Mitochondrial DNA Mutations and Rheumatic Heart Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genetic Analysis
2.2.1. DNA Extraction and Amplification and Sequencing of MT-CYB
2.2.2. Molecular Analyses
- POLYPHEN-2 [22], which yields the following putative results: Probably damaging (p ≤ 5%), potentially damaging (5 < p ≤ 10%), and benign (p > 10%);
- SIFT [23], which assigns a score between zero and one. Amino acid substitutions are predicted to affect protein function when the score is ≤0.05 and to be tolerable when the score is >0.05;
- PROVEAN [24] wherein variants with a score of ≤–2.5 are predicted as deleterious and those with a score of >–2.5 are considered neutral.
- The population size n corresponding to the number of individuals;
- The number of sites N that define the size of sequences;
- The variable sites, invariable sites, non-informative variables, and informative variables, the number of total mutations (Eta), thus elucidating MT-CYB polymorphisms in the study population;
- The number of haplotypes and the haplotype diversity (Hd), to analyze the distribution of individuals within a population;
- The nucleotide diversity (Pi) and the average number of nucleotide differences (k) that reflect genetic differences within a population.
- The nucleotide frequencies: General and at each codon position;
- The nature of mutations (transitions and transversions);
- The rate of mutations (R);
- The rate of substitutions: Ks (synonymous) and Kns (non-synonymous).
- The rate of nucleotide divergence representing the percentage of nucleotide-level differences in each generation;
- The nucleotide diversity between two populations;
- The average number of nucleotide-level differences at each site between pairwise sequences.
2.3. Statistical Analyses
3. Results
3.1. Evaluation of MT-CYB Polymorphisms
3.1.1. Analysis of MT-CYB Mutations
3.1.2. Variability of Amino Acids
3.1.3. Determination of Genetic Diversity of MT-CYB
3.1.4. Evaluation of the Differentiation and Genetic Structuring of MT-CYB in Accordance with the Study Population
3.1.5. Evolution of MT-CYB Mutations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bryant, P.A.; Robins-Browne, R.; Carapetis, J.R.; Curtis, N. Some of the People, Some of the Time: Susceptibility to Acute Rheumatic Fever. Circulation 2009, 119, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Templeton, C.G.; Cooper, A.R.; Human, D.G.; Rahman, P. Rhumatisme articulaire aigu. Le Programme Canadien de Surveillance Pédiatrique, Unpublished. 2007; 4p. [Google Scholar]
- Venter, M.; Van der Westhuizen, F.H.; Elson, J.L. The aetiology of cardiovascular disease: A role for mitochondrial DNA? Cardiovasc. J. Afr. 2017, 29, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; Steer, A.; Mulholland, E.; Weber, M. The global burden of group A streptococcal disease. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef]
- Fall, A.L.; Ndiaye, O.; Lavou, I.; Sow, H.D. La cardiopathie rhumatismale à l’Hôpital d’Enfants Albert Royer de Dakar: À propos de 76 cas. In Proceedings of the Conférence IVème Congrès de l’Association des Pédiatres d’Afrique Noire Francophone (APANF) et IIème Congrès de la Société Sénégalaise de Pédiatrie (SOSEPED), Dakar, Senegal, November 2007. Résumé. [Google Scholar]
- Guilherme, L.; Köhler, K.F.; Postol, E.; Kalil, J. Genes, autoimmunity and pathogenesis of rheumatic heart disease. Ann. Paediatr. Cardiol. 2011, 4, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Messias-Reason, I.J.; Schafranski, M.D.; Kremsner, P.G.; Kun, J.F. Ficolin 2 (FCN2) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. Clin. Exp. Immunol. 2009, 157, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pacheco, G.; Flores-Domínguez, C.; Rodríguez-Pérez, J.M.; Pérez-Hernández, N.; Fragoso, J.M.; Saul, A.; Vargas-Alarcón, G. Tumour necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J. Autoimmun. 2003, 21, 59–63. [Google Scholar] [CrossRef]
- Sallakci, N.; Akcurin, G.; Köksoy, S.; Kardelen, F.; Uguz, A.; Coskun, M.; Yegin, O. TNF-alpha G-308A polymorphism is associated with rheumatic fever and correlates with increased TNF-alpha production. J. Autoimmun. 2005, 25, 150–154. [Google Scholar] [CrossRef]
- Yeğin, O.; Coşkun, M.; Ertuğ, H. Cytokines in acute rheumatic fever. Eur. J. Paediatr. 1997, 156, 25–29. [Google Scholar] [CrossRef]
- Settin, A.; Abdel-Hady, H.; El-Baz, R.; Saber, I. Gene polymorphisms of TNF-alpha−308, IL-10−108, IL-6−174, and IL-1RaVNTR related to susceptibility and severity of rheumatic heart disease. Paediatr. Cardiol. 2007, 28, 363–371. [Google Scholar] [CrossRef]
- Marin-Garcia, J.; Ananthakrishnan, R.; Gonzalvo, A.; Goldenthal, M.J. Novel mutations in mitochondrial cytochrome b in fatal post-partum cardiomyopathy. J. Inherit. Metab. Dis. 1995, 18, 77–78. [Google Scholar] [CrossRef]
- Ekiert, R.; Borek, A.; Kuleta, P.; Czernek, J.; Osyczka, A. Mitochondrial disease-related mutations at the cytochrome b-iron–sulfur protein (ISP) interface: Molecular effects on the large-scale motion of ISP and superoxide generation studied in Rhodobacter capsulatus cytochrome bc1. Biochim. Biophys. Acta 2016, 1857, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.L.; Bruno, C.; Hadjigeorgiou, G.M.; Shanske, S.; DiMauro, S. Polymorphic Variants in the Human Mitochondrial Cytochrome b Gene. Mol. Genet. Metab. 1999, 67, 49–52. [Google Scholar] [CrossRef]
- Hagen, C.H.; Aidt, F.H.; Havndrup, O.; Hedley, P.L.; Jespersgaard, C.; Jensen, M.; Christiansen, M. MT-CYB mutations in hypertrophic cardiomyopathy. Mol. Genet. Genom. Med. 2013, 1, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Marin-Garcia, J.; Goldenthal, M.J.; Ananthakrishnan, R.; Pierpont, M.E. The Complete Sequence of mtDNA Genes in Idiopathic Dilated Cardiomyopathy Shows Novel Missense and tRNA Mutations. J. Card. Fail. 2000, 6, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.L.; Checcarelli, N.; Iwata, S.; Shanske, S.; Dimauro, S. Missense Mutation in the Mitochondrial Cytochrome b Gene in a Revisited Case with Histiocytoid Cardiomyopathy. Pediatr. Res. 2000, 48, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, F.; Guo, L.; Xiong, X.; Fan, X. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine. Evidence-Based Complement. Med. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Khatami, M.; Heidari, M.M.; Karimian, N.; Hadadzadeh, M. Mitochondrial Mutations in tRNAGlu and Cytochrome b Genes Associated with Iranian Congenial Heart Disease. Int. Cardiovasc. Res. J. 2016, 10, 193–198. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Geer, L.Y.; Domrachev, M.; Lipman, D.J.; Bryant, S.H. CDART: Protein homology by domain architecture. Genome Res. 2002, 12, 1619–1623. [Google Scholar] [CrossRef]
- Adzhubei, I.; Jordan, D.; Sunyaev, S. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 7, 1–52. [Google Scholar] [CrossRef]
- Pauline, C.N.; Steven, H. Predicting Deleterious Amino Acid Substitutions. Genome Res. 2001, 11, 863–874. [Google Scholar] [Green Version]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chinnery, P.F.; Howell, N.; Andrews, R.M.; Turnbull, D.M. Mitochondrial DNA analysis: Polymorphisms and pathogenicity. J. Med. Genet. 1999, 36, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Kishino, H.; Yano, T. Dating the human-ape split by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Jukes, T.; Cantor, C. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, NY, USA, 1969; p. 21. [Google Scholar]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evolut. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Excoffier, L. Computational and Molecular Population Genetics Lab CMPG; Zoological Institute, University of Berne: Bern, Switzerland, 2006. [Google Scholar]
- Nei, M.; Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evolut. 1986, 3, 418–426. [Google Scholar]
- Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999, 23, 147. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; Fu, Q.; Good, J.M.; Viola, B.; Shunkov, M.V.; Derevianko, A.P.; Pääbo, S. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 2010, 464, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Fu, Q.; Aximu-Petri, A.; Glocke, I.; Nickel, B.; Arsuaga, J.L.; Pääbo, S. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 2014, 505, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Green, R.E.; Malaspinas, A.S.; Krause, J.; Briggs, A.W.; Johnson, P.L.; Uhler, C.; Prüfer, K. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 2008, 134, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Sazonova, M.A.; Zhelankin, A.V.; Barinova, V.A.; Sinyov, V.V.; Khasanova, Z.B.; Postnov, A.Y.; Orekhov, A.N. Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis. Data Brief. 2016, 7, 1570–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, B.; Chan, S. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Ann. Rev. Biophys. Biomol. Struct. 2001, 30, 23–65. [Google Scholar] [CrossRef]
- Hunte, C.; Koepke, J.; Lange, C.; Roßmanith, T.; Michel, H. Structure at 2.3 A resolution of the cytochrome bc (1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 2000, 8, 669–684. [Google Scholar] [CrossRef]
- Dasgupta, S.; Hoque, M.O.; Upadhyay, S.; Sidransky, D. Forced Cytochrome B gene mutation expression induces mitochondrial proliferation and prevents apoptosis in human uroepithelial SV-HUC-1 cells. Int. J. Cancer 2009, 15, 2829–2835. [Google Scholar] [CrossRef]
- Mirabel, M.; Ferreira, B.; Sidi, D.; Lachaud, M.; Jouven, X.; Marijon, E. Rhumatisme articulaire aigu-Perspectives. Med. Sci. 2012, 28, 633–638. [Google Scholar]
Mutations | Rate | p. rCRS | Proportions of Mutations | Status | Nature | p. AA | CD | PolyPhen-2 Prediction | Sift Prediction | Provean Prediction | Conclusion | References | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S % | NO % | O% | ||||||||||||
T69C | 91 | 15851 | 1.22 | 3.57 | 0.00 | Homo | T | I369V | Yes | Benign 0 | TOL | Neutral | N.P | + (A > C) (1) |
G71A | 142 | 15849 | 9.76 | 10.71 | 9.26 * | Homo | T | T368I | Yes | Benign 0 | TOL | Neutral | N.P | + (C > T) |
G81GC | 20 | 15839 | 1.22 | 3.57 | 0.00 | Hetero | T | L365L | Yes | + (C > T) | ||||
A89AT | 22 | 15831 | 1.22 | 3.57 | 0.00 | Hetero | T | I362I | Yes | |||||
T94TA | 83 | 15826 | 1.22 | 3.57 | 0.00 | Hetero | T | T360T | Yes | |||||
T96C | 101 | 15824 | 15.85 | 21.43 | 12.96 * | Homo | T | T360A | Yes | Benign 0 | TOL | Neutral | N.P | + (A > G) |
T121C | 119 | 15799 | 1.22 | 0.00 * | 1.85 | Homo | T | Q352Q | Yes | + (A > G) | ||||
G130A | 103 | 15790 | 2.44 | 0.00 | 3.70 * | Homo | T | T348T | Yes | + (C > T) | ||||
A133AC | 21 | 15787 | 1.22 | 0.00 * | 1.85 | Hetero | T | F347F | Yes | + (C > T) | ||||
A136G | 86 | 15784 | 14.63 | 10.71 * | 16.67 * | Homo | T | P346P | Yes | + (C > T) (3) | ||||
A136AG | 45 | 15784 | 1.22 | 0.00 * | 1.85 | Hetero | T | P346P | Yes | + (C > T) (3) | ||||
A141AT | 25 | 15779 | 1.22 | 3.57 | 0.00 | Hetero | T | Y345Y | Yes | + (T > C) | ||||
C143G | 150 | 15777 | 1.22 | 3.57 | 0.00 | Homo | T | S344T | Yes | p.D | AFP | Neutral | P | + (G > C) |
T162C | 146 | 15758 | 2.44 | 0.00 | 3.70 * | Homo | T | I338V | Yes | Benign | AFP | Neutral | N.P | + (A > G) (1) |
G171GC | 25 | 15749 | 3.66 | 3.57 | 3.70 | Hetero | T | L335L | Yes | + (C > T) | ||||
G177GC | 23 | 15743 | 1.22 | 3.57 | 0.00 | Hetero | t | L333L | Yes | + (C > T) | ||||
C186T | 119 | 15734 | 1.22 | 3.57 | 0.00 | Homo | T | A330T | Yes | Benign | AFP | Neutral | N.P | + (G > A) |
G187GC | 28 | 15733 | 1.22 | 0.00 * | 1.85 | Hetero | t | A330A | Yes | + (C > A) | ||||
A250G | 99 | 15670 | 2.44 | 7.14 | 0.00 * | Homo | T | H308H | Yes | + (T > C) | ||||
A254AT | 36 | 15666 | 1.22 | 0.00 * | 1.85 | Hetero | t | L307L | Yes | |||||
G256A | 151 | 15664 | 1.22 | 3.57 | 0.00 | Homo | T | I306I | Yes | + (C > A) | ||||
A257AG | 40 | 15663 | 1.22 | 3.57 | 0.00 | Hetero | T | I306I | Yes | + (T > C) | ||||
T267TG | 24 | 15653 | 1.22 | 0.00 * | 1.85 | Hetero | t | M303M | Yes | + (A > G) | ||||
G279GA | 40 | 15641 | 2.44 | 7.14 | 0.00 * | Hetero | T | L299F | Yes | P.D | AFP | Neutral | P | + (C > T) |
A281AG | 44 | 15639 | 1.22 | 3.57 | 0.00 | Hetero | T | I298T | Yes | P.D | AFP | Del | P | + (T > C) |
A287AC | 32 | 15633 | 1.22 | 0.00 * | 1.85 | Hetero | T | L296L | Yes | |||||
G288GA | 24 | 15632 | 1.22 | 3.57 | 0.00 | Hetero | T | L296L | Yes | + (C > T) | ||||
A291AG | 22 | 15629 | 1.22 | 3.57 | 0.00 | Hetero | T | L295L | Yes | + (T > C) | ||||
G294A | 41 | 15626 | 1.22 | 0.00 * | 1.85 | Homo | T | L294L | Yes | + (C > T) | ||||
G304C | 23 | 15616 | 1.22 | 0.00 * | 1.85 | Homo | T | G290G | Yes | + (C > T) | ||||
T307C | 48 | 15613 | 1.22 | 0.00 * | 1.85 | Homo | T | G289G | Yes | + (A > G) | ||||
T313C | 70 | 15607 | 1.22 | 0.00 * | 1.85 | Homo | T | K287P | Yes | P.D | AFP | Del | P | (1)(2)(3) |
T314TC | 50 | 15606 | 1.22 | 0.00 * | 1.85 | Hetero | T | K287P | Yes | P.D | AFP | Del | P | |
T315TC | 50 | 15605 | 1.22 | 0.00 * | 1.85 | Hetero | T | K287P | Yes | P.D | AFP | Del | P | |
G316GC | 44 | 15604 | 1.22 | 0.00 * | 1.85 | Hetero | T | N286P | Yes | P.D | TOL | Del | P | + (C > T) |
T317TC | 45 | 15603 | 1.22 | 0.00 * | 1.85 | Hetero | T | N286P | Yes | P.D | TOL | Del | P | + (A > G) |
T318TC | 38 | 15602 | 1.22 | 0.00 * | 1.85 | Hetero | T | N286P | Yes | P.D | TOL | Del | P | |
A319G | 128 | 15601 | 1.22 | 3.57 | 0.00 | Homo | T | P285P | Yes | + (T > C) | ||||
A319AG | 58 | 15601 | 2.44 | 7.14 | 0.00 * | Hetero | T | P285P | Yes | |||||
G320GC | 22 | 15600 | 1.22 | 0.00 * | 1.85 | Hetero | T | P285P | Yes | |||||
G321GC | 106 | 15599 | 1.22 | 0.00 * | 1.85 | Hetero | T | P285P | Yes | |||||
A323AG | 24 | 15597 | 1.22 | 3.57 | 0.00 | Hetero | T | V284V | Yes | |||||
A342G | 23 | 15578 | 1.22 | 3.57 | 0.00 | Hetero | T | Y278Y | Yes | |||||
G343GC | 35 | 15577 | 1.22 | 3.57 | 0.00 | Hetero | T | A277A | Yes | |||||
A390AG | 73 | 15530 | 1.22 | 3.57 | 0.00 | Hetero | T | L262L | Yes | + (T > C) (1) | ||||
C454CT | 31 | 15466 | 2.44 | 7.14 | 0.00 * | Hetero | T | M240M | Yes | + (G > A) | ||||
G460GA | 44 | 15460 | 1.22 | 3.57 | 0.00 | Hetero | T | S238L | Yes | Benign | TOL | Neutral | N.P | + (C > T) |
A466AG | 24 | 15454 | 2.44 | 7.14 | 0.00 * | Hetero | T | L236L | Yes | + (T > C) | ||||
G487GA | 24 | 15433 | 1.22 | 3.57 | 0.00 | Hetero | T | A229A | Yes | + (C > T) | ||||
G534C | 149 | 15386 | 1.22 | 3.57 | 0.00 | Homo | T | H214D | Yes | Benign | TOL | Neutral | N.P | + (C > A) |
G539A | 148 | 15381 | 1.22 | 3.57 | 0.00 | Homo | T | T212I | Yes | Benign | TOL | Neutral | N.P | + (C > T) |
A558T | 80 | 15362 | 23.17 | 67.86 * | 0.00 * | Homo | T | Y206Y | Yes | |||||
A597C | 128 | 15323 | 23.17 | 67.86 * | 0.00 * | Homo | T | S193S | No | + (G > A) | ||||
G606C | 32 | 15314 | 14.63 | 42.86 * | 0.00 * | Homo | T | T190A | No | + (G > A) | ||||
T609C | 49 | 15311 | 3.66 | 10.71 | 0.00 * | Homo | T | L189V | No | Benign | TOL | - | N.P | + (A > G) |
A610AC | 21 | 15310 | 1.22 | 3.57 | 0.00 | Hetero | T | F188I | No | + (T > C) | ||||
A610GA | 66 | 15310 | 1.22 | 3.57 | 0.00 | Homo | T | F188I | No | + (T > C) | ||||
A612T | 42 | 15308 | 19.51 | 57.14 * | 0.00 * | Homo | T | F188I | No | + (A > G) | ||||
G616GA | 43 | 15304 | 1.22 | 3.57 | 0.00 | Hetero | T | P186P | No | + (C > T) | ||||
T619C | 45 | 15301 | 3.66 | 10.71 | 0.00 * | Homo | T | I185L | No | + (G > A) (3) |
Amino Acids | Controls | Operated | Non-Operated | P-Value C vs. O | P-Value C vs. NOP | P-Value O vs. NOP |
---|---|---|---|---|---|---|
Ala | 0.67 | 0.68 | 0.69 | 0.999 | 0.999 | 0.999 |
Cys | 4.72 | 4.68 | 4.74 | 0.997 | 0.999 | 0.996 |
Asp | 0.00 | 0.00 | 0.00 | 1 | 1 | 1 |
Glu | 3.89 | 3.96 | 3.96 | 0.996 | 0.997 | 0.999 |
Phe | 2.67 | 2.70 | 2.69 | 0.998 | 0.999 | 0.999 |
Gly | 21.40 | 21.20 | 21.06 | 0.987 | 0.978 | 0.999 |
His | 0.00 | 0.00 | 0.00 | 1 | 1 | 1 |
Ile | 2.67 | 2.68 | 2.67 | 0.999 | 1 | 0.992 |
Lys | 2.00 | 1.93 | 2.07 | 0.996 | 0.996 | 0.998 |
Leu | 20.68 | 20.73 | 20.71 | 0.997 | 0.998 | 1 |
Met | 6.00 | 6.01 | 6.00 | 0.999 | 0.999 | 1 |
Asn | 2.67 | 2.67 | 2.67 | 1 | 1 | 1 |
Pro | 0.00 | 0.04 | 0.07 | 0.998 | 0.996 | 0.998 |
Gln | 1.33 | 1.34 | 1.43 | 1 | 0.995 | 0.995 |
Arg | 7.34 | 7.52 | 7.46 | 0.989 | 0.993 | 0.996 |
Ser | 3.34 | 3.36 | 3.34 | 0.998 | 1 | 0.998 |
Thr | 0.00 | 0.01 | 0.05 | 0.999 | 0.997 | 0.999 |
Val | 10.01 | 9.91 | 9.89 | 0.994 | 0.993 | 0.999 |
Trp | 8.62 | 8.57 | 8.58 | 0.997 | 0.998 | 0.999 |
Tyr | 2.00 | 2.00 | 1.93 | 1 | 0.996 | 0.996 |
Parameters | Controls | Unoperated | Operated | ||||||||||
Size of population n | 12 | 28 | 54 | ||||||||||
Number of sites N | 492 | 492 | 492 | ||||||||||
Non-variables sites | 485 | 441 | 450 | ||||||||||
Variables sites | 7 | 51 | 42 | ||||||||||
Non-informative variables sites | 5 | 43 | 25 | ||||||||||
Informative variables sites | 2 | 8 | 17 | ||||||||||
Number of total mutations Eta | 7 | 52 | 52 | ||||||||||
Number of haplotypes | 7 | 17 | 29 | ||||||||||
Haplotypic diversity hd | 0.833 ± 0.100 | 0.923 ± 0.037 | 0.883 ± 0.039 | ||||||||||
Nucleotide diversity Pi | 0.00314 ± 0.00071 | 0.00996 ± 0.00336 | 0.00645 ± 0.00129 | ||||||||||
The average number of nucleotide differences k | 1.545 | 4.902 | 3.173 | ||||||||||
Nucleotide frequencies | T | C | A | G | T | C | A | G | T | C | A | G | |
General | 29.5 | 9.3 | 25.2 | 36.0 | 29.4 | 9.5 | 25.3 | 35.8 | 29.5 | 9.5 | 25.2 | 35.9 | |
Position 1 | 21 | 9.8 | 27.4 | 21 | 9.7 | 42.1 | 27.4 | 21 | 9.8 | 42.0 | 27.3 | 42.1 | |
Position 2 | 29 | 17.1 | 20.8 | 32.9 | 29 | 17.4 | 20.9 | 32.5 | 29 | 17.3 | 20.8 | 32.6 | |
Position 3 | 38 | 1.2 | 12.7 | 47.7 | 38 | 1.4 | 12.8 | 47.5 | 38 | 1.3 | 12.7 | 47.6 | |
Nature of mutations | Transitions | 100 | 46.92 | 34.91 | |||||||||
Transversions | 0 | 53.08 | 65.09 | ||||||||||
Rate of mutations R | ∞ | 0.88 | 0.54 | ||||||||||
Rate of synonymous substitutions Ks | 0.002 ± 0.001 | 0.011 ± 0.003 | 0.006 ± 0.003 | ||||||||||
Rate of non-synonymous substitutions Kns | 0.003 ± 0.002 | 0.007 ± 0.002 | 0.005 ± 0.002 |
Controls | Non-Operated | Operated | |
---|---|---|---|
Controls | 0.003 ± 0.001 | ||
Non-operated | 0.007 ± 0.001 | 0.011 ± 0.002 | |
Operated | 0.005 ± 0.001 | 0.009 ± 0.001 | 0.007 ± 0.001 |
Controls | Unoperated | Operated | |
---|---|---|---|
Controls | 0.87195 | 0.38416 | |
Unoperated | 0 | 0.01466 | |
Operated | 0.00128 | 0.01419 |
Source of Variation | Percentage Variation |
---|---|
Inter-populations | 1.41855 |
Intra-population | 98.58145 |
Neutrality | Positive Selection | Negative Selection | |
---|---|---|---|
Operated | 0.965 | 0.483 | 1.000 |
Non-operated | 0.015 | 0.008 | 1.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wade, F.B.; Sall, M.P.; Mbaye, F.; Sembene, M. Mitochondrial DNA Mutations and Rheumatic Heart Diseases. J. Cardiovasc. Dev. Dis. 2019, 6, 36. https://doi.org/10.3390/jcdd6040036
Wade FB, Sall MP, Mbaye F, Sembene M. Mitochondrial DNA Mutations and Rheumatic Heart Diseases. Journal of Cardiovascular Development and Disease. 2019; 6(4):36. https://doi.org/10.3390/jcdd6040036
Chicago/Turabian StyleWade, Fatou Balla, Marie Parsine Sall, Fatimata Mbaye, and Mbacké Sembene. 2019. "Mitochondrial DNA Mutations and Rheumatic Heart Diseases" Journal of Cardiovascular Development and Disease 6, no. 4: 36. https://doi.org/10.3390/jcdd6040036
APA StyleWade, F. B., Sall, M. P., Mbaye, F., & Sembene, M. (2019). Mitochondrial DNA Mutations and Rheumatic Heart Diseases. Journal of Cardiovascular Development and Disease, 6(4), 36. https://doi.org/10.3390/jcdd6040036