The Association of rs1898830 in Toll-Like Receptor 2 with Lipids and Blood Pressure
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Clinical and Biological Data Collection
2.3. Statistical Analyses
3. Results
3.1. Characteristics of the Studied Participants
3.2. Association of rs1898830 in TLR2 with Lipids and Hypertension
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Martin-Timon, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; Del Canizo-Gomez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444–470. [Google Scholar] [CrossRef]
- El Shamieh, S.; Ndiaye, N.C.; Stathopoulou, M.; Murray, H.A.; Masson, C.; Lamont, J.V.; Fitzgerald, P.; Bénétos, A.; Visvikis-Siest, S. Functional epistatic interaction between rs6046G > A in F7 and rs5355C > T in SELE modifies systolic blood pressure levels. PLoS ONE 2012, 7, e40777. [Google Scholar] [CrossRef] [PubMed]
- Abbate, R.; Sticchi, E.; Fatini, C. Genetics of cardiovascular disease. Clin. Cases Miner. Bone Metab. 2008, 5, 63–66. [Google Scholar] [PubMed]
- Ordovás, J.M. Genetic influences on blood lipids and cardiovascular disease risk: Tools for primary prevention. Am. J. Clin. Nutr. 2009, 89, 1509S–1517S. [Google Scholar] [CrossRef] [Green Version]
- Ordovas, J.M.; Litwack-Klein, L.; Wilson, P.W.; Schaefer, M.M.; Schaefer, E.J. Apolipoprotein E isoform phenotyping methodology and population frequency with identification of apoE1 and apoE5 isoforms. J. Lipid Res. 1987, 28, 371–380. [Google Scholar]
- Boekholdt, S.M.; Bijsterveld, N.R.; Moons, A.H.; Levi, M.; Buller, H.R.; Peters, R.J. Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction. Circulation 2001, 104, 3063–3068. [Google Scholar] [CrossRef] [Green Version]
- Agerholm-Larsen, B.; Nordestgaard, B.G.; Tybjaerg-Hansen, A. ACE gene polymorphism in cardiovascular disease: Meta-analyses of small and large studies in whites. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Assaad, S.; Costanian, C.; Jaffal, L.; Tannous, F.; Stathopoulou, M.G.; El Shamieh, S. Association of TLR4 Polymorphisms, Expression, and Vitamin D with helicobacter pylori infection. J. Pers. Med. 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; et al. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef]
- Zarember, K.A.; Godowski, P.J. Tissue expression of human Toll-like receptors and differential Regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J. Immunol. 2002, 168, 554–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulopoulou, S.; McCarthy, C.G.; Webb, R.C. Toll-like receptors in the vascular system: Sensing the dangers within. Pharmacol. Rev. 2015, 68, 142–167. [Google Scholar] [CrossRef] [PubMed]
- Madan, M.; Amar, S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: Proteomic findings. PLoS ONE 2008, 3, e3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roshan, M.H.; Tambo, A.; Pace, N.P. The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. Int. J. Inflamm. 2016, 2016, 1532832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falck-Hansen, M.; Kassiteridi, C.; Monaco, C. Toll-like receptors in atherosclerosis. Int. J. Mol. Sci. 2013, 14, 14008–14023. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-W.; Fontes, M.S.C.; Wang, X.; Chong, S.Y.; Kessler, E.L.; Zhang, Y.-N.; De Haan, J.J.; Arslan, F.; De Jager, S.C.A.; Timmers, L.; et al. Leukocytic toll-like receptor 2 deficiency preserves cardiac function and reduces fibrosis in sustained pressure overload. Sci. Rep. 2017, 7, 9193. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, S.; Wang, J.; Liu, L.; Wang, Y.; Cao, Z.; Hu, Q.; Yuan, W.-J.; Lin, L. TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction. J. Cell. Mol. Med. 2017, 22, 395–408. [Google Scholar] [CrossRef] [Green Version]
- De Kleijn, D.P.V.; Chong, S.Y.; Wang, X.; Yatim, S.; Fairhurst, A.M.; Vernooij, F.; Zharkova, O.; Chan, M.Y.; Foo, R.S.-Y.; Timmers, L.; et al. Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodeling after myocardial infarction. Cardiovasc. Res. 2019, 115, 1791–1803. [Google Scholar]
- Omiya, S.; Omori, Y.; Taneike, M.; Protti, A.; Yamaguchi, O.; Akira, S.; Shah, A.M.; Nishida, K.; Otsu, K. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H1485–H1497. [Google Scholar] [CrossRef] [Green Version]
- Edfeldt, K.; Swedenborg, J.; Hansson, G.K.; Yan, Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation 2002, 105, 1158–1161. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-H.; Gu, W.; Zeng, L.; Jiang, D.-P.; Zhang, L.-Y.; Zhou, J.; Du, D.-Y.; Hu, P.; Liu, Q.; Huang, S.-N.; et al. Identification of haplotype tag SNPs within the entire TLR2 gene and their clinical relevance in patients with major trauma. Shock 2011, 35, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Salami, A.; El Shamieh, S.; Ali, S.; El Shamieh, S. Association between SNPs of circulating vascular endothelial growth factor levels, hypercholesterolemia and metabolic syndrome. Medicina 2019, 55, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G × Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Zahringer, U.; Lindner, B.; Inamura, S.; Heine, H.; Alexander, C. TLR2—Promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 2008, 213, 205–224. [Google Scholar] [CrossRef]
- Marketou, M.E.; Kontaraki, J.E.; Zacharis, E.A.; Kochiadakis, G.E.; Giaouzaki, A.; Chlouverakis, G.; Kontaraki, J.E.; Vardas, P.E. TLR2 and TLR4 gene expression in peripheral monocytes in nondiabetic hypertensive patients: The effect of intensive blood pressure–lowering. J. Clin. Hypertens. 2012, 14, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Linton, M.R.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The Role of Lipids and Lipoproteins in Atherosclerosis; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Eds.; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Nakanishi, R.; Baskaran, L.; Gransar, H.; Budoff, M.J.; Achenbach, S.; Al-Mallah, M.; Cademartiri, F.; Callister, T.Q.; Chang, H.-J.; Chinnaiyan, K.; et al. Relationship of hypertension to coronary atherosclerosis and cardiac events in patients with coronary computed tomographic angiography. Hypertension 2017, 70, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Shi, S.; Zheng, Q.; Wang, Y.; Ying, X.; Jin, Y. Association between TLR-9 gene rs187084 polymorphism and knee osteoarthritis in a Chinese population. Biosci. Rep. 2017, 37, BSR20170844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zayed, R.A.; Omran, D.; Mokhtar, D.A.; Zakaria, Z.; Ezzat, S.; Soliman, M.A.; Mobarak, L.; El-Sweesy, H.; Emam, G. Association of Toll-Like Receptor 3 and Toll-Like Receptor 9 Single Nucleotide Polymorphisms with Hepatitis C Virus Infection and Hepatic Fibrosis in Egyptian Patients. Am. J. Trop. Med. Hyg. 2017, 96, 720–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamann, L.; Koch, A.; Sur, S.; Hoefer, N.; Glaeser, C.; Schulz, S.; Gross, M.; Franke, A.; Nöthlings, U.; Zacharowski, K.; et al. Association of a common TLR-6 polymorphism with coronary artery disease—Implications for healthy ageing? Immun. Ageing 2013, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budulac, S.E.; Boezen, H.M.; Hiemstra, P.S.; Lapperre, T.S.; Vonk, J.M.; Timens, W.; Postma, D.S. Toll-like receptor (TLR2 and TLR4) polymorphisms and chronic obstructive pulmonary disease. PLoS ONE 2012, 7, e43124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Shamieh, S.; Salami, A.; Stathopoulou, M.G.; Chedid, P.; Visvikis-Siest, S. Increased risk of hypercholesterolemia in a French and Lebanese population due to an interaction between rs2569190 in CD14 and gender. Clin. Chim. Acta 2020, 509, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Salami, A.; Costanian, C.; El Shamieh, S. rs2569190A>G in CD14 is Independently Associated with Hypercholesterolemia: A Brief Report. J. Cardiovasc. Dev. Dis. 2019, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Participants (n = 460) |
---|---|
Age | 40.60 ± 14.16 |
Gender n (%) | |
Male | 168 (36.5) |
Female | 292 (63.5) |
Smoking status n (%) | |
Non-smoker | 332 (72.2) |
Past smoker | 6 (1.3) |
Current smoker | 122 (26.5) |
Marital Status n (%) | |
Single | 121 (26.3) |
Married | 321 (69.8) |
Divorced | 18 (3.9) |
Physical Activity n (%) | |
<1 per week | 345 (75.0) |
1 per week | 52 (11.3) |
≥2 per week | 63 (13.7) |
Characteristics | Participants (n = 460) |
---|---|
BMI (Kg/m2) | 25.71 ± 4.98 |
Total cholesterol (mg/dl) | 181.41 ± 40.94 |
High total cholesterol levels n (%) | 241 (52.4) |
LDL-C (mg/dl) | 117.39 ± 33.52 |
High LDL-C levels n (%) | 238 (51.7) |
HDL-C (mg/dl) | 45.53 ± 14.61 |
Low HDL-C levels n (%) | 270 (58.7) |
Triglycerides (mg/dl) | 145.96 ± 124.34 |
High triglycerides levels n (%) | 174 (37.8) |
SBP (mmHg) | 132.07 ± 15.89 |
DBP (mmHg) | 67.82 ± 9.12 |
Hypertension n (%) | 255 (55.4) |
MAF | |
MAF of rs1898830 in TLR2 | 0.34 |
AA n (%) | 197 (42.8) |
GA n (%) | 212 (46.1) |
GG n (%) | 51 (11.1) |
Variables | Total Cholesterol | LDL Cholesterol | HDL-Cholesterol | Hypertension | ||||
---|---|---|---|---|---|---|---|---|
OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | |
rs1898830AA | 1 | 1 | 1 | 1 | ||||
GA | 1.03 (0.63–1.67) | 0.914 | 1.29 (0.79–2.09) | 0.300 | 0.66 (0.44–1.01) | 0.050 | 0.87 (0.58–1.32) | 0.517 |
GG | 1.40 (0.63–3.14) | 0.409 | 1.49 (0.68–3.25) | 0.319 | 0.74 (0.39–1.42) | 0.366 | 2.18 (1.08–4.39) | 0.030 |
Age | ||||||||
<40 | 1 | 1 | 1 | 1 | ||||
≥40 | 0.44 (0.26–0.74) | 0.002 | 0.39 (0.24–0.67) | 0.001 | 0.67 (0.44–1.03) | 0.071 | 1.12 (0.73–1.72) | 0.602 |
Gender | ||||||||
Male | 1 | 1 | 1 | 1 | ||||
Female | 0.74 (0.44–1.24) | 0.253 | 1.03 (0.61–1.73) | 0.915 | 0.79 (0.51–1.22) | 0.287 | 1.96 (1.26–3.05) | 0.003 |
BMI | ||||||||
<25 | 1 | 1 | 1 | 1 | ||||
25–29.9 | 0.64 (0.37–1.13) | 0.123 | 0.50 (0.29–0.88) | 0.016 | 2.24 (1.33–3.75) | 0.002 | 0.88 (0.54–1.45) | 0.615 |
≥30 | 1.27 (0.65–2.49) | 0.484 | 1.29 (0.66–2.55) | 0.454 | 0.85 (0.49–1.44) | 0.542 | 1.45 (0.83–2.51) | 0.192 |
Marital status | ||||||||
Single | 1 | 1 | 1 | 1 | ||||
Married | 0.64 (0.35–1.16) | 0.138 | 0.89 (0.49–1.56) | 0.679 | 0.66 (0.40–1.10) | 0.112 | 0.65 (0.39–1.07) | 0.090 |
Divorced | 0.85 (0.27–2.72) | 0.785 | 1.28 (0.39–4.14) | 0.677 | 2.56 (0.75–8.73) | 0.132 | 0.34 (0.11–0.98) | 0.047 |
Smoking status | ||||||||
Non-smoker | 1 | 1 | 1 | 1 | ||||
Past smoker | 0.86 (0.14–5.29) | 0.866 | 0.89 (0.14–5.78) | 0.909 | 0.47 (0.09–2.63) | 0.391 | 0.23 (0.04–1.42) | 0.12 |
Current smoker | 1.83 (0.99–3.35) | 0.050 | 1.78 (0.98–3.22) | 0.057 | 0.39 (0.24–0.63) | <0.001 | 0.67 (0.42–1.07) | 0.095 |
Physical activity | ||||||||
<1 per week | 1 | 1 | 1 | 1 | ||||
1 per week | 0.24 (0.12–0.49) | <0.001 | 0.23 (0.12–0.47) | <0.001 | 0.42 (0.21–0.83) | 0.01 | 0.91 (0.47–1.79) | 0.788 |
≥2 per week | 0.77 (0.39–1.52) | 0.446 | 1.45 (0.69–3.02) | 0.327 | 0.52 (0.28–0.97) | 0.051 | 0.87 (0.47–1.59) | 0.642 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chedid, P.; Salami, A.; El Shamieh, S. The Association of rs1898830 in Toll-Like Receptor 2 with Lipids and Blood Pressure. J. Cardiovasc. Dev. Dis. 2020, 7, 24. https://doi.org/10.3390/jcdd7030024
Chedid P, Salami A, El Shamieh S. The Association of rs1898830 in Toll-Like Receptor 2 with Lipids and Blood Pressure. Journal of Cardiovascular Development and Disease. 2020; 7(3):24. https://doi.org/10.3390/jcdd7030024
Chicago/Turabian StyleChedid, Pia, Ali Salami, and Said El Shamieh. 2020. "The Association of rs1898830 in Toll-Like Receptor 2 with Lipids and Blood Pressure" Journal of Cardiovascular Development and Disease 7, no. 3: 24. https://doi.org/10.3390/jcdd7030024
APA StyleChedid, P., Salami, A., & El Shamieh, S. (2020). The Association of rs1898830 in Toll-Like Receptor 2 with Lipids and Blood Pressure. Journal of Cardiovascular Development and Disease, 7(3), 24. https://doi.org/10.3390/jcdd7030024