Contemporary Trends in Pulsed Field Ablation for Cardiac Arrhythmias
Abstract
:1. Introduction
1.1. The Early Era of Catheter Ablation for Treatment of Arrhythmias
1.2. Pilot Pulsed Field Ablation Studies
1.3. Clinical Data for Treatment of Atrial Fibrillation—1st Generation PFA Catheters
1.3.1. PulseSelect PFA System
1.3.2. FARAPULSE PFA System
1.4. New Pulse Field Catheters for Atrial Fibrillation Ablation
1.4.1. VARIPULSE PFA Catheter
1.4.2. Sphere-9 Catheter
1.4.3. Volt PFA Catheter System
1.4.4. X4 PFA Balloon Catheter System
1.5. Insights from Preclinical Data on Pulsed Field Ablation for Cardiac Ablation
1.6. Cardiac Neuromodulation Effect of Pulsed Field Ablation
1.7. Pulsed Field Ablation for Treatment of Ventricular Arrhythmias
1.8. Will PFA Replace Thermal Modalities for Ablation?
2. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Scheinman, M.M.; Morady, F.; Hess, D.S.; Gonzalez, R. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA 1982, 248, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Hartzler, G.O. Electrode catheter ablation of refractory focal ventricular tachycardia. J. Am. Coll. Cardiol. 1983, 2, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Morady, F.; Calkins, H.; Langberg, J.J.; Armstrong, W.F.; de Buitleir, M.; el-Atassi, R.; Kalbfleisch, S.J. A prospective randomized comparison of direct current and radiofrequency ablation of the atrioventricular junction. J. Am. Coll. Cardiol. 1993, 21, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, G.S.; Liang, J.J.; Marchlinski, F.E. Ventricular Tachycardia Ablation: Past, Present, and Future Perspectives. JACC Clin. Electrophysiol. 2019, 5, 1363–1383. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.T., Jr.; Scheinman, M.M.; Zipes, D.P.; Benditt, D.; Breithardt, G.; Camm, A.J.; el-Sherif, N.; Fisher, J.; Fontaine, G.; Levy, S.; et al. The Percutaneous Cardiac Mapping and Ablation Registry: Summary of results. Pacing Clin. Electrophysiol. 1987, 10, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Bardy, G.H.; Coltorti, F.; Stewart, R.B.; Greene, H.L.; Ivey, T.D. Catheter-mediated electrical ablation: The relation between current and pulse width on voltage breakdown and shock-wave generation. Circ. Res. 1988, 63, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Jackman, W.M.; Wang, X.Z.; Friday, K.J.; Roman, C.A.; Moulton, K.P.; Beckman, K.J.; McClelland, J.H.; Twidale, N.; Hazlitt, H.A.; Prior, M.I.; et al. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N. Engl. J. Med. 1991, 324, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.S.; Miles, W.M.; Hackett, F.K.; Zipes, D.P. Catheter ablation of ventricular tachycardia using radiofrequency techniques in patients without structural heart disease. Herz 1992, 17, 179–189. [Google Scholar] [PubMed]
- Olgin, J.E.; Scheinman, M.M. Comparison of high energy direct current and radiofrequency catheter ablation of the atrioventricular junction. J. Am. Coll. Cardiol. 1993, 21, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Calkins, H.; Epstein, A.; Packer, D.; Arria, A.M.; Hummel, J.; Gilligan, D.M.; Trusso, J.; Carlson, M.; Luceri, R.; Kopelman, H.; et al. Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy: Results of a prospective multicenter study. Cooled RF Multi Center Investigators Group. J. Am. Coll. Cardiol. 2000, 35, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Lustgarten, D.L.; Spector, P.S. Ablation using irrigated radiofrequency: A hands-on guide. Heart Rhythm. 2008, 5, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Skanes, A.C.; Klein, G.; Krahn, A.; Yee, R. Cryoablation: Potentials and pitfalls. J. Cardiovasc. Electrophysiol. 2004, 15 (Suppl. 10), S28–S34. [Google Scholar] [CrossRef] [PubMed]
- Kuck, K.-H.; Brugada, J.; Fürnkranz, A.; Metzner, A.; Ouyang, F.; Chun, K.R.J.; Elvan, A.; Arentz, T.; Bestehorn, K.; Pocock, S.J.; et al. FIRE AND ICE Investigators Cryoballoon or radiofrequency ablation for paroxysmal atrial Fibrillation. N. Engl. J. Med. Jun. 2016, 374, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Zucchelli, G.; Chun, K.R.J.; Khelae, S.K.; Földesi, C.; Kueffer, F.J.; van Bragt, K.A.; Scazzuso, F.; On, Y.-K.; Al-Kandari, F.; Okumura, K. Impact of first-line cryoablation for atrial fibrillation on healthcare utilization, arrhythmia disease burden and efficacy outcomes: Real-world evidence from the Cryo Global Registry. J. Interv. Card. Electrophysiol. 2023, 66, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Deyell, M.W.; Macle, L.; Wells, G.A.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.F.; Yung, D.; Skanes, A.; et al. EARLY-AF Investigators. Progression of Atrial Fibrillation after Cryoablation or Drug Therapy. N. Engl. J. Med. 2023, 388, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Kobori, A.; Nitta, J.; Hirao, K.; Shizuta, S.; Kurita, T.; Okishige, K.; Kumagai, K.; Koyama, J.; Hiroshima, K.; et al. Cryoballoon ablation for paroxysmal atrial fibrillation in Japan: 2-year safety and efficacy results from the Cryo AF Global Registry. J. Interv. Card. Electrophysiol. 2022, 64, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Khairy, P.; Chauvet, P.; Lehmann, J.; Lambert, J.; Macle, L.; Tanguay, J.-F.; Sirois, M.G.; Santoianni, D.; Dubuc, M. Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation. Apr. 2003, 107, 2045–2050. [Google Scholar] [CrossRef]
- Andrade, J.G.; Dubuc, M.; Guerra, P.G.; Macle, L.; Mondésert, B.; Rivard, L.; Roy, D.; Talajic, M.; Thibault, B.; Khairy, P. The biophysics and biomechanics of cryoballoon ablation. Pacing Clin. Electrophysiol. Sep. 2012, 35, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, Y.; Yanagisawa, S.; Fujiwara, G.; Kasai, Y.; Tajima, A.; Makino, Y.; Suzuki, H.; Hiramatsu, T.; Ichimiya, H.; Uchida, Y.; et al. Evaluation of the direction and extent of ice formation during cryoballoon ablation: An experimental study. J. Interv. Card. Electrophysiol. 2023, 66, 981–989. [Google Scholar] [CrossRef]
- Andrade, J.G.; Khairy, P.; Dubuc, M. Catheter cryoablation: Biology and clinical uses. Circ. Arrhythmia Electrophysiol. Feb. 2013, 6, 218–227. [Google Scholar] [CrossRef]
- Chahine, Y.; Afroze, T.; Bifulco, S.F.; Macheret, F.; Abdulsalam, N.; Boyle, P.M.; Akoum, N. Cryoballoon temperature parameters during cryoballoon ablation predict pulmonary vein reconnection and atrial fibrillation recurrence. J. Interv. Card. Electrophysiol. 2023, 66, 1367–1373. [Google Scholar] [CrossRef]
- Fukunaga, H.; Sekiguchi, Y.; Sawaguchi, J.; Hayashi, Y.; Asano, S.; Mabuchi, K.; Inoue, K.; Tanizaki, K.; Umemura, J.; Isobe, M.; et al. Initial clinical experience with the novel POLARx FIT cryoballoon system for pulmonary vein isolation in patients with atrial fibrillation. Int. J. Cardiol. Heart Vasc. 2023, 50, 101326. [Google Scholar] [CrossRef] [PubMed]
- Frommeyer, G.; Ellermann, C.; Wolfes, J.; Lange, P.S.; Guner, F.; Eckart, L. Feasibility and efficacy of a novel size adjustable cryoballoon for ablation of atrial fibrillation. J. Interv. Card. Electrophysiol. 2024, 67, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Heeger, C.H.; Popescu, S.S.; Inderhees, T.; Nussbickel, N.; Eitel, C.; Kirstein, B.; Phan, H.L.; Hatahet, S.; Subin, B.; Traub, A.; et al. Novel or established cryoballoon ablation system for pulmonary vein isolation: The prospective ICE-AGE-1 study. Europace 2023, 25, euad248. [Google Scholar] [CrossRef] [PubMed]
- De Potter, T.; Klaver, M.; Babkin, A.; Iliodromitis, K.; Hocini, M.; Cox, J.; Boersma, L. Ultra-Low Temperature Cryoablation for Atrial Fibrillation: Primary Outcomes for Efficacy and Safety: The Cryocure-2 Study. JACC Clin. Electrophysiol. 2022, 8, 1034–1039. [Google Scholar] [CrossRef]
- Sanchez-Somonte, P.; Verma, A.; Da Rosa, L.B.; Anglesio, V.; Poletaev, V.; Alturki, A.; Bernier, M.; Joza, J.; Essebag, V. Ultra-Low-Temperature Cryoablation for Ventricular Tachycardia: An Early Single-Centre Report of Acute Results. CJC Open 2023, 6, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Champagne, J.; Dubuc, M.; Deyell, M.W.; Verma, A.; Macle, L.; Leong-Sit, P.; Novak, P.; Badra-Verdu, M.; Sapp, J.; et al. CIRCA-DOSE Study Investigators. Cryoballoon or Radiofrequency Ablation for Atrial Fibrillation Assessed by Continuous Monitoring: A Randomized Clinical Trial. Circulation 2019, 140, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Zweerink, A.; Bakelants, E.; Stettler, C.; Burri, H. Cryoablation vs. radiofrequency ablation of the atrioventricular node in patients with His-bundle pacing. Europace 2021, 23, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.B.; Rossvoll, O.; Tande, P.; Schuster, P.; Solheim, E.; Chen, J. Cryoballoon vs. radiofrequency catheter ablation: Insights from NOrwegian randomized study of PERSistent Atrial Fibrillation (NO-PERSAF study). Europace 2022, 24, 226–233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.A.; Chelu, M.G. Comparison of cryoballoon and radiofrequency ablation for persistent atrial fibrillation: A systematic review and meta-analysis. J. Interv. Card. Electrophysiol. 2023, 66, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Yiu, K.H.; Siu, C.W.; Lau, C.P.; Lee, K.L.; Tse, H.F. Transvenous catheter-based microwave ablation for atrial flutter. Heart Rhythm 2007, 4, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Khan, K.; Kherallah, R.; Khan, S.; Kamat, I.; Ulhaq, O.; Marashly, Q.; Chelu, M.G. Innovations in atrial fibrillation ablation. J. Interv. Card. Electrophysiol. 2023, 66, 737–756. [Google Scholar] [CrossRef]
- Qian, P.; Barry, M.A.; Nguyen, T.; Ross, D.; Kovoor, P.; McEwan, A.; Thomas, S.; Thiagalingam, A. A Novel Microwave Catheter Can Perform Noncontact Circumferential Endocardial Ablation in a Model of Pulmonary Vein Isolation. J. Cardiovasc. Electrophysiol. 2015, 26, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Fung, J.W.; Yu, C.M.; Feld, G.K. Preliminary results with percutaneous transcatheter microwave ablation of typical atrial flutter. J. Cardiovasc. Electrophysiol. 2007, 18, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Shan, Z.G.; Liao, C.X.; Chen, L.W. The effect of microwave and bipolar radio-frequency ablation in the surgical treatment of permanent atrial fibrillation during valve surgery. Thorac. Cardiovasc. Surg. 2011, 59, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Nazer, B.; Salgaonkar, V.; Diederich, C.J.; Jones, P.D.; Duggirala, S.; Tanaka, Y.; Ng, B.; Sievers, R.; Gerstenfeld, E.P. Epicardial Catheter Ablation Using High-Intensity Ultrasound: Validation in a Swine Model. Circ. Arrhythmia Electrophysiol. 2015, 8, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Metzner, A.; Chun, K.R.; Neven, K.; Fuernkranz, A.; Ouyang, F.; Antz, M.; Tilz, R.; Zerm, T.; Koektuerk, B.; Wissner, E.; et al. Long-term clinical outcome following pulmonary vein isolation with high-intensity focused ultrasound balloon catheters in patients with paroxysmal atrial fibrillation. Europace 2010, 12, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Neven, K.; Schmidt, B.; Metzner, A.; Otomo, K.; Nuyens, D.; De Potter, T.; Chun, K.R.; Ouyang, F.; Kuck, K.H. Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circ. Arrhythmia Electrophysiol. 2010, 3, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Nazer, B.; Giraud, D.; Zhao, Y.; Hodovan, J.; Elman, M.R.; Masri, A.; Gerstenfeld, E.P.; Lindner, J.R. High-intensity ultrasound catheter ablation achieves deep mid-myocardial lesions in vivo. Heart Rhythm 2021, 18, 623–631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skeete, J.; Sharma, P.S.; Kenigsberg, D.; Pietrasik, G.; Osman, A.F.; Ravi, V.; Du-Fay-de-Lavallaz, J.M.; Post, Z.; Wasserlauf, J.; Larsen, T.R.; et al. Wide area circumferential ablation for pulmonary vein isolation using radiofrequency versus laser balloon ablation. J. Arrhythm. 2022, 38, 336–345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ohkura, T.; Yamasaki, T.; Kakita, K.; Hattori, T.; Nishimura, T.; Iwakoshi, H.; Shimoo, S.; Shiraishi, H.; Matoba, S.; Senoo, K. Comparison of maximum-sized visually guided laser balloon and cryoballoon ablation. Heart Vessels 2023, 38, 691–698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, X.; Zhao, S.; Yu, S.; Cui, K. Cryoballoon vs. laser balloon ablation for atrial fibrillation: A meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1278635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmidt, B.; Neuzil, P.; Luik, A.; Osca Asensi, J.; Schrickel, J.W.; Deneke, T.; Bordignon, S.; Petru, J.; Merkel, M.; Sediva, L.; et al. Laser Balloon or Wide-Area Circumferential Irrigated Radiofrequency Ablation for Persistent Atrial Fibrillation: A Multicenter Prospective Randomized Study. Circ. Arrhythmia Electrophysiol. 2017, 10, e005767. [Google Scholar] [CrossRef] [PubMed]
- Skeete, J.R.; Du-Fay-de-Lavallaz, J.M.; Kenigsberg, D.; Macias, C.; Winterfield, J.R.; Sharma, P.S.; Trohman, R.G.; Huang, H.D. Clinical Applications of Laser Technology: Laser Balloon Ablation in the Management of Atrial Fibrillation. Micromachines 2021, 12, 188. [Google Scholar] [CrossRef] [PubMed]
- Koopman, P.; Bekelaar, T.; Schurmans, J.; Phlips, T.; Dilling-Boer, D.; Vijgen, J. Pulmonary vein isolation by visually guided laser balloon ablation: Single-center 5-year follow-up results. J. Interv. Card. Electrophysiol. 2023, 66, 2081–2089. [Google Scholar] [CrossRef] [PubMed]
- Funasako, M.; Petrů, J.; Hála, P.; Janotka, M.; Skoda, J.; Chovanec, M.; Sediva, L.; Reddy, V.Y.; Neuzil, P. Acute and long-term results with the 3rd generation visually guided laser balloon ablation system for pv isolation. J. Interv. Card. Electrophysiol. 2024, 67, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Petru, J.; Chun, K.R.J.; Sediva, L.; Bordignon, S.; Chen, S.; Neuzil, P. Pivotal Study of a Novel Motor-Driven Endoscopic Ablation System. Circ. Arrhythmia Electrophysiol. 2021, 14, e009544. [Google Scholar] [CrossRef] [PubMed]
- Kneeland, P.P.; Fang, M.C. Trends in catheter ablation for atrial fibrillation in the United States. J. Hosp. Med. 2009, 4, E1–E5. [Google Scholar] [CrossRef] [PubMed]
- Winkle, R.A. HPSD ablation for AF high-power short-duration RF ablation for atrial fibrillation: A review. J. Cardiovasc. Electrophysiol. 2021, 32, 2813–2823. [Google Scholar] [CrossRef] [PubMed]
- Badertscher, P.; Knecht, S.; Spies, F.; Vollmin, G.; Schaer, B.; Scharil, N.; Bosshard, F.; Osswald, S.; Sticherling, C.; Kuhne, M. High-power short-duration ablation index–guided pulmonary vein isolation protocol using a single catheter. J. Interv. Card. Electrophysiol. 2022, 65, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Valeriano, C.; Buytaert, D.; Fabbricatore, D.; De Schouwer, K.; Addeo, L.; De Braekeleer, L.; Geelen, P.; De Potter, T. High efficiency single-catheter workflow for radiofrequency atrial fibrillation ablation in the QDOT catheter era. J. Interv. Card. Electrophysiol. 2024, 67, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Poudyal, A.; Abid, Q.U.; Larsen, T.; Krishnan, K.; Sharma, P.S.; Trohman, R.G.; Huang, H.D. High-power short duration vs. conventional radiofrequency ablation of atrial fibrillation: A systematic review and meta-analysis. Europace 2021, 23, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.J.; Kemme, M.J.B.; Hopman, L.H.G.A.; Hagen, A.M.D.; van de Ven, P.M.; Hauer, H.A.; Tahapary, G.J.M.; van Rossum, A.C.; Allaart, C.P. Ablation Index-guided point-by-point ablation versus Grid annotation-guided dragging for pulmonary vein isolation: A randomized controlled trial. J. Cardiovasc. Electrophysiol. 2022, 33, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.; Das, M.; Riva, S.; Morgan, M.; Ronayne, C.; Sahni, A.; Shaw, M.; Todd, D.; Hall, M.; Modi, S.; et al. Use of Ablation Index-Guided Ablation Results in High Rates of Durable Pulmonary Vein Isolation and Freedom From Arrhythmia in Persistent Atrial Fibrillation Patients: The PRAISE Study Results. Circ. Arrhythmia Electrophysiol. 2018, 11, e006576. [Google Scholar] [CrossRef] [PubMed]
- Gasimova, N.Z.; Nechepurenko, A.A.; Kropotkin, E.B.; Ivanitsky, E.A.; Kolunin, G.V.; Shavshin, D.A.; Antolic, B.; Artyukhina, E.A.; Abdrakhmanov, A.S.; Korolev, K.S.; et al. Performance of the ablation index during pulmonary vein isolation: Periprocedural data from a multicenter registry. J. Interv. Card. Electrophysiol. 2022, 65, 167–177. [Google Scholar] [CrossRef]
- Heeger, C.H.; Sano, M.; Popescu, S.Ș.; Subin, B.; Feher, M.; Phan, H.L.; Kirstein, B.; Vogler, J.; Eitel, C.; Hatahet, S.; et al. Very high-power short-duration ablation for pulmonary vein isolation utilizing a very-close protocol-the FAST AND FURIOUS PVI study. Europace 2023, 25, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Solimene, F.; Strisciuglio, T.; Schillaci, V.; Arestia, A.; Shopova, G.; Salito, A.; Bottaro, G.; Marano, G.; Coltorti, F.; Stabile, G. One-year outcomes in patients undergoing very high-power short-duration ablation for atrial fibrillation. J. Interv. Card. Electrophysiol. 2023, 66, 1911–1917. [Google Scholar] [CrossRef]
- Osorio, J.; Hussein, A.A.; Delaughter, M.C.; Monir, G.; Natale, A.; Dukkipati, S.; Oza, S.; Daoud, E.; Di Biase, L.; Mansour, M.; et al. Q-FFICIENCY Trial Investigators. Very High-Power Short-Duration, Temperature-Controlled Radiofrequency Ablation in Paroxysmal Atrial Fibrillation: The Prospective Multicenter Q-FFICIENCY Trial. JACC Clin. Electrophysiol. 2023, 9, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Bortone, A.A.; Ramirez, F.D.; Combes, S.; Laborie, G.; Albenque, J.P.; Sebag, F.A.; Limite, L.R. Optimized workflow for pulmonary vein isolation using 90-W radiofrequency applications: A comparative study. J. Interv. Card. Electrophysiol. 2024, 67, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Cordes, F.; Ellermann, C.; Dechering, D.G.; Frommeyer, G.; Kochhäuser, S.; Lange, P.S.; Pott, C.; Lenze, F.; Schmidt, H.; Ullerich, H.; et al. Time-to-isolation-guided cryoballoon ablation reduces oesophageal and mediastinal alterations detected by endoscopic ultrasound: Results of the MADE-PVI trial. Europace 2019, 21, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Macle, L.; Nair, G.M.; Skanes, A.; Aguilar, M.; Pantano, A.; Khaykin, Y.; Verma, A. Safety and acute performance of atrial fibrillation ablation using a temperature-controlled, very high-power short-duration catheter and a new radiofrequency generator. J. Interv. Card. Electrophysiol. 2024, 67, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-de-Loma-Osorio, Á.; García-Fernández, A.; Castillo-Castillo, J.; Izquierdo-de-Franciso, M.; Ibanez-Criado, A.; Moreno-Arribas, J.; Martinez, A.; Bertomeu-Gonzalez, V.; Lopez-Mases, P.; Ajo-Ferrer, M.; et al. Time-to-Effect-Based Dosing Strategy for Cryoballoon Ablation in Patients With Paroxysmal Atrial Fibrillation: Results of the plusONE Multicenter Randomized Controlled Noninferiority Trial. Circ. Arrhythmia Electrophysiol. 2017, 10, e005318. [Google Scholar] [CrossRef] [PubMed]
- De Greef, Y.; Tijskens, M.; De Torres, J.P.A.; Sofianos, D.; Cecchini, F.; De Schouwer, K.; De Cocker, J.; Buysschaert, I.; Varnavas, V.; Wolf, M. Electroanatomical mapping improves procedural outcomes of cryoballoon pulmonary vein isolation (the Achieve Plus study). J. Interv. Card. Electrophysiol. 2023, 66, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Mol, D.; Renskers, L.; Balt, J.C.; Bhagwandien, R.E.; Blaauw, Y.; van Driel, V.J.H.; Driessen, A.H.G.; Elvan, A.; Folkeriga, R.; Hassink, R.F.; et al. Persistent phrenic nerve palsy after atrial fibrillation ablation: Follow-up data from The Netherlands Heart Registration. J. Cardiovasc. Electrophysiol. 2022, 33, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, M.; Yamashita, S.; Sato, H.; Oseto, H.; Ikewaki, H.; Yokoyama, M.; Isogai, R.; Tokutake, K.I.; Yokoyama, K.I.; Kato, M.; et al. Long-term course of phrenic nerve injury after cryoballoon ablation of atrial fibrillation. Sci. Rep. 2021, 11, 6226. [Google Scholar] [CrossRef] [PubMed]
- du Fay de Lavallaz, J.; Badertscher, P.; Ghannam, M.; Oral, H.; Jongnarangsin, K.; Boveda, S.; Madeira, M.; Gupta, D.; Ding, W.Y.; Providencia, R.; et al. Severe Periprocedural Complications After Ablation for Atrial Fibrillation: An International Collaborative Individual Patient Data Registry. JACC Clin. Electrophysiol. 2024, 10, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, M.; Wan, E.Y.; Biviano, A.; Mollazadeh, R.; Garan, H.; Yarmohammadi, H. Esophageal injury, perforation, and fistula formation following atrial fibrillation ablation. J. Interv. Card. Electrophysiol. 2024, 67, 409–424. [Google Scholar] [CrossRef]
- Bradley, C.J.; Haines, D.E. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020, 31, 2136–2147. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Dukkipati, S.R.; Neuzil, P.; Anic, A.; Petru, J.; Funasako, M.; Cochet, H.; Minami, K.; Breskovic, T.; Sikiric, I.; et al. Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin. Electrophysiol. 2021, 7, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Musikantow, D.; Neuzil, P.; Anic, A.; Balin, P.; Petru, J.; Funasako, M.; Lisica, L.; Jurisic, Z.; Jais, P.; Reddy, V.Y. Long-Term Clinical Outcomes of Pulsed Field Ablation in the Treatment of Paroxysmal Atrial Fibrillation. J. Am. Coll. Cardiol. EP 2023, 9, 2001–2003. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Haines, D.E.; Boersma, L.V.; Sood, N.; Natale, A.; Marchlinski, F.E.; Calkins, H.; Sanders, P.; Packer, D.L.; Kuck, K.H.; et al. PULSED AF Investigators. Pulsed Field Ablation for the Treatment of Atrial Fibrillation: PULSED AF Pivotal Trial. Circulation 2023, 147, 1422–1432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Su, W.W.; Reddy, V.Y.; Bhasin, K.; Champagne, J.; Sangrigoli, R.M.; Braegelmann, K.M.; Kueffer, F.J.; Novak, P.; Gupta, S.K.; Yamane, T.; et al. STOP Persistent AF Investigators. Cryoballoon ablation of pulmonary veins for persistent atrial fibrillation: Results from the multicenter STOP Persistent AF trial. Heart Rhythm 2020, 17, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Ekanem, E.; Reddy, V.Y.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF). Europace 2022, 24, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Boersma, L.; Haines, D.E.; Natale, A.; Marchlinski, F.E.; Sanders, P.; Calkins, H.; Packer, D.L.; Hummel, J.; Onal, B.; et al. First-in-Human Experience and Acute Procedural Outcomes Using a Novel Pulsed Field Ablation System: The PULSED AF Pilot Trial. Circ. Arrhythmia Electrophysiol. 2022, 15, e010168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddy, V.Y.; Lehmann, J.W.; Gerstenfeld, E.P.; Mugglin, A.S.; Schneider, C.W.; Achyutha, A.B.; Mansour, M. A randomized controlled trial of pulsed field ablation versus standard-of-care ablation for paroxysmal atrial fibrillation: The ADVENT trial rationale and design. Heart Rhythm O2 2023, 4, 317–328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddy, V.Y.; Gerstenfeld, E.P.; Natale, A.; Whang, W.; Cuoco, F.A.; Patel, C.; Mountantonakis, S.E.; Gibson, D.N.; Harding, J.D.; Ellis, C.R.; et al. ADVENT Investigators. Pulsed Field or Conventional Thermal Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2023, 389, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Boersma, L.V.; Szeplaki, G.; Garcia-Bolao, I.; Efremidis, M.; Dello Russo, A.; Willems, S.; Haqqani, H.M.; Gandjbakhch, E.; Szegedi, N.; Cielen, N.; et al. LB-469804-03 Real World Data Collection in Subjects Treated with the FARAPULSE pulsed field ablation system (FARADISE). Heart Rhythm 2024, 21, 1197. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Anic, A.; Koruth, J.; Petru, J.; Funasako, M.; Minami, K.; Breskovic, T.; Sikiric, I.; Dukkipati, S.R.; Kawamura, I.; et al. Pulsed Field Ablation in Patients With Persistent Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 76, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Turagam, M.K.; Neuzil, P.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Safety and Effectiveness of Pulsed Field Ablation to Treat Atrial Fibrillation: One-Year Outcomes From the MANIFEST-PF Registry. Circulation 2023, 148, 35–46. [Google Scholar] [CrossRef]
- Aldaas, O.M.; Malladi, C.; Han, F.T.; Hoffmayer, K.S.; Krummen, D.; Ho, G.; Raissi, F.; Birgersdotter-Green, U.; Feld, G.K.; Hsu, J.C. Pulsed field ablation versus thermal energy ablation for atrial fibrillation: A systematic review and meta-analysis of procedural efficiency, safety, and efficacy. J. Interv. Card. Electrophysiol. 2024, 67, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Osmancik, P.; Bacova, B.; Herman, D.; Hozman, M.; Fiserova, I.; Hassouna, S.; Melenovsky, V.; Karch, J.; Vesela, J.; Benesova, K.; et al. Periprocedural Intravascular Hemolysis During Atrial Fibrillation Ablation: A Comparison of Pulsed Field With Radiofrequency Ablation. JACC Clin. Electrophysiol. 2024, 10, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Ekanem, E.; Neuzil, P.; Reichlin, T.; Kautzner, J.; van der Voort, P.; Jais, P.; Chierchia, G.B.; Bulava, A.; Blaauw, Y.; Skala, T.; et al. Safety of pulsed field ablation in more than 17,000 patients with atrial fibrillation in the MANIFEST-17K study. Nat. Med. 2024, 30, 2020–2029. [Google Scholar] [CrossRef]
- Magni, F.T.; Scherr, D.; Manninger, M.; Sohns, C.; Sommer, P.; Hovakimyan, T.; Blaauw, Y.; Mulder, B.A. Electrophysiological findings during re-do procedures after single-shot pulmonary vein isolation for atrial fibrillation with pulsed field ablation. J. Interv. Card. Electrophysiol. 2023, 66, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Gunawardene, M.A.; Schaeffer, B.N.; Jularic, M.; Eickholt, C.; Maurer, T.; Akbulak, R.Ö.; Flindt, M.; Anwar, O.; Pape, U.F.; Maasberg, S.; et al. Pulsed-field ablation combined with ultrahigh-density mapping in patients undergoing catheter ablation for atrial fibrillation: Practical and Electrophysiological considerations. J. Cardiovasc. Electrophysiol. 2022, 33, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Ruwald, M.H.; Haugdal, M.; Worck, R.; Johannessen, A.; Hansen, M.L.; Sørensen, S.K.; Hansen, J. Characterization of durability and reconnection patterns at time of repeat ablation after single-shot pulsed field pulmonary vein isolation. J. Interv. Card. Electrophysiol. 2024, 67, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Tohoku, S.; Chun, K.R.J.; Bordignon, S.; Chen, S.; Schaack, D.; Urbanek, L.; Ebrahimi, R.; Hirokami, J.; Bologna, F.; Schmidt, B. Findings from repeat ablation using high-density mapping after pulmonary vein isolation with pulsed field ablation. Europace 2023, 25, 433–440. [Google Scholar] [CrossRef]
- Finet, F.; Jean, F.; Massoulie, G.; Boudias, A.; Catalan, P.A.; Clerfond, G.; Bouchant-Pioche, M.; Riocreux, C.; Eschalier, R. Pattern of reconnection after isolation of the pulmonary veins with a pulsed-field ablation. Europace 2024, 26, euae102.196. [Google Scholar] [CrossRef]
- Kueffer, T.; Stefanova, A.; Madaffari, A.; Seiler, J.; Thalmann, G.; Kozhuharov, N.; Maurhofer, J.; Galuszka, O.; Haeberlin, A.; Noti, F.; et al. Pulmonary vein isolation durability and lesion regression in patients with recurrent arrhythmia after pulsed-field ablation. J. Interv. Card. Electrophysiol. 2024, 67, 503–511. [Google Scholar] [CrossRef]
- Lemoine, M.; Obergassel, J.; Rottner, L.; Moser, F.; My, I.; Wenzel, J.P.; Moser, J.; Reissmann, B.; Ouyang, F.; Kirchhof, P.; et al. A Metzner Pulsed-field ablation based pulmonary vein isolation: Reconnection pattern and comparison to cryoballoon ablation. Europace. 2023, 25, euad122.083. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Calkins, H.; Mansour, M.; Wazni, O.; Di Biase, L.; Bahu, M.; Newton, D.; Liu, C.F.; Sauer, W.H.; Goyal, S.; et al. ADMIRE trial investigators. Pulsed Field Ablation to Treat Paroxysmal Atrial Fibrillation: Safety and Effectiveness in the ADMIRE Pivotal Trial. Circulation 2024, 150, 1174–1186. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Peichl, P.; Anter, E.; Rackauskas, G.; Petru, J.; Funasako, M.; Minami, K.; Koruth, J.S.; Natale, A.; Jais, P.; et al. A Focal Ablation Catheter Toggling Between Radiofrequency and Pulsed Field Energy to Treat Atrial Fibrillation. JACC Clin. Electrophysiol. 2023, 9, 1786–1801. [Google Scholar] [CrossRef] [PubMed]
- Anter, E.; Mansour, M.; Nair, D.G.; Sharma, D.; Taigen, T.L.; Neuzil, P.; Kiehl, E.L.; Kautzner, J.; Osorio, J.; Mountantonakis, S.; et al. SPHERE PER-AF Investigators. Dual-energy lattice-tip ablation system for persistent atrial fibrillation: A randomized trial. Nat. Med. 2024, 30, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Yavin, H.D.; Higuchi, K.; Younis, A.; Anter, E. Lattice-tip catheter for single-shot pulmonary vein isolation with pulsed field ablation. J. Interv. Card. Electrophysiol. 2023, 66, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.; Healy, S.; Emami, M.; Kotschet, E.; Miller, A.; Kalman, J.M. Initial clinical experience with the balloon-in-basket pulsed field ablation system: Acute results of the VOLT CE mark feasibility study. Europace 2024, 26, euae118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lavee, J.; Onik, G.; Mikus, P.; Rubinsky, B. A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation. Heart Surg. Forum. 2007, 10, E162–E167. [Google Scholar] [CrossRef]
- Stewart, M.T.; Haines, D.E.; Verma, A.; Kirchhof, N.; Barka, N.; Grassl, E.; Howard, B. Intracardiac pulsed field ablation: Proof of feasibility in a chronic porcine model. Heart Rhythm 2019, 16, 754–764. [Google Scholar] [CrossRef]
- Wittkampf, F.H.; van Driel, V.J.; van Wessel, H.; Vink, A.; Hof, I.E.; Gründeman, P.F.; Hauer, R.N.; Loh, P. Feasibility of electroporation for the creation of pulmonary vein ostial lesions. J. Cardiovasc. Electrophysiol. 2011, 22, 302–309. [Google Scholar] [CrossRef]
- van Driel, V.J.; Neven, K.G.; van Wessel, H.; du Pré, B.C.; Vink, A.; Doevendans, P.A.; Wittkampf, F.H. Pulmonary vein stenosis after catheter ablation: Electroporation versus radiofrequency. Circ. Arrhythmia Electrophysiol. 2014, 7, 734–738. [Google Scholar] [CrossRef]
- Stewart, M.T.; Haines, D.E.; Miklavčič, D.; Kos, B.; Kirchhof, N.; Barka, N.; Mattison, L.; Martien, M.; Onal, B.; Howard, B.; et al. Safety and chronic lesion characterization of pulsed field ablation in a Porcine model. J. Cardiovasc. Electrophysiol. 2021, 32, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Koruth, J.; Kuroki, K.; Iwasawa, J.; Enomoto, Y.; Viswanathan, R.; Brose, R.; Buck, E.D.; Speltz, M.; Dukkipati, S.R.; Reddy, V.Y. Preclinical Evaluation of Pulsed Field Ablation: Electrophysioogical and Histological Assessment of Thoracic Vein Isolation. Circ. Arrhythmia Electrophysiol. 2019, 12, e007781. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, M.; Di Monaco, A.; Gomez, T.; Berman, D.; Datta, K.; Sharma, T.; Govari, A.; Altmann, A.; Di Biase, L. Time Course of Irreversible Electroporation Lesion Development Through Short- and Long-Term Follow-Up in Pulsed-Field Ablation-Treated Hearts. Circ. Arrhythmia Electrophysiol. 2022, 15, e010661. [Google Scholar] [CrossRef]
- Koruth, J.S.; Kuroki, K.; Kawamura, I.; Brose, R.; Viswanathan, R.; Buck, E.D.; Donskoy, E.; Neuzil, P.; Dukkipati, S.R.; Reddy, V.Y. Pulsed Field Ablation Versus Radiofrequency Ablation: Esophageal Injury in a Novel Porcine Model. Circ. Arrhythmia Electrophysiol. 2020, 13, e008303. [Google Scholar] [CrossRef] [PubMed]
- Yavin, H.; Shapira-Daniels, A.; Barkagan, M.; Sroubek, J.; Shim, D.; Melidone, R.; Anter, E. Pulsed Field Ablation Using a Lattice Electrode for Focal Energy Delivery: Biophysical Characterization, Lesion Durability, and Safety Evaluation. Circ. Arrhythmia Electrophysiol. 2020, 13, e008580. [Google Scholar] [CrossRef]
- van Driel, V.J.; Neven, K.; van Wessel, H.; Vink, A.; Doevendans, P.A.; Wittkampf, F.H. Low vulnerability of the right phrenic nerve to electroporation ablation. Heart Rhythm 2015, 12, 1838–1844. [Google Scholar] [CrossRef]
- Wittkampf, F.H.; van Driel, V.J.; van Wessel, H.; Neven, K.G.; Gründeman, P.F.; Vink, A.; Loh, P.; Doevendans, P.A. Myocardial lesion depth with circular electroporation ablation. Circ. Arrhythmia Electrophysiol. 2012, 5, 581–586. [Google Scholar] [CrossRef]
- Neven, K.; van Driel, V.; van Wessel, H.; van Es, R.; du Pré, B.; Doevendans, P.A.; Wittkampf, F. Safety and feasibility of closed chest epicardial catheter ablation using electroporation. Circ. Arrhythmia Electrophysiol. 2014, 7, 913–919. [Google Scholar] [CrossRef] [PubMed]
- du Pré, B.C.; van Driel, V.J.; van Wessel, H.; Loh, P.; Doevendans, P.A.; Goldschmeding, R.; Wittkampf, F.H.; Vink, A. Minimal coronary artery damage by myocardial electroporation ablation. Europace 2013, 15, 144–149. [Google Scholar] [CrossRef]
- Koruth, J.S.; Kuroki, K.; Iwasawa, J.; Viswanathan, R.; Brose, R.; Buck, E.D.; Donskoy, E.; Dukkipati, S.R.; Reddy, V.Y. Endocardial ventricular pulsed field ablation: A proof-of-concept preclinical evaluation. Europace 2020, 22, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Yavin, H.D.; Higuchi, K.; Sroubek, J.; Younis, A.; Zilberman, I.; Anter, E. Pulsed-Field Ablation in Ventricular Myocardium Using a Focal Catheter: The Impact of Application Repetition on Lesion Dimensions. Circ. Arrhythmia Electrophysiol. 2021, 14, e010375. [Google Scholar] [CrossRef]
- Im, S.I.; Higuchi, S.; Lee, A.; Stillson, C.; Buck, E.; Morrow, B.; Schenider, K.; Speltz, M.; Gerstenfeld, E.P. Pulsed Field Ablation of Left Ventricular Myocardium in a Swine Infarct Model. JACC Clin. Electrophysiol. 2022, 8, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Zilberman, I.; Krywanczyk, A.; Higuchi, K.; Yavin, H.D.; Sroubek, J.; Anter, E. Effect of Pulsed-Field and Radiofrequency Ablation on Heterogeneous Ventricular Scar in a Swine Model of Healed Myocardial Infarction. Circ. Arrhythmia Electrophysiol. 2022, 15, e011209. [Google Scholar] [CrossRef]
- Schauerte, P.; Scherlag, B.J.; Patterson, E.; Scherlag, M.A.; Matsudaria, K.; Nakagawa, H.; Lazzara, R.; Jackman, W.M. Focal Atrial Fibrillation: Experimental Evidence for a Pathophysiologic Role of the Autonomic Nervous System. J. Cardiovasc. Electrophysiol. 2001, 12, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Scherlag, B.J.; Edwards, J.; Jackman, W.M.; Lazzara, R.; Po, S.S. Gradients of Atrial Refractoriness and Inducibility of Atrial Fibrillation due to Stimulation of Ganglionated Plexi. J. Cardiovasc. Electrophysiol. 2007, 18, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Katritsis, D.G.; Pokushalov, E.; Romanov, A.; Giazitzoglou, E.; Siontis, G.C.; Po, S.S.; Camm, A.J.; Ioannidis, J.P. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: A randomized clinical trial. J. Am. Coll. Cardiol. 2013, 62, 2318–2325. [Google Scholar] [CrossRef] [PubMed]
- Garabelli, P.; Stavrakis, S.; Kenney, J.F.A.; Po, S.S. Effect of 28-mm cryoballoon ablation on major atrial ganglionated plexi. JACC Clin. Electrophysiol. 2018, 4, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Inden, Y.; Yanagisawa, S.; Shimizu, Y.; Narita, S.; Hiramatsu, K.; Yamauchi, R.; Watanabe, R.; Tsurumi, N.; Shimojo, M.; et al. Different time course effect of autonomic nervous modulation after cryoballoon and hotballoon catheter ablations for paroxysmal atrial fibrillation. J. Interv. Card. Electrophysiol. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Vassallo, F.; Corcino, L.; Cunha, C.; Serpa, E.; Lovatto, C.; Simoes, A., Jr.; Carloni, H.; Hespanhol, D.; Gasparini, D.; Barbosa, L.F.; et al. Incidental parasympathetic cardiac denervation during atrial fibrillation ablation using high power short duration: A marker of long-term success. J. Interv. Card. Electrophysiol. 2023, 1–7. [Google Scholar] [CrossRef]
- Pokushalov, E.; Romanov, A.; Katritsis, D.G.; Artyomenko, S.; Shirokova, N.; Karaskov, A.; Mittal, S.; Steinberg, J.S. Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: A randomized comparison. Heart Rhythm 2013, 10, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Aksu, T.; Gupta, D. Targeting the autonomic nervous system during AF ablation: Should we fight or take flight? J. Cardiovasc. Electrophysiol. 2021, 32, 245–247. [Google Scholar] [CrossRef]
- Stojadinović, P.; Wichterle, D.; Peichl, P.; Nakagawa, H.; Čihák, R.; Hašková, J.; Kautzner, J. Autonomic Changes Are More Durable After Radiofrequency Than Pulsed Electric Field Pulmonary Vein Ablation. JACC Clin. Electrophysiol. 2022, 8, 895–904. [Google Scholar] [CrossRef]
- Del Monte, A.; Cespón Fernández, M.; Vetta, G.; Della Rocca, D.G.; Pannone, L.; Mouram, S.; Sorgente, A.; Bala, G.; Ströker, E.; Sieira, J.; et al. Quantitative assessment of transient autonomic modulation after single-shot pulmonary vein isolation with pulsed-field ablation. J. Cardiovasc. Electrophysiol. 2023, 34, 2393–2397. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wang, J.; Deng, Q.; Feng, H.; Xie, M.; Zhou, Z.; Zhou, L.; Wang, Y.; Li, X.; Xu, S.; et al. Effects of pulsed field ablation on autonomic nervous system in paroxysmal atrial fibrillation: A pilot study. Heart Rhythm 2023, 20, 329–338. [Google Scholar] [CrossRef]
- Tohoku, S.; Schmidt, B.; Schaack, D.; Bordignon, S.; Hirokami, J.; Chen, S.; Ebrahimi, R.; Efe, T.H.; Urbanek, L.; Chun, K.R.J. Impact of Pulsed-Field Ablation on Intrinsic Cardiac Autonomic Nervous System After Pulmonary Vein Isolation. JACC Clin. Electrophysiol. 2023, 9, 1864–1875. [Google Scholar] [CrossRef]
- Musikantow, D.R.; Neuzil, P.; Petru, J.; Koruth, J.S.; Kralovec, S.; Miller, M.A.; Funasako, M.; Chovanec, M.; Turagam, M.K.; Whang, W.; et al. Pulsed Field Ablation to Treat Atrial Fibrillation: Autonomic Nervous System Effects. JACC Clin. Electrophysiol. 2023, 9, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Gerstenfeld, E.P.; Mansour, M.; Whang, W.; Venkateswaran, R.; Harding, J.D.; Ellis, C.R.; Ellenbogen, K.A.; Osorio, J.; DeLurgio, D.B.; Daccarett, M.; et al. Autonomic Effects of Pulsed Field vs Thermal Ablation for Treating Atrial Fibrillation: Subanalysis of ADVENT. JACC Clin. Electrophysiol. 2024, 10, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Valeriano, C.; Buytaert, D.; Addeo, L.; De Schouwer, K.; Geelen, P.; De Potter, T. Evaluating autonomic outcomes after pulmonary vein isolation: The differential effects of pulsed-field and radiofrequency energy. Heart Rhythm 2024, 21, 1250–1252. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Leatmanoratn, Z.; Laurita, K.R.; Carlson, M.D. Partial vagal denervation increases vulnerability to vagally induced atrial fibrillation. J. Cardiovasc. Electrophysiol. 2002, 13, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Musikantow, D.R.; Reddy, V.Y.; Skalsky, I.; Shaburishvili, T.; van Zyl, M.; O’Brien, B.; Coffey, K.; Reilly, J.; Neuzil, P.; Asirvatham, S.; et al. Targeted ablation of epicardial ganglionated plexi during cardiac surgery with pulsed field electroporation (NEURAL AF). J. Interv. Card. Electrophysiol. 2023, 1–8. [Google Scholar] [CrossRef]
- Zarębski, Ł.; Futyma, P. Challenges in Ventricular Arrhythmia Ablation: Difficult Substrates and Advanced Ablation Strategies. Curr. Treat. Options Cardio. Med. 2024, 26, 111–120. [Google Scholar] [CrossRef]
- Marashly, Q.; Najjar, S.N.; Hahn, J.; Rector, G.J.; Khawaja, M.; Chelu, M.G. Innovations in ventricular tachycardia ablation. J. Interv. Card. Electrophysiol. 2023, 66, 1499–1518. [Google Scholar] [CrossRef]
- Ravi, V.; Winterfield, J.; Liang, J.; Larsen, T.; Dye, C.; Sanders, D.; Skeete, J.; Payne, J.; Trohman, R.G.; Aksu, T.; et al. Solving the Reach Problem: A Review of Present and Future Approaches for Addressing Ventricular Arrhythmias Arising from Deep Substrate. Arrhythmia Electrophysiol. Rev. 2023, 12, e04. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Poudyal, A.; Khanal, S.; Khalil, C.; Vij, A.; Sanders, D.; Larsen, T.; Trohman, R.G.; Aksu, T.; Tung, R.; et al. A systematic review and meta-analysis comparing radiofrequency catheter ablation with medical therapy for ventricular tachycardia in patients with ischemic and non-ischemic cardiomyopathies. J. Interv. Card. Electrophysiol. 2023, 66, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Ma, S.; Tung, R.; Stevens, S.; Macias, C.; Bradfield, J.; Buch, E.; Vaseghi, M.; Fujimura, O.; Gornbein, J.; et al. Catheter ablation of scar-based ventricular tachycardia: Relationship of procedure duration to outcomes and hospital mortality. Heart Rhythm 2015, 12, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.D.; Ravi, V.; Rhodes, P.; Du-Fay-de-Lavallaz, J.M.; Winterfield, J.; Allen-Proctor, M.; Wasserlauf, J.; Krishnan, K.; Trohman, R.; Sharma, P.S.; et al. Use of infrared thermography to delineate temperature gradients and critical isotherms during catheter ablation with normal and half normal saline: Implications for safety and efficacy. J. Cardiovasc. Electrophysiol. 2021, 32, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Barkagan, M.; Leshem, E.; Shapira-Daniels, A.; Sroubek, J.; Buxton, A.E.; Saffitz, J.E.; Anter, E. Histopathological Characterization of Radiofrequency Ablation in Ventricular Scar Tissue. JACC Clin. Electrophysiol. 2019, 5, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Yoneda, Z.T.; Powers, E.M.; Tokutake, K.; Kurata, M.; Richardson, T.D.; Montgomery, J.A.; Shen, S.; Estrada, J.C.; Saavedra, P.J.; et al. Safety of ventricular arrhythmia radiofrequency ablation with half-normal saline irrigation. Europace 2024, 26, euae018. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, H.; Ma, K.; Ling, Z.; Zhao, D.; Wang, Y.; Zhang, Z.; Shao, M.; Song, H.; Jiang, W.; et al. FHRS and HALF study investigators. Half versus normal saline irrigation during catheter ablation of outflow tract ventricular arrhythmias (HALF): A multi-center, parallel, open-label, randomized controlled study. J. Interv. Card. Electrophysiol. 2023, 66, 2143–2151. [Google Scholar] [CrossRef]
- Chung, F.P.; Vicera, J.J.B.; Lin, Y.J.; Chang, S.L.; Lo, L.W.; Hu, Y.F.; Lin, C.Y.; Tuan, T.C.; Chao, T.F.; Liao, J.N.; et al. Clinical efficacy of open-irrigated electrode cooled with half-normal saline for initially failed radiofrequency ablation of idiopathic outflow tract ventricular arrhythmias. J. Cardiovasc. Electrophysiol. 2019, 30, 1508–1516. [Google Scholar] [CrossRef]
- Bennett, R.; Campbell, T.; Byth, K.; Turnbull, S.; Kumar, S. Catheter Ablation Using Half-Normal Saline and Dextrose Irrigation in an Ovine Ventricular Model. JACC Clin. Electrophysiol. 2021, 7, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Ikenouchi, T.; Takigawa, M.; Goya, M.; Yamaguchi, J.; Martin, C.A.; Yamamoto, T.; Negishi, M.; Kawamura, I.; Goto, K.; Shigeta, T.; et al. The effect of half-normal saline irrigation on lesion characteristics in temperature-flow-controlled ablation. J. Interv. Card. Electrophysiol. 2024, 67, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Gerstenfeld, E.P.; Tzou, W.S.; Jurgens, P.T.; Zheng, L.; Schuller, J.; Zipse, M.; Sauer, W.H. Radiofrequency Ablation Using an Open Irrigated Electrode Cooled With Half-Normal Saline. JACC Clin. Electrophysiol. 2017, 3, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Tschabrunn, C.M.; Pothineni, N.V.K.; Sauer, W.H.; Doynow, D.; Salas, J.; Liao, T.E.; Santangeli, P.; Arkles, J.; Hyman, M.C.; Frankel, D.S.; et al. Evaluation of Radiofrequency Ablation Irrigation Type: In Vivo Comparison of Normal Versus Half-Normal Saline Lesion Characteristics. JACC Clin. Electrophysiol. 2020, 6, 684–692. [Google Scholar] [CrossRef]
- Shirai, Y. Safety and efficacy of half normal saline irrigation during catheter ablation of outflow tract ventricular arrhythmia: What is the “normal” setting for half normal saline irrigation? J. Interv. Card. Electrophysiol. 2024, 67, 433–434. [Google Scholar] [CrossRef]
- Bhaskaran, A.; Niri, A.; Azam, M.A.; Nayyar, S.; Porta-Sánchez, A.; Massé, S.; Liang, T.; Veluppillai, A.; Du, B.; Lai, P.F.; et al. Safety, efficacy, and monitoring of bipolar radiofrequency ablation in beating myopathic human and healthy swine hearts. Heart Rhythm 2021, 18, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, A.P.; Andere, T.E.; Gonçalves, A.L.M.; Chokr, M.O.; Melo, S.L.; Hardy, C.; Pisani, C.F.; Scanavacca, M.I. Bipolar radiofrequency ablation of septal ventricular tachycardia in a patient with dilated cardiomyopathy using two 8-mm tip catheters—Case report. J. Interv. Card. Electrophysiol. 2022, 64, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, A.; Hanson, M.; Nazer, B.; Gibson, D.N.; Cano, O.; Tokioka, S.; Fukamizu, S.; Sanchez Millan, P.; Hoyos, C.; Matos, C.; et al. Bipolar ablation involving coronary venous system for refractory left ventricular summit arrhythmias. Heart Rhythm O2. 2023, 5, 24–33. [Google Scholar] [CrossRef]
- Kawamura, I.; Reddy, V.Y.; Wang, B.J.; Dukkipati, S.R.; Chaudhry, H.W.; Santos-Gallego, C.G.; Koruth, J.S. Pulsed Field Ablation of the Porcine Ventricle Using a Focal Lattice-Tip Catheter. Circ. Arrhythmia. Electrophysiol. 2022, 15, e11120. [Google Scholar] [CrossRef] [PubMed]
- Caluori, G.; Odehnalova, E.; Jadczyk, T.; Pesl, M.; Pavlova, I.; Valikova, L.; Holzinger, S.; Novotna, V.; Rotrekl, V.; Hampl, A.; et al. AC Pulsed Field Ablation Is Feasible and Safe in Atrial and Ventricular Settings: A Proof-of-Concept Chronic Animal Study. Front. Bioeng. Biotechnol. 2020, 8, 552357. [Google Scholar] [CrossRef]
- Ladejobi, A.; Christopoulos, G.; Tan, N.; Ladas, T.P.; Tri, J.; van Zyl, M.; Yasin, O.; Sugrue, A.; Khabsa, M.; Uecker, D.R.; et al. Effects of pulsed electric fields on the coronary arteries in swine. Circ. Arrhythmia Electrophysiol. 2022, 15, e010668. [Google Scholar] [CrossRef]
- De Becker, B.; Francois, C.; De Smet, M.; Tavernier, R.; Le Polain De Waroux, J.B.; Duytschaever, M.; Knecht, S. Severe coronary spasm occurring remotely from pulsed field application during right inferior pulmonary vein isolation. J. Interv. Card. Electrophysiol. 2024, 67, 1075–1076. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, U.; Alkukhun, L.; Kheiri, B.; Hodovan, J.; Chiang, K.; Splanger, T.; Castellvi, Q.; Zhao, Y.; Nazer, B. In vivo pulsed-field ablation in healthy vs. chronically infarcted ventricular myocardium: Biophysical and histologic characterization. Europace 2023, 25, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Garg, L.; Daubert, T.; Lin, A.; Dhakal, B.; Santangeli, P.; Schaller, R.; Hyman, M.C.; Kumareswaran, R.; Arkles, J.; Nazarian, S.; et al. Utility of Prolonged Duration Endocardial Ablation for Ventricular Arrhythmias Originating From the Left Ventricular Summit. JACC Clin. Electrophysiol. 2022, 8, 465–476. [Google Scholar] [CrossRef]
- Nies, M.; Watanabe, K.; Kawamura, I.; Santos-Gallego, C.G.; Reddy, V.Y.; Koruth, J.S. Preclinical Study of Pulsed Field Ablation of Difficult Ventricular Targets: Intracavitary Mobile Structures, Interventricular Septum, and Left Ventricular Free Wall. Circ. Arrhythmia Electrophysiol. 2024, 17, e012734. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Tabaja, C.; Kleve, R.; Garrott, K.; Lehn, L.; Buck, E.; Hussein, A.A.; Nakhla, S.; Nakagawa, H.; Krywanczyk, A.; et al. Comparative Efficacy and Safety of Pulsed Field Ablation Versus Radiofrequency Ablation of Idiopathic LV Arrhythmias. JACC Clin. Electrophysiol. 2024, 10, 1998–2009. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.J.; González-Suárez, A. How intramyocardial fat can alter the electric field distribution during Pulsed Field Ablation (PFA): Qualitative findings from computer modeling. PLoS ONE 2023, 18, e0287614. [Google Scholar] [CrossRef]
- van Zyl, M.; Ladas, T.P.; Tri, J.A.; Yasin, O.Z.; Ladejobi, A.O.; Tan, N.Y.; Christopoulos, G.; Schneider, N.; Danitz, D.J.; Uecker, D.; et al. Bipolar Electroporation Across the Interventricular Septum: Electrophysiological, Imaging, and Histopathological Characteristics. JACC Clin. Electrophysiol. 2022, 8, 1106–1118. [Google Scholar] [CrossRef]
- Tan, N.Y.; Ladas, T.P.; Christopoulos, G.; Sugrue, A.M.; van Zyl, M.; Ladejobi, A.O.; Lodhi, F.K.; Hu, T.Y.; Ezzeddine, F.M.; Agboola, K.; et al. Ventricular nanosecond pulsed electric field delivery using active fixation leads: A proof-of-concept preclinical study. J. Interv. Card. Electrophysiol. 2022, 1–11. [Google Scholar] [CrossRef]
- Haissaguerre, M.; Cheniti, G.; Hocini, M.; Sacher, F.; Ramirez, F.D.; Cochet, H.; Bear, L.; Tixier, R.; Duchateau, J.; Walton, R.; et al. Purkinje network and myocardial substrate at the onset of human ventricular fibrillation: Implications for catheter ablation. Eur. Heart. J. 2022, 43, 1234–1247. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, V.; Kong, X.; Tan, N.Y.; Christopolous, G.; Ladas, T.P.; Jiang, Z.; Tri, J.A.; Sugrue, A.M.; Asirvatham, S.J.; DeSimone, C.V.; et al. Complexity analysis of electrical activity during endocardial and epicardial biventricular mapping of ventricular fibrillation. J. Interv. Card. Electrophysiol. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nogami, A.; Komatsu, Y.; Talib, A.K.; Phanthawimol, W.; Naeemah, Q.J.; Haruna, T.; Morishima, I. Purkinje-Related Ventricular Tachycardia and Ventricular Fibrillation: Solved and Unsolved Questions. JACC Clin. Electrophysiol. 2023, 9, 2172–2196. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, F.M.; Ward, R.C.; Asirvatham, S.J.; De Simone, C.V. Mapping and ablation of ventricular fibrillation substrate. J. Interv. Card. Electrophysiol. 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sciacca, V.; Fink, T.; Guckel, D.; El Hamriti, M.; Khalaph, M.; Braun, M.; Sohns, C.; Sommer, P.; Imnadze, G. Catheter ablation in patients with ventricular fibrillation by purkinje de-networking. Front. Cardiovasc. Med. 2022, 9, 956627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Livia, C.; Sugrue, A.; Witt, T.; Polkinghorne, M.D.; Maor, E.; Kapa, S.; Lehmann, H.I.; DeSimone, C.V.; Behfar, A.; Asirvatham, S.J.; et al. Elimination of Purkinje Fibers by Electroporation Reduces Ventricular Fibrillation Vulnerability. J. Am. Heart Assoc. 2018, 7, e9070. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, A.; Vaidya, V.R.; Livia, C.; Padmanabhan, D.; Abudan, A.; Isath, A.; Witt, T.; DeSimone, C.V.; Stalboerger, P.; Kapa, S.; et al. Feasibility of selective cardiac ventricular electroporation. PLoS ONE 2020, 15, e229214. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Granero, C.; Hirokami, J.; Franco, E.; Tohoku, S.; Matía-Francés, R.; Schmidt, B.; Hernández-Madrid, A.; Zamorano Gómez, J.L.; Moreno, J.; Chun, J. Case Series of Ventricular Tachycardia Ablation With Pulsed-Field Ablation: Pushing Technology Further (Into the Ventricle). JACC Clin. Electrophysiol. 2023, 9, 1990–1994. [Google Scholar] [CrossRef]
- Martin, C.A.; Zaw, M.T.; Jackson, N.; Morris, D.; Costanzo, P. First worldwide use of pulsed-field ablation for ventricular tachycardia ablation via a retrograde approach. J. Cardiovasc. Electrophysiol. 2023, 34, 1772–1775. [Google Scholar] [CrossRef] [PubMed]
- Fassini, G.; Zito, E.; Bianchini, L.; Tundo, F.; Tondo, C.; Schiavone, M. Ventricular tachycardia ablation with pentaspline pulsed field technology in two patients with ischemic cardiomyopathy. J. Cardiovasc. Electrophysiol. 2024, 35, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Weyand, S.; Löbig, S.; Seizer, P. First in human focal pulsed field ablation to treat an epicardial VT focus with an endocardial approach in non-ischemic cardiomyopathy. J. Interv. Card. Electrophysiol. 2023, 66, 1057–1058. [Google Scholar] [CrossRef] [PubMed]
- Krause, U.; Bergau, L.; Zabel, M.; Müller, M.J.; Paul, T. Flowerpower: Pulsed field ablation of ventricular tachycardia in a patient with Ebstein’s anomaly. Eur. Heart, J. Case. Rep. 2023, 7, ytad093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ouss, A.; van Stratum, L.; van der Voort, P.; Dekker, L. First in human pulsed field ablation to treat scar-related ventricular tachycardia in ischemic heart disease: A case report. J. Interv. Card. Electrophysiol. 2023, 66, 509–510. [Google Scholar] [CrossRef]
- Katrapati, P.; Weiss, J.P.; Baning, D.; Zawaneh, M.; Su, W.; Tung, R. Pulsed field ablation for incessant scar-related ventricular tachycardia: First US report. Heart Rhythm 2024, 21, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Compagnucci, P.; Valeri, Y.; Conti, S.; Volpato, G.; Cipolletta, L.; Parisi, Q.; D’Angelo, L.; Campanelli, F.; Carboni, L.; Sgarito, G.; et al. Technological advances in ventricular tachycardia catheter ablation: The relentless quest for novel solutions to old problems. J. Interv. Card. Electrophysiol. 2024, 67, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Adragão, P.; Matos, D.; Carmo, P.; Costa, F.M.; Ramos, S. Pulsed-field ablation vs radiofrequency ablation for ventricular tachycardia: First in-human case of histologic lesion analysis. Heart Rhythm 2023, 20, 1395–1398. [Google Scholar] [CrossRef] [PubMed]
- Peichl, P.; Bulava, A.; Wichterle, D.; Schlosser, F.; Stojadinović, P.; Borišincová, E.; Štiavnický, P.; Hašková, J.; Kautzner, J. Efficacy and safety of focal pulsed-field ablation for ventricular arrhythmias: Two-centre experience. Europace 2024, 26, euae192. [Google Scholar] [CrossRef]
- Thomson, K.R.; Cheung, W.; Ellis, S.J.; Federman, D.; Kavnoudias, H.; Loader-Oliver, D.; Roberts, S.; Evans, P.; Ball, C.; Haydon, A. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 2011, 22, 611–621. [Google Scholar] [CrossRef] [PubMed]
- van Es, R.; Groen, M.H.A.; Stehouwer, M.; Doevendans, P.A.; Wittkampf, F.H.M.; Neven, K. In vitro analysis of the origin and characteristics of gaseous microemboli during catheter electroporation ablation. J. Cardiovasc. Electrophysiol. 2019, 30, 2071–2079. [Google Scholar] [CrossRef]
- Alkukhun, L.; Sandhu, U.; Hodovan, J.; Zhao, Y.; Chiang, K.; Castellvi, Q.; Stenzel, P.; Woltjer, R.; Li, X.; Barajas, R.F., Jr.; et al. Multi-modality imaging assessment of microbubbles and cerebral emboli in left ventricular pulsed field ablation. J. Interv. Card. Electrophysiol. 2023, 1–7. [Google Scholar] [CrossRef]
- Englert, F.; Bahlke, F.; Erhard, N.; Krafft, H.; Popa, M.A.; Risse, E.; Lennerz, C.; Lengauer, S.; Telishevska, M.; Reents, T.; et al. VT ablation based on CT imaging substrate visualization: Results from a large cohort of ischemic and non-ischemic cardiomyopathy patients. Clin. Res. Cardiol. 2023, 113, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Aliyari Ghasabeh, M.; Te Riele, A.S.J.M.; James, C.A.; Chen, H.S.V.; Tichnell, C.; Murray, B.; Eng, J.; Kral, B.G.; Tandri, H.; Calkins, H.; et al. Epicardial Fat Distribution Assessed with Cardiac CT in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Radiology 2018, 289, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Bansmann, P.M.; Mohsen, Y.; Horlitz, M.; Stöckigt, F. Optimizing fibrosis detection: A comparison of electroanatomical mapping and late enhancement gadolinium magnetic resonance imaging. J. Interv. Card. Electrophysiol. 2024, 67, 571–577. [Google Scholar] [CrossRef] [PubMed]
- John, L.A.; Divakaran, S.; Blankstein, R.; Batnyam, U.; Suranyi, P.; Gregoski, M.; Cochet, H.; Peyrat, J.M.; Cedlink, N.; Kabongo, L.; et al. Septal late enhancement by cardiac CT is associated with repeat ablation in nonischemic cardiomyopathy patients. J. Cardiovasc. Electrophysiol. 2024, 35, 1806–1816. [Google Scholar] [CrossRef]
- Raja, D.C.; Samarawickrema, I.; Srinivasan, J.R.; Menon, S.; Das, S.K.; Jain, S.; Tuan, L.Q.; Desjardins, B.; Marchlinski, F.E.; Abhayaratna, W.P.; et al. Correlation of myocardial strain by CMR-feature tracking with substrate abnormalities detected by electro-anatomical mapping in patients with nonischemic cardiomyopathy. J. Interv. Card. Electrophysiol. 2023, 66, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Aryana, A.C.H.; de la Rama, A.; Nguyen, K.; Panescu, D. A novel pulsed field ablation system using linear and spiral ablation catheters can create large and durable endocardial and epicardial ventricular lesions in vivo. J. Interv. Card. Electrophysiol. 2023, 1–12. [Google Scholar] [CrossRef]
- Huang, H.D.; Melman, P.; Yavin, H.; Dye, C.; Melman, Y. In Vivo Findings of a Novel Focal Ablation Catheter: Focused Electric Field Catheter Tip. JACC Clin. Electrophysiol. 2024, 10, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.D.; Melman, P.; Brosh, M.; Melman, Y.F. Focused electric field (FEF) ablation in a left ventricular and infrared thermal imaging model: A proof-of-concept study. J. Interv. Card. Electrophysiol. 2023, 66, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Pang, N.; Gao, J.; Zhang, N.; Zhang, B.; Wang, R. Comparison of the Different Anesthesia Strategies for Atrial Fibrillation Catheter Ablation: A Systematic Review and Meta-Analysis. Cardiol. Res. Pract. 2022, 2022, 1124372. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Calvert, P.; Sidhu, B.; Mavilakandy, A.; Kotb, A.; Tovmassian, L.; Kozhuharov, N.; Biermé, C.; Denham, N.; Pius, C.; et al. Patient experience of very high power short duration radiofrequency ablation for atrial fibrillation under mild conscious sedation. J. Interv. Card. Electrophysiol. 2023, 66, 445–453. [Google Scholar] [CrossRef]
- Iacopino, S.; Colella, J.; Dini, D.; Mantovani, L.; Sorrenti, P.F.; Malacrida, M.; Filannino, P. Sedation strategies for pulsed-field ablation of atrial fibrillation: Focus on deep sedation with intravenous ketamine in spontaneous respiration. Europace 2023, 25, euad230. [Google Scholar] [CrossRef]
- Weinmann, K.; Heudorfer, R.; Lenz, A.; Aktolga, D.; Rattka, M.; Bothner, C.; Pott, A.; Öchsner, W.; Rottbauer, W.; Dahme, T. Safety of conscious sedation in electroanatomical mapping procedures and cryoballoon pulmonary vein isolation. Heart Vessels 2021, 36, 561–567. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yavin, H.; Prasad, M.; Gordon, J.; Aksu, T.; Huang, H.D. Contemporary Trends in Pulsed Field Ablation for Cardiac Arrhythmias. J. Cardiovasc. Dev. Dis. 2025, 12, 10. https://doi.org/10.3390/jcdd12010010
Yavin H, Prasad M, Gordon J, Aksu T, Huang HD. Contemporary Trends in Pulsed Field Ablation for Cardiac Arrhythmias. Journal of Cardiovascular Development and Disease. 2025; 12(1):10. https://doi.org/10.3390/jcdd12010010
Chicago/Turabian StyleYavin, Hagai, Mark Prasad, Jonathan Gordon, Tolga Aksu, and Henry D. Huang. 2025. "Contemporary Trends in Pulsed Field Ablation for Cardiac Arrhythmias" Journal of Cardiovascular Development and Disease 12, no. 1: 10. https://doi.org/10.3390/jcdd12010010
APA StyleYavin, H., Prasad, M., Gordon, J., Aksu, T., & Huang, H. D. (2025). Contemporary Trends in Pulsed Field Ablation for Cardiac Arrhythmias. Journal of Cardiovascular Development and Disease, 12(1), 10. https://doi.org/10.3390/jcdd12010010