 (12) | 1 (2) | ||
Witnessed arrest | 75 (83) | 41 (100) | 34 (69) | <0.001 | 0/90 |
Day of cardiac arrest | |||||
Weekday | 65 (72) | 35 (85) | 30 (61) | 0.017 | 0/90 |
Weekend | 25 (28) | 6 (15) | 19 (39) | ||
Initial rhythm | |||||
Shockable | 40 (44) | 23 (56) | 17 (35) | 0.056 | 0/90 |
Non-shockable | 50 (56) | 18 (44) | 32 (65) | ||
Initial rhythm (details) | |||||
Pulseless electrical activity | 29 (32) | 14 (34) | 15 (31) | 0.019 | 0/90 |
Asystole | 21 (23) | 4 (10) | 17 (35) | ||
Ventricular fibrillation | 35 (39) | 19 (46) | 16 (33) | ||
Pulseless ventricular tachycardia | 5 (6) | 4 (10) | 1 (2) | ||
CPR duration (minutes) | 45 (4–220) | 32 (4–220) | 60 (9–189) | 0.004 | 3/90 |
<20 | 14 (16) | 8 (21) | 6 (13) | 0.007 | 3/90 |
21–40 | 28 (32) | 17 (44) | 11 (23) | ||
41–60 | 18 (21) | 9 (23) | 9 (19) | ||
>60 | 27 (31) | 5 (13) | 22 (46) | ||
Peripheral cannulation | 87 (97) | 40 (98) | 47 (96) | 1.000 | 0/90 |
Percutaneous cannulation | 71 (79) | 35 (85) | 36 (74) | 0.202 | 0/90 |
ECMO duration (days) | 3 (1–25) | 5 (1–14) | 2 (1–25) | 0.001 | 0/90 |
ECMO support duration < 7 days | 75 (83) | 32 (78) | 43 (88) | 0.263 | 0/90 |
Length of ICU stay (days) | 8 (1–121) | 21 (2–121) | 3 (1–56) | <0.001 | 0/90 |
All Patients (n = 90) | Survivors (n = 41) | Non-Survivors (n = 49) | p-Value | Missing Data (n/Total) | |
---|---|---|---|---|---|
Pre-ECMO blood gas parameters | |||||
Arterial pH | 7.092 (6.400–7.484) | 7.110 (6.789–7.385) | 7.000 (6.400–7.484) | 0.022 | 31/90 |
Venous pH | 6.976 (6.500–7.376) | 7.041 (6.800–7.238) | 6.958 (6.500–7.376) | 0.388 | 75/90 |
Lactate (mg/dL) | 93 (8–235) | 72 (10–155) | 118 (8–235) | 0.004 | 19/90 |
Potassium (mmol/L) | 4.2 (2.7–10.7) | 4.2 (2.7–9.1) | 4.3 (2.7–10.7) | 0.419 | 17/90 |
Glucose (mg/dL) | 229 (64–537) | 197 (64–486) | 257 (70–537) | 0.378 | 18/90 |
Blood gas parameters after ECMO initiation | |||||
Arterial pH directly after ECMO initiation | 7.040 (6.350–7.799) | 7.123 (6.800–7.421) | 6.972 (6.350–7.799) | <0.001 | 3/90 |
Lactate directly after ECMO initiation (mg/dL) | 114 (14–265) | 88 (14–207) | 133 (35–265) | 0.001 | 3/90 |
Arterial pH at 30 min | 7.124 (6.600–7.418) | 7.181 (6.907–7.352) | 7.050 (6.600–7.418) | 0.007 | 18/90 |
Lactate at 30 min (mg/dL) | 119 (12–224) | 89 (12–211) | 130 (24–224) | <0.001 | 17/90 |
Potassium at 30 min (mmol/L) | 3.7 (2.3–10.2) | 3.6 (2.3–7.8) | 3.8 (2.3–10.2) | 0.776 | 17/90 |
Glucose at 30 min (mg/dL) | 244 (49–476) | 187 (49–476) | 268 (59–438) | 0.136 | 17/90 |
All Patients (n = 90) | Survivors (n = 41) | Non-Survivors (n = 49) | p-Value | Missing Data (n/Total) | |
---|---|---|---|---|---|
GCS at hospital discharge | - | 15 (3–15) | - | - | 1/41 |
GCS 15 | - | 31 (78) | - | - | |
GCS 14 | - | 1 (3) | - | - | |
GCS 9 | - | 1 (3) | - | - | |
GCS 3 (including sedation for repatriation to other ICU) | - | 7 (18) | - | - | |
CPC at hospital discharge | 8/41 | ||||
Persistent vegetative state | 1 (1) | 1 (3) | - | - | |
Severe disability | 2 (2) | 2 (6) | - | - | |
Moderate disability | 3 (4) | 3 (9) | - | - | |
Good recovery | 27 (33) | 27 (82) | - | - | |
Adverse events | |||||
Haemorrhage | 46 (51) | 19 (46) | 27 (55) | 0.526 | 0/90 |
Major haemorrhage | 25 (28) | 5 (12) | 20 (41) | 0.004 | 0/90 |
Minor haemorrhage | 21 (23) | 14 (34) | 7 (14) | 0.044 | 0/90 |
Intracranial bleeding | 9 (10) | 2 (5) | 7 (14) | 0.173 | 0/90 |
Extremity ischemia | 14 (16) | 7 (17) | 7 (14) | 0.776 | 0/90 |
Compartment syndrome | 8 (9) | 2 (5) | 6 (12) | 0.283 | 0/90 |
Thrombosis | 11 (12) | 4 (10) | 7 (14) | 0.748 | 0/90 |
Acute kidney injury during ECMO support | 52 (58) | 24 (59) | 28 (57) | 1.000 | 0/90 |
Continuous renal replacement therapy during ECMO | 41 (46) | 20 (49) | 21 (43) | 0.672 | 0/90 |
Reason for ECMO support termination | |||||
Improvement | 42 (47) | 33 (83) | 9 (18) | <0.001 | 1/89 |
Death | 37 (42) | 0 (0) | 37 (76) | ||
Bridge to other assistance (mechanical circulatory support) or heart transplantation | 10 (11) | 7 (18) | 3 (6) | ||
Organ procurement | 9 (10) | 0 (0) | 9 (18) | - | 0/49 |
Mortality | |||||
Death during ECMO | 37 (41) | - | - | - | 0/90 |
Death during ICU | 49 (54) | - | - | - | 0/90 |
Death during the same hospital stay | 51 (57) | - | - | - | 0/90 |
30-day mortality | 48 (55) | - | - | - | 3/90 |
60-day mortality | 49 (64) | - | - | - | 13/90 |
180-day mortality | 51 (69) | - | - | - | 16/90 |
One-year mortality | 52 (71) | - | - | - | 17/90 |
Nondependent Variable | B-Coefficient | p-Value | HR | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
Initial rhythm (reference category: ventricular fibrillation) | |||||
Asystole | 1.057 | 0.049 | 2.88 | 1.01 | 8.25 |
Pulseless electrical activity | 0.203 | 0.735 | 1.23 | 0.38 | 3.96 |
Pulseless ventricular tachycardia | 0.236 | 0.835 | 1.27 | 0.14 | 11.7 |
Location of cardiac arrest (reference category: in-hospital) | |||||
Out-of-hospital | 0.080 | 0.943 | 1.08 | 0.12 | 9.59 |
Retrieved from another centre on ECMO | −13.728 | 0.976 | 0.00 | - | - |
Cardiac arrest aetiology (reference category: myocardial infarction) | |||||
Heart intervention | 0.031 | 0.963 | 1.03 | 0.28 | 3.87 |
Hypothermia | −0.756 | 0.425 | 0.47 | 0.07 | 3.02 |
Cardiomyopathy | −2.147 | 0.056 | 0.12 | 0.01 | 1.06 |
Other (cardiac) | −1.777 | 0.097 | 0.17 | 0.02 | 1.39 |
Other (primary non-cardiac) | −0.660 | 0.351 | 0.52 | 0.13 | 2.07 |
Witnessed cardiac arrest | −1.086 | 0.217 | 0.34 | 0.06 | 1.89 |
CPR duration (minutes) | 0.015 | 0.043 | 1.02 | 1.00 | 1.03 |
CPR on weekend | 0.942 | 0.032 | 2.57 | 1.08 | 6.08 |
pH before ECMO initiation | 1.019 | 0.604 | 2.77 | 0.06 | 130.21 |
Lactate before ECMO initiation (mg/dL) | 0.004 | 0.425 | 1.00 | 0.99 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajsic, S.; Tauber, H.; Breitkopf, R.; Velik Salchner, C.; Mayer, F.; Oezpeker, U.C.; Treml, B. Mortality Predictors and Neurological Outcomes Following Extracorporeal Cardiopulmonary Resuscitation (eCPR): A Single-Center Retrospective Study. J. Cardiovasc. Dev. Dis. 2024, 11, 272. https://doi.org/10.3390/jcdd11090272
Rajsic S, Tauber H, Breitkopf R, Velik Salchner C, Mayer F, Oezpeker UC, Treml B. Mortality Predictors and Neurological Outcomes Following Extracorporeal Cardiopulmonary Resuscitation (eCPR): A Single-Center Retrospective Study. Journal of Cardiovascular Development and Disease. 2024; 11(9):272. https://doi.org/10.3390/jcdd11090272
Chicago/Turabian StyleRajsic, Sasa, Helmuth Tauber, Robert Breitkopf, Corinna Velik Salchner, Fabian Mayer, Ulvi Cenk Oezpeker, and Benedikt Treml. 2024. "Mortality Predictors and Neurological Outcomes Following Extracorporeal Cardiopulmonary Resuscitation (eCPR): A Single-Center Retrospective Study" Journal of Cardiovascular Development and Disease 11, no. 9: 272. https://doi.org/10.3390/jcdd11090272
APA StyleRajsic, S., Tauber, H., Breitkopf, R., Velik Salchner, C., Mayer, F., Oezpeker, U. C., & Treml, B. (2024). Mortality Predictors and Neurological Outcomes Following Extracorporeal Cardiopulmonary Resuscitation (eCPR): A Single-Center Retrospective Study. Journal of Cardiovascular Development and Disease, 11(9), 272. https://doi.org/10.3390/jcdd11090272