Determinants of Exercise Capacity Following ST-Elevation Myocardial Infarction (STEMI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Study Objectives
2.4. Data Collection
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Demographics
3.2. Primary Outcome
3.3. Secondary Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
ACS | Acute coronary syndrome |
AMI | Acute myocardial infarction |
ECG | Electrocardiogram |
EDV | End-diastolic volume |
ESV | End-systolic volume |
ETT | Exercise treadmill testing |
LAVImax | Maximum left atrial indexed volume |
LAVImin | Minimum left atrial indexed volume |
LV | Left ventricular |
LVEF | Left ventricular ejection fraction |
MACEs | Major adverse cardiac events |
METs | Metabolic equivalents |
NSTEMI | Non-ST-elevation myocardial infarction |
PCI | Percutaneous coronary intervention |
STEMI | ST-elevation myocardial infarction |
TTE | Transthoracic echocardiogram |
References
- Tashiro, H.; Tanaka, A.; Ishii, H.; Motomura, N.; Arai, K.; Adachi, T.; Okajima, T.; Iwakawa, N.; Kojima, H.; Mitsuda, T.; et al. Reduced exercise capacity and clinical outcomes following acute myocardial infarction. Heart Vessel. 2020, 35, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Valeur, N.; Clemmensen, P.; Saunamäki, K.; Grande, P. The prognostic value of pre-discharge exercise testing after myocardial infarction treated with either primary PCI or fibrinolysis: A DANAMI-2 sub-study. Eur. Heart J. 2004, 26, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, P.N.; Magid, D.J.; Ross, C.; Ho, P.M.; Rumsfeld, J.S.; Lauer, M.; Lyons, E.E.; Smith, S.S.; Masoudi, F.A. Association of Exercise Capacity on Treadmill with Future Cardiac Events in Patients Referred for Exercise Testing. Arch. Intern. Med. 2008, 168, 174–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawler, P.R.; Filion, K.B.; Eisenberg, M.J. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. Am. Heart J. 2011, 162, 571–584.e2. [Google Scholar] [CrossRef] [PubMed]
- Chew, D.; Scott, I.; Cullen, L.; French, J.K.; Briffa, T.G.; Tideman, P.A.; Woodruffe, S.; Kerr, A.; Branagan, M.; Aylward, P. National Heart Foundation of Australia & Cardiac Society of Australia and New Zealand: Australian Clinical Guidelines for the Management of Acute Coronary Syndromes 2016. Heart Lung Circ. 2016, 25, 895–951. [Google Scholar]
- Dekleva, M.N.; Mazic, S.D.; Suzic-Lazic, J.M.; Marković-Nikolić, N.S.; Beleslin, B.D.; Stevanović, A.M.; Djelic, M.N.; Arandjelović, A.M. Left ventricular diastolic performance at rest is essential for exercise capacity in patients with non-complicated myocardial infarction. Heart Lung 2014, 43, 500–505. [Google Scholar] [CrossRef]
- Grewal, J.; McCully, R.B.; Kane, G.C.; Lam, C.; Pellikka, P.A. Left ventricular function and exercise capacity. JAMA 2009, 301, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Fontes-Carvalho, R.; Sampaio, F.; Teixeira, M.; Rocha-Gonçalves, F.; Gama, V.; Azevedo, A.; Leite-Moreira, A. Left Ventricular Diastolic Dysfunction and E/E′ Ratio as the Strongest Echocardiographic Predictors of Reduced Exercise Capacity after Acute Myocardial Infarction. Clin. Cardiol. 2015, 38, 222–229. [Google Scholar] [CrossRef]
- Miyashita, T.; Okano, Y.; Takaki, H.; Satoh, T.; Kobayashi, Y.; Goto, Y. Relation between exercise capacity and left ventricular systolic versus diastolic function during exercise in patients after myocardial infarction. Coron. Artery Dis. 2001, 12, 217–225. [Google Scholar] [CrossRef]
- Yu, C.-M.; Lau, C.-P.; Cheung, B.M.-Y.; Fong, Y.-M.; Ho, Y.-Y.; Lam, K.-B.; Li, L.S. Clinical predictors of morbidity and mortality in patients with myocardial infarction or revascularization who underwent cardiac rehabilitation, and importance of diabetes mellitus and exercise capacity. Am. J. Cardiol. 2000, 85, 344–349. [Google Scholar] [CrossRef]
- Dutcher, J.R.; Kahn, J.; Grines, C.; Franklin, B. Comparison of Left Ventricular Ejection Fraction and Exercise Capacity as Predictors of Two- and Five-Year Mortality following Acute Myocardial Infarction. Am. J. Cardiol. 2007, 99, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise Capacity and Mortality among Men Referred for Exercise Testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef] [PubMed]
- Kanthan, A.; Tan, T.C.; Zecchin, R.P.; Denniss, A.R. Early exercise stress testing is safe after primary percutaneous coronary intervention. Eur. Heart J. Acute Cardiovasc. Care 2012, 1, 153–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [PubMed] [Green Version]
- Wu, V.C.; Takeuchi, M.; Kuwaki, H.; Iwataki, M.; Nagata, Y.; Otani, K.; Haruki, N.; Yoshitani, H.; Tamura, M.; Abe, H.; et al. Prognostic value of LA volumes assessed by transthoracic 3D echocardiography: Comparison with 2D echocardiography. JACC Cardiovasc. Imaging 2013, 6, 1025–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.B.; Guppy-Coles, K.; Stanton, T.; Armstrong, J.; Krishnaswamy, R.; Whalley, G.; Atherton, J.J.; Thomas, L. Relation of Left Atrial Volumes in Patients with Myocardial Infarction to Left Ventricular Filling Pressures and Outcomes. Am. J. Cardiol. 2019, 124, 325–333. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Gan, G.C.; Kadappu, K.K.; Bhat, A.; Fernandez, F.; Eshoo, S.; Thomas, L. Exercise E/e′ Is a Determinant of Exercise Capacity and Adverse Cardiovascular Outcomes in Chronic Kidney Disease. JACC Cardiovasc. Imaging 2020, 13, 2485–2494. [Google Scholar] [CrossRef]
- Leite-Moreira, A.F. Current perspectives in diastolic dysfunction and diastolic heart failure. Heart 2006, 92, 712–718. [Google Scholar] [CrossRef] [Green Version]
- Pellicori, P.; Zhang, J.; Lukaschuk, E.; Joseph, A.C.; Bourantas, C.V.; Loh, H.; Bragadeesh, T.; Clark, A.L.; Cleland, J.G. Left atrial function measured by cardiac magnetic resonance imaging in patients with heart failure: Clinical associations and prognostic value. Eur. Heart J. 2015, 36, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.J.; Teixeira, R.; Goncalves, L.; Gersh, B.J. Left Atrial Mechanics: Echocardiographic Assessment and Clinical Implications. J. Am. Soc. Echocardiogr. 2014, 27, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Jin, Z.; Homma, S.; Rundek, T.; Elkind, M.S.; Sacco, R.L.; Di Tullio, M.R. Left atrial minimum volume and reservoir function as correlates of left ventricular diastolic function: Impact of left ventricular systolic function. Heart 2012, 98, 813–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caselli, S.; Canali, E.; Foschi, M.L.; Santini, D.; Di Angelantonio, E.; Pandian, N.G.; De Castro, S. Long-term prognostic significance of three-dimensional echocardiographic parameters of the left ventricle and left atrium. Eur. J. Echocardiogr. 2010, 11, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauw, J.; Martens, P.; Deferm, S.; Bertrand, P.; Nijst, P.; Hermans, L.; Bergh, M.V.D.; Housen, I.; Hijjit, A.; Warnants, M.; et al. Left ventricular function recovery after ST-elevation myocardial infarction: Correlates and outcomes. Clin. Res. Cardiol. 2021, 110, 1504–1515. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, N.; Kirigaya, J.; Gohbara, M.; Abe, T.; Horii, M.; Hanajima, Y.; Toya, N.; Takahashi, H.; Minamimoto, Y.; Kimura, Y.; et al. Global Strain Measured by Three-Dimensional Speckle Tracking Echocardiography Is a Useful Predictor for 10-Year Prognosis after a First ST-Elevation Acute Myocardial Infarction. Circ. J. 2021, 85, 1735–1743. [Google Scholar] [CrossRef]
- Zhao, W.; Bai, J.; Zhang, F.; Guo, L.; Gao, W. Impact of completeness of revascularization by coronary intervention on exercise capacity early after acute ST-elevation myocardial infarction. J. Cardiothorac. Surg. 2014, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Søholm, H.; Lønborg, J.; Andersen, M.J.; Vejlstrup, N.; Engstrøm, T.; Hassager, C.; Møller, J.E. Association diastolic function by echo and infarct size by magnetic resonance imaging after STEMI. Scand. Cardiovasc. J. 2016, 50, 172–179. [Google Scholar] [CrossRef]
- Hillis, G.; Meta-Analysis Research Group in Echocardiography (MeRGE) AMI Collaborators. Independent prognostic importance of a restrictive left ventricular filling pattern after myocardial infarction: An individual patient meta-analysis: Meta-Analysis Research Group in Echocardiography acute myocardial infarction. Circulation 2008, 117, 2591–2598. [Google Scholar]
- Naqvi, T.Z.; Padmanabhan, S.; Rafii, F.; Hyuhn, H.K.; Mirocha, J. Comparison of usefulness of left ventricular diastolic versus systolic function as a predictor of outcome following primary percutaneous coronary angioplasty for acute myocardial infarction. Am. J. Cardiol. 2006, 97, 160–166. [Google Scholar] [CrossRef]
- Khan, E.; Brieger, D.; Amerena, J.; Atherton, J.J.; Chew, D.P.; Farshid, A.; Ilton, M.; Juergens, C.P.; Kangaharan, N.; Rajaratnam, R.; et al. Differences in management and outcomes for men and women with ST-elevation myocardial infarction. Med. J. Aust. 2018, 209, 118–123. [Google Scholar] [CrossRef] [PubMed]
Variable | Cohort (n = 139) |
---|---|
Age; mean ± SD (years) | 59.2 ± 11.7 |
Male; n (%) | 127 (91.4%) |
BMI; mean ± SD (kg/m2) | 27.7 ± 4.7 |
Waist circumference; mean ± SD (cm) | 99.2 ± 11.5 |
Current smokers; n (%) | 37 (26.6%) |
Former smokers; n (%) | 29 (20.9%) |
Never smoked; n (%) | 73 (52.5%) |
Hypertension; n (%) | 63 (45.3%) |
Hypercholesterolaemia; n (%) | 134 (96.4%) |
Diabetes mellitus; n (%) | 36 (25.9%) |
Family history of premature CAD; n (%) | 52 (37.4%) |
Creatinine; mean ± SD (µmol/L) | 84.3 ± 29.5 |
Anterior infarction; n (%) | 72 (51.8%) |
Inferior infarction; n (%) | 61 (43.9%) |
Lateral infarction; n (%) | 6 (4.3%) |
Normal diastolic function | 62 (44.6%) |
Grade 1 diastolic dysfunction | 48 (34.5%) |
Grade 2 diastolic dysfunction | 29 (20.9%) |
Grade 3 diastolic dysfunction | 0 (0%) |
Normal LV systolic function (LVEF * 52–72%); n (%) | 67 (48.2%) |
Mild LV systolic impairment (LVEF * 41–51%); n (%) | 51(36.7%) |
Moderate LV systolic impairment (LVEF * 30–40%); n (%) | 17 (12.2%) |
Severe LV systolic impairment (LVEF * <30%); n (%) | 4 (2.9%) |
METs Achieved | p-Value | ||
---|---|---|---|
≤8 METs | >8 METs | ||
Age > 59 years; n (%) | 51 (55.4) | 12 (25.5) | 0.001 |
Male; n (%) | 81 (88.0) | 46 (97.9) | 0.051 |
BMI (kg/m2); mean (SD) | 27.3 (5.1) | 28.4 (4.0) | 0.221 |
Waist circumference (cm); mean (SD) | 98.7 (11.9) | 100.1 (10.8) | 0.510 |
Diabetes; n (%) | 27 (29.3) | 9 (19.1) | 0.194 |
Hypertension; n (%) | 45 (48.9) | 18 (38.3) | 0.237 |
Smoking status | 0.374 | ||
Never smoked; n (%) | 48 (52.2) | 25 (53.2) | |
Former smoker; n (%) | 22 (23.9) | 7 (14.9) | |
Current smoker; n (%) | 22 (23.9) | 15 (31.9) | |
Time from pain to table (min); mean (SD) | 420.5 (733.0) | 309.3 (558.0) | 0.084 |
Pain to TIMI III (min); mean (SD) | 468.4 (757.3) | 346.1 (565.3) | 0.382 |
Days until cardiac rehabilitation; mean (SD) | 22.3 (12.9) | 29.4 (23.7) | 0.347 |
Creatinine (μmol/L); mean (SD) | 84.0 (33.9) | 84.8 (18.4) | 0.246 |
Peak E (cm/s); mean (SD) | 70.7 (18.7) | 70.4 (13.6) | 0.845 |
Peak A (cm/s); mean (SD) | 76.0 (20.2) | 69.0 (18.3) | 0.068 |
E/A; mean (SD) | 0.98 (0.32) | 1.09 (0.34) | 0.060 |
DT (ms); mean (SD) | 193.7 (52.8) | 193.6 (40.4) | 0.608 |
e’ septal (cm/s); mean (SD) | 5.8 (1.6) | 7.1 (1.9) | <0.001 |
e’ lateral (cm/s); mean (SD) | 7.4 (2.6) | 9.2 (2.6) | <0.001 |
Average e’ (cm/s); mean (SD) | 6.6 (2.0) | 8.1 (2.0) | <0.001 |
E/e’; mean (SD) | 11.3 (3.5) | 9.4 (2.8) | 0.001 |
LA volume indexed (maximum) > 34 mL/m2; n (%) | 45 (48.9) | 17 (36.2) | 0.153 |
LA volume indexed (minimum) ≥ 18 mL/m2; n (%) | 25 (27.2) | 4 (8.5) | 0.009 |
LVEF < 52%; n (%) | 55 (59.8) | 22 (46.8) | 0.145 |
Peak TR vel > 2.8 m/s; n (%) | 10 (10.9) | 4 (8.5) | 0.662 |
Diastolic dysfunction *; n (%) | 62 (67.4) | 15 (31.9) | <0.001 |
Variable | Odds Ratio (95% Confidence Interval) |
---|---|
Left atrial indexed volume (minimum) | OR 4.3 (1.3–14.2) * |
Abnormal diastolic function | OR 3.7 (1.7–8.4) ** |
Anterior infarction | OR 2.6 (1.2–5.9) * |
Diagnosis | Frequency | n = 139 (%) |
---|---|---|
Recurrent angina | 7 | 5.0 |
Unstable angina | 5 | 3.6 |
NSTEMI | 9 | 6.5 |
STEMI | 1 | 0.7 |
Heart failure | 4 | 2.9 |
Arrhythmia | 3 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimis, H.; Ferkh, A.; Brown, P.; Zecchin, R.; Altman, M.; Thomas, L. Determinants of Exercise Capacity Following ST-Elevation Myocardial Infarction (STEMI). J. Cardiovasc. Dev. Dis. 2021, 8, 140. https://doi.org/10.3390/jcdd8110140
Klimis H, Ferkh A, Brown P, Zecchin R, Altman M, Thomas L. Determinants of Exercise Capacity Following ST-Elevation Myocardial Infarction (STEMI). Journal of Cardiovascular Development and Disease. 2021; 8(11):140. https://doi.org/10.3390/jcdd8110140
Chicago/Turabian StyleKlimis, Harry, Aaisha Ferkh, Paula Brown, Robert Zecchin, Mikhail Altman, and Liza Thomas. 2021. "Determinants of Exercise Capacity Following ST-Elevation Myocardial Infarction (STEMI)" Journal of Cardiovascular Development and Disease 8, no. 11: 140. https://doi.org/10.3390/jcdd8110140
APA StyleKlimis, H., Ferkh, A., Brown, P., Zecchin, R., Altman, M., & Thomas, L. (2021). Determinants of Exercise Capacity Following ST-Elevation Myocardial Infarction (STEMI). Journal of Cardiovascular Development and Disease, 8(11), 140. https://doi.org/10.3390/jcdd8110140