Differences in Arrhythmia Detection Between Harvard Step Test and Maximal Exercise Testing in a Paediatric Sports Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Familial history (with a particular focus on cardiovascular diseases);
- Personal history (including cardiovascular risk factors, known cardiovascular diseases and cardiovascular symptoms, particularly if exercise-related, smoking habits, drug consumption, use of energising substances such as caffeine, taurine and alike, medications, allergies, type and intensity of sports practiced, categorised according to the cardiovascular involvement [17]);
- Physical examination (height, weight, arterial blood pressure, cardiac and chest auscultation);
- 12-lead resting electrocardiography (ECG), assessed according to the most recent international guidelines [18]; rhythm abnormalities (brady and/or tachyarrhythmias) and atrioventricular (AV) and intraventricular (IV) conduction abnormalities; pathological Q waves; axis or QRS voltage abnormalities; ST segment or T wave abnormalities;
- Spirometry, with respiratory function indexes in absolute values and as a percentage of the expected values for age and body size (data not reported because they lack relevance);
- HST with continuous ECG monitoring.
- Bicuspid aortic valve, further distinguished as “near-normal bicuspid aortic valve” and clinically relevant types according to proper definition [19];
- Cardiomyopathies (hypertrophic cardiomyopathy, dilated cardiomyopathy);
- Channelopathies;
- Coronary artery anomalies;
- Major arrhythmias (defined as arrhythmias requiring appropriate diagnostic and therapeutic management, such as atrial fibrillation and supraventricular and ventricular tachycardias requiring invasive assessment with electrophysiological study and ablation);
- Minor congenital heart disease (which included abnormal persistent left superior vena cava, partial venous return, patent foramen ovale, atrial and ventricular septal defects, subvalvular aortic stenosis without haemodynamic significance);
- Mitral valve prolapse, distinguished between minor and moderate/severe/arrhythmic forms;
- Nonischaemic left ventricular scar;
- Ventricular preexcitation.
2.2. Inclusion and Exclusion Criteria
2.3. Exercise Testing Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maron, B.J.; Doerer, J.J.; Haas, T.S.; Tierney, D.M.; Mueller, F.O. Sudden Deaths in Young Competitive Athletes: Analysis of 1866 Deaths in the United States, 1980–2006. Circulation 2009, 119, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Sollazzo, F.; Palmieri, V.; Gervasi, S.F.; Cuccaro, F.; Modica, G.; Narducci, M.L.; Pelargonio, G.; Zeppilli, P.; Bianco, M. Sudden Cardiac Death in Athletes in Italy during 2019: Internet-Based Epidemiological Research. Medicina 2021, 57, 61. [Google Scholar] [CrossRef]
- Risgaard, B. Sudden cardiac death: A nationwide cohort study among the young. Dan. Med. J. 2016, 63, B5321. [Google Scholar] [PubMed]
- La Gerche, A.; Baggish, A.L.; Knuuti, J.; Prior, D.L.; Sharma, S.; Heidbuchel, H.; Thompson, P.D. Cardiac Imaging and Stress Testing Asymptomatic Athletes to Identify Those at Risk of Sudden Cardiac Death. JACC Cardiovasc. Imaging 2013, 6, 993–1007. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, F.; Valentini, F.; Pistoresi, S.; Frascaro, F.; Piu, P.; Cavigli, L.; Valente, S.; Focardi, M.; Cameli, M.; Bonifazi, M.; et al. Causes of sudden cardiac death in young athletes and non-athletes: Systematic review and meta-analysis. Trends Cardiovasc. Med. 2022, 32, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.; Harmon, K.G.; D’Ascenzi, F.; Meyer, T.; Pieles, G.E. What is the most appropriate age for the first cardiac screening of athletes? J. Sci. Med. Sport 2024, 27, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Pavei, A.; Michieli, P.; Schiavon, M.; Thiene, G. Trends in Sudden Cardiovascular Death in Young Competitive Athletes After Implementation of a Preparticipation Screening Program. JAMA 2006, 296, 1593. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Levine, B.D.; Washington, R.L.; Baggish, A.L.; Kovacs, R.J.; Maron, M.S. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 2: Preparticipation Screening for Cardiovascular Disease in Competitive Athletes: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation 2015, 132, e267–e272. [Google Scholar] [PubMed]
- Sarto, P.; Zorzi, A.; Merlo, L.; Vessella, T.; Pegoraro, C.; Giorgiano, F.; Graziano, F.; Basso, C.; Drezner, J.A.; Corrado, D. Value of screening for the risk of sudden cardiac death in young competitive athletes. Eur. Heart J. 2023, 44, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; Drezner, J.A.; O’Connor, F.G.; Asplund, C.; Finnoff, J.T. Should Electrocardiograms Be Part of the Preparticipation Physical Examination? PM&R 2016, 8, S24–S35. [Google Scholar]
- Grazioli, G.; Sanz De La Garza, M.; Vidal, B.; Montserrat, S.; Sarquella-Brugada, G.; Pi, R.; Til, L.; Gutierrez, J.; Brugada, J.; Sitges, M. Prevention of sudden death in adolescent athletes: Incremental diagnostic value and cost-effectiveness of diagnostic tests. Eur. J. Prev. Cardiol. 2017, 24, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.; Perera, D.; Lambiase, P. Prognostic significance of exercise-induced premature ventricular complexes: A systematic review and meta-analysis of observational studies. Heart Asia 2017, 9, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Thiene, G.; Corrado, D.; Rigato, I.; Basso, C. Why and how to support screening strategies to prevent sudden death in athletes. Cell Tissue Res. 2012, 348, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Zorzi, A.; Sarto, P.; Donini, M.; Rigato, I.; Bariani, R.; De Lazzari, M.; Pilichou, K.; Thiene, G.; Iliceto, S.; et al. Predictive value of exercise testing in athletes with ventricular ectopy evaluated by cardiac magnetic resonance. Heart Rhythm 2019, 16, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise Standards for Testing and Training: A Scientific Statement From the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef] [PubMed]
- Quinto, G.; Neunhaeuserer, D.; Gasperetti, A.; Battista, F.; Foccardi, G.; Baioccato, V.; Gobbo, S.; Bergamin, M.; Ermolao, A. Can exercise test intensity and modality affect the prevalence of arrhythmic events in young athletes? Res. Sports Med. 2023, 31, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Drezner, J.A.; Baggish, A.; Papadakis, M.; Wilson, M.G.; Prutkin, J.M.; La Gerche, A.; Ackerman, M.J.; Borjesson, M.; Salerno, J.C.; et al. International recommendations for electrocardiographic interpretation in athletes. Eur. Heart J. 2018, 39, 1466–1480. [Google Scholar] [CrossRef]
- Michelena, H.I.; Desjardins, V.A.; Avierinos, J.-F.; Russo, A.; Nkomo, V.T.; Sundt, T.M.; Pellikka, P.A.; Tajik, A.J.; Enriquez-Sarano, M. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation 2008, 117, 2776–2784. [Google Scholar] [CrossRef] [PubMed]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2021. [Google Scholar]
- Corrado, D.; Drezner, J.A.; D’Ascenzi, F.; Zorzi, A. How to evaluate premature ventricular beats in the athlete: Critical review and proposal of a diagnostic algorithm. Br. J. Sports Med. 2020, 54, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Tian, Y.; DiSilvestre, D.; Tomaselli, G.F. Transmural heterogeneity of Na+-Ca2+ exchange: Evidence for differential expression in normal and failing hearts. Circ. Res. 2005, 97, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.M.; Fishbein, M.C.; Han, J.B.; Lai, W.W.; Lai, A.C.; Wu, T.J.; Czer, L.; Wolf, P.L.; Denton, T.A.; Shintaku, I.P.; et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 2000, 101, 1960–1969. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Anna, V.; Messina, G.; Cibelli, G.; Monda, V.; Marsala, G.; Ruberto, M.; Biondi, A.; Cascio, O.; Bertozzi, G.; et al. Heart rate variability as predictive factor for sudden cardiac death. Aging 2018, 10, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Lalario, A.; Merro, E.; Sinagra, G.; Sharma, S.; Papadakis, M.; Finocchiaro, G. Sudden Cardiac Death in Athletes: Facts and Fallacies. J. Cardiovasc. Dev. Dis. 2023, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Roston, T.M.; Kallas, D.; Davies, B.; Franciosi, S.; De Souza, A.M.; Laksman, Z.W.; Sanatani, S.; Krahn, A.D. Burst Exercise Testing Can Unmask Arrhythmias in Patients with Incompletely Penetrant Catecholaminergic Polymorphic Ventricular Tachycardia. JACC Clin. Electrophysiol. 2021, 7, 437–441. [Google Scholar] [CrossRef]
- Sagray, E.; Allison, T.G.; Wackel, P.L. Is a high-intensity exercise test better than a graded exercise test in eliciting exercise-related arrhythmias? Heart Case Rep. 2021, 7, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Zeppilli, P.; Biffi, A.; Cammarano, M.; Castelletti, S.; Cavarretta, E.; Cecchi, F.; Colivicchi, F.; Contursi, M.; Corrado, D.; D’Andrea, A.; et al. Italian Cardiological Guidelines (COCIS) for Competitive Sport Eligibility in athletes with heart disease: Update 2024. Minerva Med. 2024, 115, 533–564. [Google Scholar] [CrossRef]
- Colombo, C.S.S.D.S.; Ghorayeb, N.; Garcia, T.G.; Francisco, R.C. Sudden Cardiac Death in Sports: Why Its Prevalence is So Different by Gender? Int. J. Cardiovasc. Sci. 2019, 32, 414–417. [Google Scholar] [CrossRef]
- Cole, C.R.; Foody, J.M.; Blackstone, E.H.; Lauer, M.S. Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort. Ann. Intern. Med. 2000, 132, 552–555. [Google Scholar] [CrossRef]
- Bradfield, J.S.; Ajijola, O.A.; Vaseghi, M.; Shivkumar, K. Mechanisms and management of refractory ventricular arrhythmias in the age of autonomic modulation. Heart Rhythm 2018, 15, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
Parameters | N | Mean | SD |
---|---|---|---|
Age (year) | 511 | 14.8 | 2.4 |
Height (cm) | 511 | 168.9 | 12.8 |
Weight (kg) | 511 | 60.4 | 14.3 |
BMI | 511 | 20.9 | 3.5 |
Sex: | N | % (N) | |
Male | 390 | 76.3 | |
Female | 121 | 23.7 | |
Level of sport participation | |||
Competitive | 446 | 87.3 | |
Non-competitive | 65 | 12.7 | |
Sport according to cardiovascular involvement [17] | |||
Skill | 25 | 4.9 | |
Power | 31 | 6.1 | |
Endurance | 75 | 14.7 | |
Mixed | 384 | 75.1 |
Parameters (N = 511) | HST (%) | MET (%) | p-Value |
---|---|---|---|
PHR > 85% of expected | 423 (82.8) | 495 (96.9) | <0.001 * |
SVPB | 95 (18.6) | 67 (13.1) | <0.001 * |
SVPB-Focality | 34 (6.7) | 23 (4.5) | 0.033 * |
SVPB-Rest | 8 (1.6) | 8 (1.6) | 1.000 |
SVPB-Stress | 54 (10.6) | 43 (8.4) | 0.159 |
SVPB-Recovery | 67 (13.1) | 51 (10.0) | 0.014 * |
SVPB-Complexity | 23 (4.5) | 14 (2.7) | 0.074 |
VPB | 157 (30.7) | 116 (22.7) | <0.001 * |
VPB-Uncommon | 62 (12.1) | 49 (9.6) | 0.08 |
VPB-Rest | 30 (5.9) | 35 (6.8) | 0.225 |
VPB-Stress | 95 (18.6) | 88 (17.2) | 0.473 |
VPB-Recovery | 109 (21.3) | 91 (17.8) | 0.014 * |
VPB-Morphology | 24 (4.7) | 20 (3.9) | 0.465 |
VPB-Complexity | 23 (4.5) | 16 (3.1) | 0.162 |
MALE ATHLETES (N = 390) | |||
PHR > 85% of expected | 311 (79.7) | 377 (96.6) | <0.001 * |
SVPB | 77 (19.7) | 54 (11.5) | 0.002 * |
SVPB-Focality | 26 (15.9) | 19 (4.9) | 0.071 |
SVPB-Rest | 8 (2.1) | 8 (2.1) | 1.000 |
SVPB-Stress | 48 (12.3) | 36 (9.3) | 0.102 |
SVPB-Recovery | 53 (13.6) | 41 (10.5) | 0.034 * |
SVPB-Complexity | 17 (4.4) | 11 (2.8) | 0.134 |
VPB | 121 (31.0) | 86 (22.1) | <0.001 * |
VPB-Uncommon | 51 (13.1) | 40 (10.3) | 0.109 |
VPB-Rest | 21 (5.4) | 23 (5.9) | 0.527 |
VPB-Stress | 76 (19.5) | 68 (17.4) | 0.365 |
VPB-Recovery | 84 (21.5) | 66 (16.9) | 0.007 * |
VPB-Morphology | 16 (4.1) | 15 (3.8) | 0.835 |
VPB-Complexity | 19 (4.9) | 11 (2.8) | 0.074 |
FEMALE ATHLETES (N = 121) | |||
PHR > 85% of expected | 108 (89.3) | 118 (97.5) | 0.008 * |
SVPB | 18 (14.8) | 13 (10.7) | 0.197 |
SVPB-Focality | 7 (5.8) | 4 (3.3) | 0.257 |
SVPB-Rest | 0 | 0 | na |
SVPB-Stress | 6 (5.0) | 7 (5.8) | 0.705 |
SVPB-Recovery | 14 (11.6) | 10 (8.2) | 0.206 |
SVPB-Complexity | 5 (4.1) | 3 (2.5) | 0.317 |
VPB | 35 (28.9) | 30 (24.8) | 0.197 |
VPB-Uncommon | 11 (9.1) | 9 (7.4) | 0.480 |
VPB-Rest | 9 (7.4) | 12 (9.9) | 0.257 |
VPB-Stress | 19 (15.7) | 20 (16.5) | 0.808 |
VPB-Recovery | 25 (20.7) | 25 (20.7) | 1.000 |
VPB-Morphology | 8 (6.6) | 5 (4.1) | 0.257 |
VPB-Complexity | 4 (3.3) | 5 (4.1) | 0.655 |
HST (%) | MET (%) | p-Value | |
---|---|---|---|
IDENTIFIED CARDIOVASCULAR DISEASE (N = 114) | |||
PHR > 85% of expected | 92 (80.7) | 108 (94.7) | <0.001 * |
SVPB | 26 (22.8) | 19 (16.7) | 0.127 |
SVPB-Focality | 7 (6.1) | 6 (5.3) | 0.564 |
SVPB-Rest | 3 (2.6) | 3 (2.6) | 1.000 |
SVPB-Stress | 16 (14.0) | 11 (9.6) | 0.225 |
SVPB-Recovery | 17 (14.9) | 15 (13.2) | 0.527 |
SVPB-Complexity | 7 (6.1) | 7 (6.1) | 1.000 |
VPB | 29 (25.4) | 21 (18.6) | 0.05 * |
VPB-Uncommon | 13 (11.4) | 10 (8.8) | 0.317 |
VPB-Rest | 4 (3.5) | 7 (6.1) | 0.180 |
VPB-Stress | 18 (15.8) | 11 (9.6) | 0.071 |
VPB-Recovery | 23 (20.2) | 16 (14.0) | 0.035 * |
VPB-Morphology | 7 (6.1) | 2 (1.8) | 0.025 * |
VPB-Complexity | 6 (5.3) | 5 (4.4) | 0.655 |
IDENTIFIED MAJOR CARDIOVASCULAR DISEASE (N = 29) | |||
PHR > 85% of expected | 21 (72.4) | 28 (96.6) | 0.008 * |
SVPB | 7 (24.1) | 4 (13.8) | 0.257 |
SVPB-Focality | 2 (6.9) | 2 (6.9) | 1.000 |
SVPB-Rest | 0 | 0 | na |
SVPB-Stress | 3 (10.3) | 3 (10.3) | 1.000 |
SVPB-Recovery | 6 (20.7) | 3 (10.3) | 0.180 |
SVPB-Complexity | 1 (3.5) | 1 (3.5) | 1.000 |
VPB | 5 (17.2) | 8 (27.8) | 0.180 |
VPB-Uncommon | 4 (13.8) | 5 (17.2) | 0.564 |
VPB-Rest | 2 (6.9) | 5 (17.2) | 0.083 |
VPB-Stress | 3 (10.3) | 2 (6.9) | 0.564 |
VPB-Recovery | 4 (13.8) | 5 (17.2) | 0.564 |
VPB-Morphology | 3 (10.3) | 2 (6.9) | 0.317 |
VPB-Complexity | 4 (13.8) | 2 (6.9) | 0.317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, M.; Sollazzo, F.; Pella, R.; Vicentini, S.; Ciaffoni, S.; Modica, G.; Monti, R.; Cammarano, M.; Zeppilli, P.; Palmieri, V. Differences in Arrhythmia Detection Between Harvard Step Test and Maximal Exercise Testing in a Paediatric Sports Population. J. Cardiovasc. Dev. Dis. 2025, 12, 22. https://doi.org/10.3390/jcdd12010022
Bianco M, Sollazzo F, Pella R, Vicentini S, Ciaffoni S, Modica G, Monti R, Cammarano M, Zeppilli P, Palmieri V. Differences in Arrhythmia Detection Between Harvard Step Test and Maximal Exercise Testing in a Paediatric Sports Population. Journal of Cardiovascular Development and Disease. 2025; 12(1):22. https://doi.org/10.3390/jcdd12010022
Chicago/Turabian StyleBianco, Massimiliano, Fabrizio Sollazzo, Riccardo Pella, Saverio Vicentini, Samuele Ciaffoni, Gloria Modica, Riccardo Monti, Michela Cammarano, Paolo Zeppilli, and Vincenzo Palmieri. 2025. "Differences in Arrhythmia Detection Between Harvard Step Test and Maximal Exercise Testing in a Paediatric Sports Population" Journal of Cardiovascular Development and Disease 12, no. 1: 22. https://doi.org/10.3390/jcdd12010022
APA StyleBianco, M., Sollazzo, F., Pella, R., Vicentini, S., Ciaffoni, S., Modica, G., Monti, R., Cammarano, M., Zeppilli, P., & Palmieri, V. (2025). Differences in Arrhythmia Detection Between Harvard Step Test and Maximal Exercise Testing in a Paediatric Sports Population. Journal of Cardiovascular Development and Disease, 12(1), 22. https://doi.org/10.3390/jcdd12010022