Verification of Underlying Genetic Cause in a Cohort of Russian Patients with Familial Hypercholesterolemia Using Targeted Next Generation Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genetic Study
2.3. Laboratory Analysis
2.4. Duplex Scanning of Carotid Arteries
2.5. Statistical Analysis
3. Results
3.1. Genetic Test Results
3.2. Clinical Data Analysis for Heterozygous FH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ezhov, M.V.; Sergienko, I.V.; Duplyakov, D.V.; Abashina, O.E.; Kachkovsky, M.A.; Shaposhnik, I.I.; Genkel, V.V.; Muzalevskaya, M.V. Results of the Russian research program on the diagnosis and treatment of patients with familial hypercholesterolaemia. High prevalence, low awareness, poor adherence. J. Atheroscler. Dyslipidaemias 2017, 2, 5–15. [Google Scholar]
- Ershova, A.I.; Meshkov, A.N.; Bazhan, S.S.; Storozhok, M.A.; Efanov, A.Y.; Medvedeva, I.V.; Indukaeva, E.V.; Danilchenko, Y.; Kuzmina, O.K.; Barbarash, O.L.; et al. The prevalence of familial hypercholesterolemia in the West Siberian region of the Russian Federation: A substudy of the ESSE-RF. PLoS ONE 2017, 12, e0181148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiegman, A. European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European Atherosclerosis Society. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ferranti, S.D.; Rodday, A.M.; Mendelson, M.; Wong, J.B.; Leslie, L.K.; Sheldrick, R.C. Prevalence of Familial Hypercholesterolemia in the 1999 to 2012 United States National Health and Nutrition Examination Surveys (NHANES). Circulation 2016, 133, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Schmidt, B.; Dressel, A.; Gergei, I.; Klotsche, J.; Pieper, L.; Scharnagl, H.; Kleber, M.; März, W.; Lehnert, H.; et al. Familial hypercholesterolemia in primary care in Germany. Diabetes and cardiovascular risk evaluation: Targets and Essential Data for Commitment of Treatment (DETECT) study. Atherosclerosis 2017, 266, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Benn, M.; Watts, G.F.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Mutations causative of familial hypercholesterolaemia: Screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur. Hear. J. 2016, 37, 1384–1394. [Google Scholar] [CrossRef] [Green Version]
- Safarova, M.S.; Sergienko, I.V.; Ezhov, M.V.; Semenova, A.E.; Kachkovskiy, M.A.; Shaposhnik, I.I.; on behalf of the RuFH Investigators. Russian research program for early diagnosis and treatment of familial hypercholesterolaemia: Rationale and Design of the Russian FH Registry (RuFH). J. Atheroscler. Dyslipidaemias 2014, 3, 7–15. [Google Scholar]
- Santos, R.D.; Gidding, S.S.; Hegele, R.A.; Cuchel, M.A.; Barter, P.J.; Watts, G.F.; Baum, S.J.; Catapano, A.L.; Chapman, M.J.; Defesche, J.C.; et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: A consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol. 2016, 4, 850–861. [Google Scholar] [CrossRef]
- Richards, S.; on behalf of the ACMG Laboratory Quality Assurance Committee; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Afanasieva, O.I.; Adamova, I.Y.; Benevolenskaya, G.F.; Pokrovsky, S.N. Immuno-enzyme assay for lipoprotein(a) measurement. Bull. Exp. Biol. Med. 1995, 4, 398–401. [Google Scholar]
- Touboul, P.-J.; Hennerici, M.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez, R.H.; et al. Mannheim Carotid Intima-Media Thickness and Plaque Consensus (2004–2006–2011). Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998, 351, 1379–1387. [Google Scholar] [CrossRef]
- Diakou, M.; Miltiadous, G.; Xenophontos, S.L.; Manoli, P.; Cariolou, M.A.; Elisaf, M. Spectrum of LDLR gene mutations, including a novel mutation causing familial hypercholesterolaemia, in North-western Greece. Eur. J. Int. Med. 2011, 22, e55–e59. [Google Scholar] [CrossRef]
- Huijgen, R.; Sjouke, B.; Vis, K.; De Randamie, J.S.; Defesche, J.C.; Kastelein, J.J.; Hovingh, G.K.; Fouchier, S.W. Genetic variation in APOB, PCSK9, and ANGPTL3 in carriers of pathogenic autosomal dominant hypercholesterolemic mutations with unexpected low LDL-Cl Levels. Hum. Mutat. 2011, 33, 448–455. [Google Scholar] [CrossRef]
- Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef] [Green Version]
- Morisaki, T.; Gross, M.; Morisaki, H.; Pongratz, D.; Zöllner, N.; Holmes, E.W. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc. Natl. Acad. Sci. USA 1992, 89, 6457–6461. [Google Scholar] [CrossRef] [Green Version]
- Futema, M.; Shah, S.; Cooper, J.A.; Li, K.; Whittall, R.A.; Sharifi, M.; Goldberg, O.; Drogari, E.; Mollaki, V.; Wiegman, A.; et al. Refinement of Variant Selection for the LDL Cholesterol Genetic Risk Score in the Diagnosis of the Polygenic Form of Clinical Familial Hypercholesterolemia and Replication in Samples from 6 Countries. Clin. Chem. 2015, 61, 231–238. [Google Scholar] [CrossRef]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, É.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Hear. J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, M.; Higginson, E.; Bos, S.; Gallivan, A.; Harvey, D.; Li, K.W.; Abeysekera, A.; Haddon, A.; Ashby, H.; Shipman, K.; et al. Greater preclinical atherosclerosis in treated monogenic familial hypercholesterolemia vs. polygenic hypercholesterolemia. Atherosclerosis 2017, 263, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.V.; Won, H.H.; Peloso, G.M.; Lawson, K.S.; Bartz, T.M.; Deng, X.; Morrison, A.C. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolaemia Genes in Patients with Severe Hypercholesterolaemia. J. Am. Coll. Cardiol. 2016, 67, 2578–2589. [Google Scholar] [CrossRef] [PubMed]
- Mundal, L.; Igland, J.; Ose, L.; Holven, K.B.; Veierød, M.B.; Leren, T.P.; Retterstøl, K. Cardiovascular disease mortality in patients with genetically verified familial hypercholesterolemia in Norway during 1992–2013. Eur. J. Prev. Cardiol. 2016, 24, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Bangash, F.A.; Bestwick, J.P. Prevalence of DNA-confirmed familial hypercholesterolaemia in young patients with myocardial infarction. Eur. J. Int. Med. 2015, 26, 127–130. [Google Scholar] [CrossRef] [PubMed]
- De Isla, L.P.; Alonso, R.; Mata, N.; Saltijeral, A.; Muñiz, O.; Rubio-Marin, P.; Diaz-Diaz, J.L.; Fuentes, F.; De Andrés, R.; Zambón, D.; et al. Coronary Heart Disease, Peripheral Arterial Disease, and Stroke in Familial Hypercholesterolaemia. Arter. Thromb. Vasc. Boil. 2016, 36, 2004–2010. [Google Scholar] [CrossRef] [Green Version]
- Paquette, M.; Dufour, R.; Baass, A. The Montreal-FH-SCORE: A new score to predict cardiovascular events in familial hypercholesterolemia. J. Clin. Lipidol. 2017, 11, 80–86. [Google Scholar] [CrossRef]
- De Isla, L.P.; Alonso, R.; Mata, N.; Fernandez-Perez, C.; Muñiz, O.; Díaz, J.L.D.; Saltijeral, A.; Fuentes-Jiménez, F.J.; De Andrés, R.; Zambón, D.; et al. Predicting Cardiovascular Events in Familial Hypercholesterolemia. Circulation 2017, 135, 2133–2144. [Google Scholar] [CrossRef]
- Paquette, M.; Chong, M.; Thériault, S.; Dufour, R.; Paré, G.; Baass, A. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. J. Clin. Lipidol. 2017, 11, 725–732. [Google Scholar] [CrossRef]
- Besseling, J.; Huijgen, R.; Martin, S.S.; A Hutten, B.; Kastelein, J.J.; Hovingh, G.K. Clinical phenotype in relation to the distance-to-index-patient in familial hypercholesterolemia. Atherosclerosis 2016, 246, 1–6. [Google Scholar] [CrossRef]
Associated Phenotypes | Genes |
---|---|
Monogenic dyslipidemias | ABCA1, ABCG1, ABCG5, ABCG8, ANGPTL3, APOA1, APOA5, APOB, APOC2, APOC3, APOE, CETP, GPD1, GPIHBP1, LCAT, LDLR, LDLRAP1, LIPA, LIPC, LMF1, LPA, LPL, LRP6, MEF2A, MTTP, MYLIP, PCSK9, PLTP, SAR1B, SCARB1, SLC25A40 |
Other inherited conditions related to dyslipidemia and premature atherosclerosis | AGPAT2, AKT2, AMPD1, BLK, BSCL2, CAV1, CEL, CIDEC, COQ2, CPT2, CYP2D6, GCK, HNF1A, HNF1B, HNF4A, INS, INSR, KLF11, LEP, LMNA, NEUROD1, NPC1L1, PAX4, PDX1, PLIN1, PNPLA2, PPARA, PPARG, PTRF, PYGM, SLC22A8, ZMPSTE24 |
Proband’s ID | Genetic Data | Clinical Data | Family History of Death from MI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mutations | Modifying Factors 2 | Max LDL-C/TC Levels, mmol/L 10 | Lp(a) Levels, mg/dL | HDL-C Levels, mmol/L | Age, Years | Sex | Cardiovascular Disease | First-Degree Relatives | Second-Degree Relatives | ||
LDLR | APOB | ||||||||||
1 | - | Arg3527Gln | APOB (Glu2566Lys) 3 | 6.19/8.60 | 1.6 | 1.78 | 48 | F | - | - | - |
2 | Gly592Glu | - | - | 10.21/11.94 9 | - | 1.35 | 65 | F | PAD | - | - |
4 | c.940 + 3_940 + 6delGAGT | - | APOE (Cys130Arg) 3 APOA5 (Ser19Trp) 4 | 9.17/11.89 | 68.1 | 1.37 | 42 | F | - | - | Maternal uncle at 45yr, maternal grandmother at 59yr, maternal uncle SD at 57yr |
6 | - | - | LPL (Asn318Ser) 4 | 7.60/9.60 | 7.5 | 1.2 | 56 | F | PCI at 51yr | - | - |
7 | Cys329Tyr | - | - | 10.00/12.00 9 | 13.2 | 1.27 | 51 | M | PAD | - | - |
8 | Gly592Glu | - | APOE (Cys130Arg) 3 LDLR (Val827Ile) 8 | 11.50/14.00 | 31 | 1.44 | 55 | M | CABG at 48yr, PCI at 50yr; PAD | - | - |
9 | - | - | 6.06/8.00 | 55.4 | 1 | 67 | F | - | - | - | |
10 | - | - | LPA (Ile1891Met) 5 | 8.43/11.11 | 119.2 | 1.78 | 61 | F | - | - | - |
11 | - | - | - | 7.11/9.21 | 106.4 | 1.09 | 42 | M | - | - | - |
12 | - | - | - | 7.87/10.14 | 11.7 | 1.38 | 42 | M | - | - | - |
13 | - | - | - | 9.26/11.43 | 54.9 | 1.35 | 45 | M | - | - | - |
14 | - | - | APOE (Cys130Arg) 3 | 9.4/11.50 | 70.9 | 0.76 | 43 | M | - | - | - |
16 | Cys352Arg | - | APOE (Cys130Arg) 3 LPA (Ile1891Met) 5 | 8.59/10.13 | 92.7 | 1 | 19 | M | - | - | Paternal uncles at 45yr and 63yr |
17 | - | - | - | 10.85/14.25 | 91.3 | 1.22 | 62 | F | CAD at 51yr, MI and CABG at 62yr | Mother at 38yr | - |
18 | Pro106_Val395dup | - | APOE (Cys130Arg) 3 APOA5 (Ser19Trp) 4 | 8.17/9.94 9 | 8.8 | 0.81 | 68 | M | MI at 51yr, CABG at 61yr | Father at 67yr | - |
19 | Val806Glyfs*11 | Arg3527Gln | APOB (Glu2566Lys) 3 PCSK9 (Arg93Cys) 7 | 9.36/12.00 | 143.3 | 2.02 | 61 | F | PCI at 48yr; PAD | Father at 69yr | Paternal uncle at 46yr |
21 | c.1846-3T > G | - | - | 8.94/10.57 | 98.7 | 1.02 | 55 | M | CAD at 46yr, CABG at 50yr; PAD | - | Maternal uncle at 54yr |
22 | Ser586Pro | - | APOE (Cys130Arg) 3 | 9.68/12.00 | 4.5 | 1.3 | 46 | M | CAD at 36yr, MI and CABG at 37yr; PAD | Mother at 58yr | Two maternal uncles before 40yr |
23 | c.2389 + 5G > C | - | LPA (Ile1891Met) 5 | 13.11/15.67 9 | 117.8 | 1.54 | 50 | F | - | - | Maternal grandfather at 52yr |
24 | - | APOE (Cys130Arg) 3 | 7.76 / 9.96 | 5 | 1.92 | 42 | F | - | - | - | |
25 | Ser177Leu, Cys352Arg | - | 17.63/19.00 | 190.3 | 0.79 | 32 | F | CAD at 20yr, MI at 30yr; PAD | - | - | |
28 | Cys329Tyr, Gly592Glu | - | APOA5 (Ser19Trp) 4 | 17.35/19.00 | - | 0.98 | 39 | F | CAD at 36yr | - | - |
29 | Arg416Trp, c.940 + 3_940 + 6delGAGT | - | - | 15.15/17.25 | 55.8 | 0.94 | 31 | F | MI at 15yr, CABG at 26yr; PAD | - | - |
30 | Pro220_Asp221del | - | - | 7.00/9.00 | 6.5 | 0.95 | 46 | M | MI at 24yr, PCI at 26yr | Mother at 62yr | - |
33 | Gln739* | - | - | 7.00/9.10 9 | 79.8 | 0.8 | 36 | M | MI and PCI at 36yr | - | - |
34 | Gly119Valfs*12 | - | APOE (Cys130Arg) 3 ABCA1 (Lys776Asn) 6 | 11.00/13.00 | 69.7 | 0.96 | 69 | F | MI at 52yr, PCI at 66yr | Mother at 59yr, son SD at 25yr | Maternal mother at 64yr, maternal aunt at 69yr |
35 | - | - | - | 7.00/9.00 | 3.3 | 0.85 | 47 | M | CAD at 39yr, PCI at 40yr, MI at 46yr; PAD | - | - |
36 | Gly545Arg | - | - | 11.90/13.79 | 25 | 1.01 | 53 | F | CAD at 47yr, PCI at 52yr; PAD | - | - |
37 | Tyr489Asn | - | APOA5 (Ser19Trp) 4 | 14.82/17.61 | - | 1.1 | 37 | M | MI at 28yr, PCI at 29yr | - | Maternal aunt at 33yr, maternal grandfather at 33yr |
38 | Glu714_Ile796del, Trp443Arg | - | - | 21.00/23.00 | 134 | 0.82 | 27 | F | MI at 21yr, CABG at 23yr; PAD | - | Maternal grandmother at 60yr |
39 | Lys581Gln | - | - | 11.18/12.80 | - | 0.85 | 42 | F | - | - | |
40 | Leu64_Pro105delinsSer, Pro181Leu | - | - | 8.83/10.83 | - | 1.14 | 45 | F | MI at 40yr, CABG at 43yr | - | Paternal uncle at 57yr |
41 | - | - | - | 6.70/9.38 | 65.6 | 1.06 | 60 | M | CAD at 53yr, MI at 58yr, CABG at 59yr; PAD | - | - |
42 | - | - | - | 7.53/9.68 9 | 63 | 1.3 | 70 | F | CAD at 48yr, MI at 51yr; PAD | Father at 61yr | - |
43 | - | - | - | 6.08/9.14 | 8.8 | 1.98 | 59 | F | CAD at 56yr | - | - |
44 | - | - | LPA (Ile1891Met) 5 | 6.90/9.05 | 105.7 | 1.64 | 61 | F | - | - | |
45 | Glu308Lys | - | APOE (Cys130Arg) 3 LPA (Ile1891Met) 5 | 8.30/10.30 | 123.8 | 1.45 | 46 | M | CAD at 44yr, CABG at 45yr | - | - |
46 | - | - | APOE (Cys130Arg) 3 LPA (Ile1891Met) 5 | 8.00/10.00 | 116.3 | 1.53 | 65 | F | - | - | - |
47 | Ser586Pro | - | LPA (Ile1891Met) 5 | 7.84/9.75 | 213 | 0.82 | 34 | M | CAD at 31yr, MI and PCI at 33yr | Father SD at 60yr | - |
48 | - | - | - | 5.55/8.00 9 | 21.3 | 1.66 | 65 | M | MI and PCI at 59yr; PAD | Father SD at 48yr | - |
49 | - | - | APOE (Cys130Arg) 3 | 5.75/7.95 | 7 | 1.37 | 27 | M | MI and PCI at 21yr | - | Maternal grandfather at 62yr |
50 | - | - | LIPC (c.-57_88del) 4 | 9.00/11.00 | 16.6 | 1.17 | 68 | F | - | - | - |
51 | Gly592Glu | - | - | 11.84/14.17 | 7.5 | 1.13 | 59 | F | - | - | - |
52 | - | - | - | 14.67/17.00 | 5.2 | 1.65 | 32 | M | - | - | - |
53 | - | - | APOE (Cys130Arg) 3 LPL (Ser474*) | 7.90/9.90 | 2.9 | 1.22 | 56 | M | CAD at 54yr | - | - |
54 | - | - | APOE (Cys130Arg) 3 | 8.61/11.26 | 2.6 | 0.68 | 46 | M | - | - | - |
55 | - | - | APOA5 (Ser19Trp) 4 | 6.1/8.64 | 4 | 1.19 | 69 | M | - | - | - |
56 | - | - | 6.92/9.60 | 9.9 | 2.24 | 55 | F | CAD | - | - | |
57 | - | - | APOE (Cys130Arg) 3 | 5.98/8.00 | 71.2 | 1.14 | 63 | M | CAD at 38yr, MI and CABG at 50yr | Father at 48yr | - |
58 | - | - | APOE (Cys130Arg 1) 3 | 8.00/10.10 | 12.1 | 1.66 | 53 | F | - | - | - |
59 | - | - | APOE (Cys130Arg) 3 LPL (Asn318Ser) 4 | 5.88/8.24 | 2.9 | 1.23 | 44 | F | - | - | - |
60 | - | - | APOA5 (Ser19Trp) 4 | 8.9/14.00 9 | - | 1.4 | 44 | M | MI at 38yr, PCI at 39yr; PAD | Father at 49yr | Paternal grandfather at 53yr |
N | LDLR Variant | Exon/Intron | c.DNA | Number of Pts | Associated 1 Max LDL-C/TC Levels, mmol/l | Previously Published in Publications | ExAC Database Frequency | GnomAD Allele Frequencies | Familial Cosegregation | Functional Studies | Number of Carriers/Families | Countries (Previously Published) | Pathogenicity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Leu64_Pro105delinsSer | Ex3 | c.191_313del | 1 | – | 6 | 0 | 0 | – | + | NA | France, the Netherlands | +++ |
2 | Pro106_Val395dup | DupEx4–8 | c.*11173514_*11173515 | 1 | 8.17/9.94 2,3 | 3 | 0 | 0 | – | – | NA | Poland, the Czech Republic, the Netherlands | +++ |
3 | Gly119Valfs*12 | Ex4 | c.355_356insTTCC | 1 | 11.00/13.00 2,3 | 0 | 0 | 0 | – | – | 0 | – | +++ |
4 | Ser177Leu, FH Puerto Rico | Ex4 | c.530C > T | 1 | – | 36 | 1/121078 | 4/251308 | + | + | 59/33 | Europe, Latin America, USA | +++ |
5 | Pro181Leu | Ex4 4 | c.542C > T | 1 | – | 1 | 0 | 2/251308 | – | + | 1/1 | Brazil | + |
6 | Pro220_Asp221del | Ex4 | c.658_663delCCCGAC | 1 | 7.0/9.0 | 1 | 0 | 0 | – | + | 1/1 | Russia | +++ |
7 | Glu308Lys | Ex6 | c.922G > A | 1 | 8.3/10.3 2 | 3 | 0 | 0 | – | – | NA | Poland, the Netherlands | ++ |
8 | c.940 + 3_940 + 6delGAGT | Int6 | c.940 + 3_940 + 6delGAGT | 2 | 9.17/11.89 2 | 0 | 0 | 0 | – | – | 0 | – | + |
9 | Cys329Tyr | Ex7 4 | c.986G > A | 2 | 10.00/12.00 3 | 15 | 3/120592 | 7/282402 | + | – | 53/38 | Asia (Taiwan, Philippines, China) and Russia | +++ |
10 | Cys352Arg | Ex7 4 | c.1054 T > C | 2 | 8.59/10.13 2 | 4 | 0 | 0 | – | – | NA | Austria | ++ |
11 | Arg416Trp | Ex9 | c.1246C > T | 1 | – | 42 | 3/120616 | 6/251158 | + | + | NA | Europe (Spain, Norway, the UK, Germany, Austria, Czech Republic), Canada, Asia (Japan, Taiwan) | +++ |
12 | Trp443Arg | Ex9 4 | c.1327 T > C | 1 | – | 1 | 1/120926 | 1/251246 | – | – | 2/2 | Russia | ++ |
13 | Tyr489Asn | Ex10 4 | c.1465 T > A | 1 | 14.82/17.61 | 0 | 0 | 0 | – | – | 0 | – | + |
14 | Gly545Arg | Ex11 4 | c.1633G > A | 1 | 11.9/13.79 | 5 | 0 | 0 | – | – | 5/5 | Brazil, France, Korea | ++ |
15 | Lys581Gln | Ex12 4 | c.1741A > C | 1 | 11.18/12.80 | 0 | 0 | 0 | – | – | 0 | – | + |
16 | Ser586Pro | Ex12 | c.1756 T > C | 2 | 9.68/12.00 2 7.84/9.39 | 0 | 0 | 0 | – | – | 0 | – | + |
17 | Gly592Glu, FH Sicily, FH Foggia-1, FH Naples4 | Ex12 | c.1775G>A | 4 | 10.21/11.94 3 11.50/14.00 2 11.84/14.17 | 41 | 6/121408 | 16/282866 | + | + | 31/27 | The most common cause of FH in north-western Greece (34% of cases); USA, Europe, Latin America | +++ |
18 | c.1846-3T > G | Int12 | c.1846-3T > G | 1 | 8.94/10.57 | 0 | 0 | 0 | – | – | 0 | – | + |
19 | Glu714_Ile796del | Int14–Int16 | c.2141-966_2390-330del | 1 | – | 0 | 0 | 0 | + | + | 11/2 | Japan, Brazil | +++ |
20 | Gln739* | Ex15 | c.2215C > T | 1 | 7.0/9.1 3 | 9 | 0 | 0 | – | – | 5/5 | Italy, Mexico, Asia (Japan, Taiwan) | +++ |
21 | c.2389 + 5G > C | Int16 4 | c.2389 + 5G > C | 1 | 13.11/15.67 3 | 0 | 0 | 0 | – | – | 0 | – | ++ |
22 | Val806Glyfs*11 | Ex17 | c.2416_2417insG | 1 | – | 17 | 5/121318 | 6/251326 | + | – | 20/10 | USA, Europe, Middle East, Latin America, Japan | +++ |
Clinical Characteristics | Mutation | p | ||
---|---|---|---|---|
Positive (n = 21) | Negative (n = 27) | |||
Clinical data | ||||
Men/Women | 11/10 | 14/13 | NS | |
Mean age, years | 48 (42–55) | 56 (44–63) | NS | |
BMI, kg/m2 | 27.4 (24.1–30.8) | 28.4 (24.5–31.1) | NS | |
Smokers: Present/Gave up | 29%/24% | 22%/33% | NS | |
Arterial hypertension | 67% | 56% | NS | |
Family history | ||||
Premature CAD | 52% | 63% | NS | |
Tendon xanthomas | 14% | 0% | 0.08 | |
Hypercholesterolemia | 86% | 48% | 0.007 | |
Personal history | ||||
Tendon xanthomas | 33% | 11% | 0.06 | |
Premature CAD/CAD | 62%/62% | 37%/44% | 0.08/NS | |
Myocardial infarction | 38% | 33% | NS | |
Age of MI | 36.5 (30.5–45.5) | 50.5 (42.0–58.5) | NS | |
PCI | 38% | 19% | NS | |
CABG | 29% | 11% | NS | |
Premature PAD/PAD | 33%/33% | 7%/19% | 0.03/NS | |
Ischemic stroke | 5% | 4% | NS | |
Laboratory data | ||||
Max TC, mmol/L | 11.9 (10.1–13.0) | 9.6 (9.0–11.0) | 0.01 | |
Max LDL-C, mmol/L | 9.4 (8.3–11.2) | 7.6 (6.6–8.6) | 0.0004 | |
Current lipid levels, mmol/L | TC | 10.3 (9.1–12.0) | 9.7 (8.1–11.1) | NS |
LDL-C | 8.6 (7.0–10.2) | 7.6 (6.1–8.6) | 0.07 | |
HDL-C | 1.1 (1.0–1.4) | 1.3 (1.1–1.7) | NS | |
TG | 1.6 (1.2–2.3) | 1.9 (1.7–2.1) | NS | |
Current LDL-C without treatment, mmol/L | 8.9 (8.2–11.5) (n = 12) | 7.9 (6.7–8.6) (n = 21) | 0.04 | |
Lp(a), mg/dL | 68.1 (8.8–98.7) (n = 17) | 14.35 (5.2–70.9) (n = 26) | NS | |
Duplex ultrasound of carotid arteries data | ||||
Max% of stenosis 1 | 35 (25–45) | 25 (20–35) | 0.04 | |
Summary% of stenosis 2 | 145 (50–210) | 60 (20–125) | 0.01 | |
Atherosclerotic plaques amount 3 | 5 (2–6) | 3 (1–4) | 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, A.E.; Sergienko, I.V.; García-Giustiniani, D.; Monserrat, L.; Popova, A.B.; Nozadze, D.N.; Ezhov, M.V. Verification of Underlying Genetic Cause in a Cohort of Russian Patients with Familial Hypercholesterolemia Using Targeted Next Generation Sequencing. J. Cardiovasc. Dev. Dis. 2020, 7, 16. https://doi.org/10.3390/jcdd7020016
Semenova AE, Sergienko IV, García-Giustiniani D, Monserrat L, Popova AB, Nozadze DN, Ezhov MV. Verification of Underlying Genetic Cause in a Cohort of Russian Patients with Familial Hypercholesterolemia Using Targeted Next Generation Sequencing. Journal of Cardiovascular Development and Disease. 2020; 7(2):16. https://doi.org/10.3390/jcdd7020016
Chicago/Turabian StyleSemenova, Anna E., Igor V. Sergienko, Diego García-Giustiniani, Lorenzo Monserrat, Anna B. Popova, Diana N. Nozadze, and Marat V. Ezhov. 2020. "Verification of Underlying Genetic Cause in a Cohort of Russian Patients with Familial Hypercholesterolemia Using Targeted Next Generation Sequencing" Journal of Cardiovascular Development and Disease 7, no. 2: 16. https://doi.org/10.3390/jcdd7020016
APA StyleSemenova, A. E., Sergienko, I. V., García-Giustiniani, D., Monserrat, L., Popova, A. B., Nozadze, D. N., & Ezhov, M. V. (2020). Verification of Underlying Genetic Cause in a Cohort of Russian Patients with Familial Hypercholesterolemia Using Targeted Next Generation Sequencing. Journal of Cardiovascular Development and Disease, 7(2), 16. https://doi.org/10.3390/jcdd7020016