A Population-Based Registry Analysis on Hospitalized COVID-19 Patients with Previous Cardiovascular Disease: Clinical Profile, Treatment, and Predictors of Death
Abstract
:1. Introduction
2. Materials and Methods
2.1. Real-World Study Details
2.2. Variables
2.3. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. Pharmacological Treatment
3.3. Risk Factor for Clinical Outcomes and Medication Prescribed
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and Impact of Cardiovascular Metabolic Diseases on COVID-19 in China. Clin. Res. Cardiol. 2020, 109, 531–538. [Google Scholar] [CrossRef]
- Asokan, I.; Rabadia, S.V.; Yang, E.H. The COVID-19 Pandemic and Its Impact on the Cardio-Oncology Population. Curr. Oncol. Rep. 2020, 22, 60. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J.-Y.; Xie, X. COVID-19 and the Cardiovascular System. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [Green Version]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and Cardiovascular Disease: From Basic Mechanisms to Clinical Perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.P.; Wang, X.; Moura, F.A.; Siddiqi, H.K.; Morrow, D.A.; Bohula, E.A. A Current Review of COVID-19 for the Cardiovascular Specialist. Am. Heart J. 2020, 226, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.P.; Blet, A.; Smyth, D.; Li, H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation 2020, 142, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castagna, F.; Kataria, R.; Madan, S.; Ali, S.Z.; Diab, K.; Leyton, C.; Arfaras-Melainis, A.; Kim, P.; Giorgi, F.M.; Vukelic, S.; et al. A History of Heart Failure Is an Independent Risk Factor for Death in Patients Admitted with Coronavirus 19 Disease. J. Cardiovasc. Dev. Dis. 2021, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, B.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Cardiovascular Complications in COVID-19. Am. J. Emerg. Med. 2020, 38, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-NCoV Infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salah, H.M.; Mehta, J.L. Hypothesis: Sex-Related Differences in ACE2 Activity May Contribute to Higher Mortality in Men Versus Women With COVID-19. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 114–118. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.-Y.; Li, J.-L.; Yang, X.-L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and Characterization of a Bat SARS-like Coronavirus That Uses the ACE2 Receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 Receptor: Molecular Mechanisms and Potential Therapeutic Target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.D. Cytokine-Induced Modulation of Cardiac Function. Circ. Res. 2004, 95, 1140–1153. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T.; Büller, H.R. Bidirectional Relation between Inflammation and Coagulation. Circulation 2004, 109, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Jamal, F.A.; Khaled, S.K. The Cardiovascular Complications of Chimeric Antigen Receptor T Cell Therapy. Curr. Hematol. Malig. Rep. 2020, 15, 130–132. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, T.; Mui, D.; Ferrari, V.; Jagasia, D.; Scherrer-Crosbie, M.; Chen, Y.; Han, Y. Cardiovascular Manifestations and Treatment Considerations in COVID-19. Heart 2020, 106, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute Pulmonary Embolism and COVID-19 Pneumonia: A Random Association? Eur. Heart J. 2020, 41, 1858. [Google Scholar] [CrossRef] [Green Version]
- Lamb, Y.N. Remdesivir: First Approval. Drugs 2020, 80, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Mohiddin, S.A.; Dimarco, A.; Patel, V.; Savvatis, K.; Marelli-Berg, F.M.; Madhur, M.S.; Tomaszewski, M.; Maffia, P.; D’Acquisto, F.; et al. COVID-19 and the Cardiovascular System: Implications for Risk Assessment, Diagnosis, and Treatment Options. Cardiovasc. Res. 2020, 116, 1666–1687. [Google Scholar] [CrossRef] [PubMed]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef]
- Spanish Ministry of Health Clinical Management of COVID-19. Available online: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/documentos/Protocolo_manejo_clinico_ah_COVID-19.pdf (accessed on 6 May 2021).
- Spanish Agency for Medicine and Health Products Available Treatments for the Management of Respiratory Infection by SARS-CoV-2. Available online: https://www.aemps.gob.es/laAEMPS/docs/medicamentos-disponibles-SARS-CoV-2-22-5-2020.pdf?x57200 (accessed on 6 May 2021).
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sørensen, H.T.; von Elm, E.; Langan, S.M.; RECORD Working Committee. The REporting of Studies Conducted Using Observational Routinely-Collected Health Data (RECORD) Statement. PLoS Med. 2015, 12, e1001885. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Abejón, E.; Tamayo, E.; Martín-García, D.; Álvarez, F.J.; Herrera-Gómez, F. Clinical Profile, Treatment and Predictors during the First COVID-19 Wave: A Population-Based Registry Analysis from Castile and Leon Hospitals. Int. J. Environ. Res. Public Health 2020, 17, 9360. [Google Scholar] [CrossRef]
- Gutiérrez-Abejón, E.; Martín-García, D.; Tamayo, E.; Álvarez, F.J.; Herrera-Gómez, F. Clinical Profile, Pharmacological Treatment, and Predictors of Death Among Hospitalized COVID-19 Patients With Acute Kidney Injury: A Population-Based Registry Analysis. Front. Med. 2021, 8, 657977. [Google Scholar] [CrossRef] [PubMed]
- Casas-Rojo, J.M.; Antón-Santos, J.M.; Millán-Núñez-Cortés, J.; Lumbreras-Bermejo, C.; Ramos-Rincón, J.M.; Roy-Vallejo, E.; Artero-Mora, A.; Arnalich-Fernández, F.; García-Bruñén, J.M.; Vargas-Núñez, J.A.; et al. Clinical Characteristics of Patients Hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19 Registry. Rev. Clin. Esp. 2020, 220, 480–494. [Google Scholar] [CrossRef]
- Berenguer, J.; Ryan, P.; Rodríguez-Baño, J.; Jarrín, I.; Carratalà, J.; Pachón, J.; Yllescas, M.; Arriba, J.R.; COVID-19@Spain Study Group; Fundación SEIMC-GESIDA; et al. Characteristics and Predictors of Death among 4035 Consecutively Hospitalized Patients with COVID-19 in Spain. Clin. Microbiol. Infect. 2020, 26, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Solano-López, J.; Zamorano, J.L.; Pardo Sanz, A.; Amat-Santos, I.; Sarnago, F.; Gutiérrez Ibañes, E.; Sanchis, J.; Rey Blas, J.R.; Gómez-Hospital, J.A.; Santos Martínez, S.; et al. Risk factors for in-hospital mortality in patients with acute myocardial infarction during the COVID-19 outbreak. Rev. Esp. Cardiol. 2020, 73, 985–993. [Google Scholar] [CrossRef]
- McMichael, T.M.; Currie, D.W.; Clark, S.; Pogosjans, S.; Kay, M.; Schwartz, N.G.; Lewis, J.; Baer, A.; Kawakami, V.; Lukoff, M.D.; et al. Epidemiology of COVID-19 in a Long-Term Care Facility in King County, Washington. N. Engl. J. Med. 2020, 382, 2005–2011. [Google Scholar] [CrossRef]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical Characteristics of 113 Deceased Patients with Coronavirus Disease 2019: Retrospective Study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [Green Version]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK Patients in Hospital with COVID-19 Using the ISARIC WHO Clinical Characterisation Protocol: Prospective Observational Cohort Study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Ortolan, A.; Lorenzin, M.; Felicetti, M.; Doria, A.; Ramonda, R. Does Gender Influence Clinical Expression and Disease Outcomes in COVID-19? A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2020, 99, 496–504. [Google Scholar] [CrossRef]
- Ya’qoub, L.; Elgendy, I.Y.; Pepine, C.J. Sex and Gender Differences in COVID-19: More to Be Learned! Am. Heart J. Plus 2021, 3, 100011. [Google Scholar] [CrossRef]
- Simpson, A.H.R.; Simpson, C.J.; Frost, H.; Welburn, S.C. COVID-19: Obesity, Deprivation and Death. J. Glob. Health 2020, 10, 020389. [Google Scholar] [CrossRef] [PubMed]
- Rottoli, M.; Bernante, P.; Belvedere, A.; Balsamo, F.; Garelli, S.; Giannella, M.; Cascavilla, A.; Tedeschi, S.; Ianniruberto, S.; Rosselli Del Turco, E.; et al. How Important Is Obesity as a Risk Factor for Respiratory Failure, Intensive Care Admission and Death in Hospitalised COVID-19 Patients? Results from a Single Italian Centre. Eur. J. Endocrinol. 2020, 183, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors Associated with Hospital Admission and Critical Illness among 5279 People with Coronavirus Disease 2019 in New York City: Prospective Cohort Study. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- Borobia, A.M.; Carcas, A.J.; Arnalich, F.; Álvarez-Sala, R.; Monserrat-Villatoro, J.; Quintana, M.; Figueira, J.C.; Torres Santos-Olmo, R.M.; García-Rodríguez, J.; Martín-Vega, A.; et al. A Cohort of Patients with COVID-19 in a Major Teaching Hospital in Europe. J. Clin. Med. 2020, 9, 1733. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancox, J.C.; Hasnain, M.; Vieweg, W.V.R.; Crouse, E.L.B.; Baranchuk, A. Azithromycin, Cardiovascular Risks, QTc Interval Prolongation, Torsade de Pointes, and Regulatory Issues: A Narrative Review Based on the Study of Case Reports. Ther. Adv. Infect. Dis. 2013, 1, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Chatre, C.; Roubille, F.; Vernhet, H.; Jorgensen, C.; Pers, Y.-M. Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Saf. 2018, 41, 919–931. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Zhang, C.; Huang, F.; Wang, F.; Yuan, J.; Wang, Z.; Li, J.; Li, J.; Feng, C.; et al. Clinical and Biochemical Indexes from 2019-NCoV Infected Patients Linked to Viral Loads and Lung Injury. Sci. China Life Sci. 2020, 63, 364–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Stockman, L.J.; Bellamy, R.; Garner, P. SARS: Systematic Review of Treatment Effects. PLoS Med. 2006, 3, e343. [Google Scholar] [CrossRef] [Green Version]
- KALETRA(R) Oral Film Coated Tablets, Oral Solution, Lopinavir Ritonavir Oral Film Coated Tablets, Oral Solution. Product Insert. North Chicago, IL: AbbVie Inc. (per FDA). 2013. Available online: https://books.google.com.cu/books?hl=es&lr=&id=ETv2DQAAQBAJ&oi=fnd&pg=PA75&dq=KALETRA(R)+oral+film+coated+tablets,+oral+solution,+lopinavir+ritonavir+oral+film+coated+tablets,+oral+solution.+Product+Insert.+AbbVie+Inc.+(per+FDA),+North+Chicago,+IL,+2013.+66.+34.+&ots=A4xd8b9QG9&sig=yPH3vqbA74Tv69vJ7GjsiDj8CIo&redir_esc=y#v=onepage&q&f=false (accessed on 10 April 2020).
- Giles, J.T.; Sattar, N.; Gabriel, S.; Ridker, P.M.; Gay, S.; Warne, C.; Musselman, D.; Brockwell, L.; Shittu, E.; Klearman, M.; et al. Cardiovascular Safety of Tocilizumab Versus Etanercept in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Rheumatol. 2020, 72, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Bertoletti, L.; Bikdeli, B.; Zuily, S.; Blondon, M.; Mismetti, P. Thromboprophylaxis Strategies to Improve the Prognosis of COVID-19. Vascul. Pharmacol. 2021, 139, 106883. [Google Scholar] [CrossRef] [PubMed]
- ATTACC Investigators; ACTIV-4a Investigators; REMAP-CAP Investigators; Lawler, P.R.; Goligher, E.C.; Berger, J.S.; Neal, M.D.; McVerry, B.J.; Nicolau, J.C.; Gong, M.N.; et al. Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 385, 790–802. [Google Scholar] [CrossRef]
TOTAL | MALE | FEMALE | p | ||
---|---|---|---|---|---|
N | 2618 | 1561 | 1057 | 0.001 | |
Age (median and IQR) | 83 (73–88) | 80 (71–86) | 85 (76–90) | 0.001 | |
Age < 65 (95% CI) | 12.18 (10.93–13.44) | 13 (11.34–14.67) | 10.97 (9.09–12.86) | 0.013 | |
Age >= 65 (95% CI) | 87.82 (86.56–89.07) | 87 (85.33–88.66) | 89.03 (87.14–90.91) | 0.013 | |
Chronic diseases (95% CI) | |||||
Hypertension | 66 (64.19–67.82) | 62.97 (60.58–65.37) | 70.48 (67.73–73.23) | 0.001 | |
Diabetes | 29.56 (27.82–31.31) | 30.62 (28.33–32.91) | 28 (25.3–30.71) | 0.162 | |
Chronic respiratory diseases | 19.86 (18.33–21.39) | 22.87 (20.79–24.95) | 15.42 (13.24–17.6) | 0.001 | |
Neoplasia | 14.21 (12.87–15.55) | 16.27 (14.44–18.1) | 11.16 (9.27–13.06) | 0.001 | |
Chronic kidney disease | 12.03 (10.79–13.28) | 12.11 (10.49–13.73) | 11.92 (9.97–13.87) | 0.903 | |
Autoimmune disease | 8.21 (7.16–9.26) | 8.58 (7.19–9.97) | 7.66 (6.06–9.27) | 0.425 | |
Previous cardiovascular disease (95% CI) | |||||
Arrhythmias | 48.97 (47.05–50.88) | 48.11 (45.63–50.59) | 50.24 (47.22–53.25) | 0.286 | |
Cerebrovascular disease | 25.02 (23.36–26.68) | 23.77 (21.66–25.88) | 26.87 (24.2–29.54) | 0.072 | |
Ischemic heart disease | 22.8 (21.2–24.41) | 27.48 (25.27–29.7) | 15.89 (13.69–18.1) | 0.001 | |
Chronic heart failure | 20.82 (19.26–22.37) | 17.55 (15.67–19.44) | 25.64 (23.01–28.27) | 0.001 | |
Thrombosis–thrombophlebitis | 16.73 (15.3–18.16) | 14.29 (12.55–16.02) | 20.34 (17.91–22.77) | 0.001 | |
Atherosclerosis | 10.73 (9.55–11.92) | 12.3 (10.67–13.93) | 8.42 (6.75–10.09) | 0.02 | |
Aneurysms | 8.79 (7.7–9.87) | 12.36 (10.73–14) | 3.5 (2.39–4.61) | 0.001 | |
Cardiomyopathy | 1.99 (1.45–2.52) | 2.63 (1.83–3.42) | 1.04 (0.43–1.65) | 0.004 | |
Heart dysfunction | 1.3 (0.87–1.73) | 1.22 (0.67–1.76) | 1.42 (0.71–2.13) | 0.654 | |
Treatment | |||||
Oxygen delivery and ventilation (95% CI) | |||||
IV | 3.13 (2.46–3.8) | 4.61 (3.57–5.65) | 0.95 (0.36–1.53) | 0.001 | |
Oxygen delivery | 2.94 (2.29–3.59) | 3.33 (2.44–4.22) | 2.37 (1.45–3.28) | 0.159 | |
NIPPV | 2.06 (1.52–2.61) | 2.63 (1.83–3.42) | 1.23 (0.57–1.89) | 0.014 | |
Medicines (95% CI) | |||||
Antibiotics | 91.41 (90.33–92.48) | 91.1 (89.68–92.51) | 91.86 (90.22–93.51) | 0.491 | |
Antimalarials | 73.3 (71.61–74.99) | 75.98 (73.86–78.1) | 69.35 (66.57–72.13) | 0.001 | |
Steroids | 46.64 (44.73–48.55) | 49.84 (47.36–52.32) | 41.91 (38.94–44.89) | 0.001 | |
Antivirals | 43.16 (41.27–45.06) | 47.28 (44.8–49.75) | 37.09 (34.17–40) | 0.001 | |
Tocilizumab | 8.33 (7.27–9.39) | 11.08 (9.53–12.64) | 4.26 (3.04–5.47) | 0.001 | |
Other anti-SIRS * | 8.21 (7.16–9.26) | 10.95 (9.41–12.5) | 4.16 (2.96–5.37) | 0.001 | |
Clinical Outcomes | |||||
Hospital LoS (median and IQR) | 10 (6–16) | 10 (6–17) | 9 (6–16) | 0.111 | |
ICU LoS (median and IQR) | 14 (7–30) | 14 (7–29) | 13.5 (6–30) | 0.969 | |
N (Number of patients admitted to the ICU) | 159 | 133 | 26 | ||
Death (95% CI) | 32.93 (31.13–34.73) | 35.81 (33.43–38.19) | 28.67 (25.94–31.39) | 0.001 | |
SARS (95% CI) | 15.51 (14.12–16.89) | 18 (16.1–19.91) | 11.83 (9.88–13.77) | 0.001 | |
AKI (95% CI) | 14.86 (13.5–16.22) | 15.44 (13.65–17.23) | 14 (11.91–16.09) | 0.311 | |
SIRS (95% CI) | 4.05 (3.29–4.8) | 4.23 (3.23–5.23) | 3.78 (2.63–4.93) | 0.543 | |
Bacterial superinfection (95% CI) | 3.4 (2.71–4.09) | 3.72 (2.78–4.65) | 2.93 (1.92–3.95) | 0.278 | |
Fungal superinfection (95% CI) | 2.29 (1.72–2.87) | 2.05 (1.35–2.75) | 2.65 (1.68–3.62) | 0.315 | |
Acute heart failure (95% CI) | 2.1 (1.55–2.65) | 2.88 (2.05–3.71) | 0.95 (0.36–1.53) | 0.001 | |
DIC (95% CI) | 0.19 (0.02–0.36) | 0.32 (0.04–0.6) | 0 (0–0) | 0.066 |
Medicines | TOTAL (95% CI) | No Death (95% CI) | Death (95% CI) | p |
---|---|---|---|---|
N = 2618 | N = 1756 | N = 862 | ||
Antibiotics | 91.41 (90.33–92.48) | 91.69 (90.32–93.06) | 90.84 (89.1–92.57) | 0.466 |
Ceftriaxone | 70.24 (68.49–72) | 69.93 (67.66–72.21) | 70.88 (68.14–73.62) | 0.617 |
Azithromycin | 67.49 (65.7–69.29) | 69.36 (67.08–71.65) | 63.69 (60.79–66.59) | 0.004 |
Levofloxacin | 16.31 (14.89–17.73) | 14.69 (12.94–16.45) | 19.61 (17.21–22) | 0.001 |
Cefditoren | 2.52 (1.92–3.12) | 3.25 (2.37–4.13) | 1.04 (0.43–1.66) | 0.001 |
Teicoplanin | 1.57 (1.09–2.04) | 1.14 (0.61–1.67) | 2.44 (1.51–3.37) | 0.012 |
Clarithromycin | 0.42 (0.17–0.67) | 0.4 (0.09–0.71) | 0.46 (0.05–0.87) | 0.808 |
Moxifloxacin | 0.19 (0.02–0.36) | 0.11 (0.02–0.33) | 0.35 (0.01–0.72) | 0.197 |
Cefotaxime | 0.19 (0.02–0.36) | 0.23 (0.01–0.48) | 0.12 (0.01–0.23) | 0.538 |
Ceftaroline | 0.11 (0.01–0.27) | 0.17 (0.03–0.44) | 0 (0–0) | 0.225 |
Antimalarials | 73.3 (71.61–74.99) | 74.54 (72.38–76.71) | 70.77 (68.02–73.51) | 0.041 |
Hydroxychloroquine | 69.14 (67.37–70.91) | 70.9 (68.65–73.15) | 65.55 (62.68–68.41) | 0.005 |
Chloroquine | 5.5 (4.63–6.37) | 4.78 (3.72–5.84) | 6.96 (5.43–8.49) | 0.022 |
Steroids | 46.64 (44.73–48.55) | 44.25 (41.78–46.71) | 51.51 (48.5–54.52) | 0.001 |
Methylprednisolone | 43.32 (41.42–45.21) | 40.26 (37.83–42.69) | 49.54 (46.52–52.55) | 0.001 |
Prednisone | 10.66 (9.48–11.84) | 12.41 (10.78–14.05) | 7.08 (5.53–8.62) | 0.001 |
Antivirals | 43.16 (41.27–45.06) | 42.26 (39.8–44.71) | 45.01 (42.01–48.01) | 0.181 |
Lopinavir-Ritonavir | 43.12 (41.23–45.02) | 42.2 (39.75–44.65) | 45.01 (42.01–48.01) | 0.172 |
Remdesevir | 0.08 (0.01–0.22) | 0.11 (0.02–0.33) | 0 (0–0) | 0.322 |
Tocilizumab | 8.33 (7.27–9.39) | 8.83 (7.42–10.23) | 7.31 (5.74–8.88) | 0.186 |
Others anti SIRS | 8.21 (7.16–9.26) | 7 (5.74–8.27) | 10.67 (8.81–12.53) | 0.001 |
Interferon Beta | 6.38 (5.44–7.32) | 5.3 (4.19–6.41) | 8.58 (6.9–10.27) | 0.001 |
Anakinra | 1.45 (0.99–1.91) | 1.37 (0.79–1.94) | 1.62 (0.86–2.39) | 0.605 |
Baricitinib | 0.38 (0.15–0.62) | 0.46 (0.12–0.79) | 0.23 (0.02–0.55) | 0.384 |
Ruxolitinib | 0.11 (0.01–0.27) | 0.11 (0.02–0.33) | 0.12 (0.01–0.23) | 0.988 |
Siltuximab | 0.08 (0.01–0.22) | 0 (0–0) | 0.23 (0.02–0.55) | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Abejón, E.; Herrera-Gómez, F.; Martín-García, D.; Tamayo, E.; Álvarez, F.J. A Population-Based Registry Analysis on Hospitalized COVID-19 Patients with Previous Cardiovascular Disease: Clinical Profile, Treatment, and Predictors of Death. J. Cardiovasc. Dev. Dis. 2021, 8, 167. https://doi.org/10.3390/jcdd8120167
Gutiérrez-Abejón E, Herrera-Gómez F, Martín-García D, Tamayo E, Álvarez FJ. A Population-Based Registry Analysis on Hospitalized COVID-19 Patients with Previous Cardiovascular Disease: Clinical Profile, Treatment, and Predictors of Death. Journal of Cardiovascular Development and Disease. 2021; 8(12):167. https://doi.org/10.3390/jcdd8120167
Chicago/Turabian StyleGutiérrez-Abejón, Eduardo, Francisco Herrera-Gómez, Débora Martín-García, Eduardo Tamayo, and Francisco Javier Álvarez. 2021. "A Population-Based Registry Analysis on Hospitalized COVID-19 Patients with Previous Cardiovascular Disease: Clinical Profile, Treatment, and Predictors of Death" Journal of Cardiovascular Development and Disease 8, no. 12: 167. https://doi.org/10.3390/jcdd8120167
APA StyleGutiérrez-Abejón, E., Herrera-Gómez, F., Martín-García, D., Tamayo, E., & Álvarez, F. J. (2021). A Population-Based Registry Analysis on Hospitalized COVID-19 Patients with Previous Cardiovascular Disease: Clinical Profile, Treatment, and Predictors of Death. Journal of Cardiovascular Development and Disease, 8(12), 167. https://doi.org/10.3390/jcdd8120167