Obesity Does Not Interfere with the Cholesterol-Lowering Effect of Plant Stanol Ester Consumption (as Part of a Heart-Healthy Diet)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Procedure
2.3. Methods
2.4. Calculations
2.5. Statistics
3. Results
3.1. Serum Sterols and Variables of Cholesterol Metabolism during the Control Diet
3.2. Plant Stanol Ester Consumption, Serum Sterols, and Variables of Cholesterol Metabolism
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global epidemiology of ischemic heart disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef]
- Fernández-Friera, L.; Fuster, V.; López-Melgar, B.; Oliva, B.; Garcia-Ruiz, J.M.; Mendigueren, J.; Bueno, H.; Pocock, S.; Ibáñez, B.; Fernández-Ortiz, A.; et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 2017, 70, 2979–2991. [Google Scholar] [CrossRef]
- Fernández-Friera, L.; Peñalvo, J.L.; Fernández-Ortiz, A.; Ibáñez, B.; López-Melgar, B.; Laclaustra, M.; Oliva, B.; Mocoroa, A.; Mendiguren, J.; Martínez de Vega, V.; et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort. The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation 2015, 131, 2104–2113. [Google Scholar] [CrossRef] [Green Version]
- López-Melgar, B.; Fernández-Friera, L.; Oliva, B.; Garcia-Ruiz, J.M.; Sánchez-Cabo, F.; Bueno, H.; Mendiguren, J.M.; Lara-Pezzi, E.; Andrés, V.; Ibáñez, B.; et al. Short-term progression of multiterritorial subclinical atherosclerosis. J. Am. Coll. Cardiol. 2020, 75, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.M.; Defina, L.F.; Leonard, D.; Barlow, C.E.; Radford, N.B.; Willis, B.L.; Rohatgi, A.; McGuire, D.K.; de Lemos, J.A.; Grundy, S.M.; et al. Long-term association of low-density lipoprotein cholesterol with cardiovascular mortality in individuals at low 10-year risk of atherosclerotic cardiovascular disease. Circulation 2018, 138, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Brunner, F.J.; Waldeyer, C.; Ojeda, F.; Salomaa, V.; Kee, F.; Sans, S.; Thorand, B.; Giampaoli, S.; Brambilla, P.; Tunstall-Pedoe, H.; et al. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: Results from the Multinational Cardiovascular Risk Consortium. Lancet 2019, 394, 2173–2183. [Google Scholar] [CrossRef] [Green Version]
- Won, K.-B.; Park, G.-M.; Yang, Y.J.; Ann, S.H.; Kim, Y.-G.; Yang, D.H.; Kang, J.-W.; Lim, T.-H.; Kim, H.-K.; Choe, J.; et al. Independent role of low-density lipoprotein cholesterol in subclinical coronary atherosclerosis in the absence of traditional cardiovascular risk factors. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef] [Green Version]
- Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015, 385, 1397–1405. [Google Scholar] [CrossRef]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions. A systematic review and meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Gylling, H.; Radhakrishnan, R.; Miettinen, T.A. Reduction of serum cholesterol in postmenopausal women with previous myocardial infarction and cholesterol malabsorption induced by dietary sitostanol ester margarine. Women and dietary sitostanol. Circulation 1997, 96, 4226–4431. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Poon, T.H.; Elliot, J.A.; Chung, C. A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: Results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot. Essent. Fatty Acids 2011, 85, 9–28. [Google Scholar] [CrossRef]
- Tovar, J.; Johansson, M.; Björck, I. A multifunctional diet improves cardiometabolic-related biomarkers independently of weight changes: An 8-week randomized controlled intervention in healthy overweight and obese subjects. Eur. J. Nutr. 2016, 55, 2295–2306. [Google Scholar] [CrossRef]
- Helgadottir, A.; Thorleifsson, G.; Alexandersson, K.F.; Tragante, V.; Thorsteinsdottir, M.; Eiriksson, F.F.; Gretarsdottir, S.; Björnsson, E.; Magnusson, O.; Sveinbjornsson, G.; et al. Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease. Eur. Heart J. 2020, 41, 2618–2628. [Google Scholar] [CrossRef] [PubMed]
- Flock, M.R.; Green, M.H.; Kris-Etherton, P.M. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv. Nutr. 2011, 2, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Sundfør, T.M.; Svendsen, M.; Heggen, E.; Dushanov, S.; Klemsdal, T.O.; Tonstad, S. BMI modifies the effect of dietary fat on atherogenic lipids: A randomized clinical trial. Am. J. Clin. Nutr. 2019, 110, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A.; Gylling, H. Cholesterol absorption efficiency and sterol metabolism in obesity. Atherosclerosis 2000, 153, 241–248. [Google Scholar] [CrossRef]
- Simonen, P.P.; Gylling, H.; Miettinen, T.A. Body weight modulates cholesterol metabolism in non-insulin dependent type 2 diabetes. Obes. Res. 2002, 10, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A. Cholesterol production in obesity. Circulation 1971, 44, 842–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestel, P.J.; Schreibman, P.H.; Ahrens, E.H., Jr. Cholesterol metabolism in human obesity. J. Clin. Investig. 1973, 52, 2389–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonen, P.; Gylling, H.; Howard, A.N.; Miettinen, T.A. Introducing a new component of the metabolic syndrome: Low cholesterol absorption. Am. J. Clin. Nutr. 2000, 72, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Hallikainen, M.; Sarkkinen, E.; Wester, I.; Uusitupa, M. Short-term LDL cholesterol-lowering efficacy of plant stanol esters. BMC Cardiovasc. Dis. 2002, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Crouse, J.R.; Grundy, S.M. Evaluation of a continuous isotope feeding method for measurement of cholesterol absorption in man. J. Lipid Res. 1978, 19, 967–971. [Google Scholar] [CrossRef]
- Miettinen, T.A. Cholesterol metabolism during ketoconazole treatment in man. J. Lipid Res. 1988, 29, 43–51. [Google Scholar] [CrossRef]
- Björkhem, I.; Miettinen, T.; Reihnér, E.; Ewerth, S.; Angelin, B.; Einarsson, K. Correlation between serum levels of some cholesterol precursors and activity of HMG-CoA reductase in human liver. J. Lipid Res. 1987, 28, 1137–1143. [Google Scholar] [CrossRef]
- Miettinen, T.A.; Tilvis, R.S.; Kesäniemi, Y.A. Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am. J. Epidemiol. 1990, 131, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.C.; Pertsemlidis, A.; Fahmi, S.; Esmail, S.; Vega, G.L.; Grundy, S.M.; Hobbs, H.H. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low density lipoprotein levels. Proc. Natl. Acad. Sci. USA 2006, 103, 1810–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonen, P.; Gylling, H.; Miettinen, T.A. The validity of serum squalene and noncholesterol sterols as surrogate markers of cholesterol synthesis and absorption in type 2 diabetes. Atherosclerosis 2008, 197, 883–888. [Google Scholar] [CrossRef]
- Miettinen, T.A. Gas-liquid chromatographic determination of fecal neutral sterols using a capillary column. Clin. Chim. Acta 1982, 124, 245–248. [Google Scholar] [CrossRef]
- Knuts, L.R.; Rastas, M.; Haapala, P. Micro-Nutrica, version 1.0; National Pensions Institute: Helsinki, Finland, 1991. [Google Scholar]
- Ostlund, R.E., Jr.; McGill, J.B.; Zeng, C.M.; Covey, D.F.; Stearns, J.; Stenson, W.F.; Spilburg, C.A. Gastrointestinal absorption and plasma kinetics of soy Δ5-phytosterols and phytostanols in humans. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E911–E916. [Google Scholar] [CrossRef]
- Ståhlberg, D.; Rudling, M.; Angelin, B.; Björkhem, I.; Forsell, P.; Nilsell, K.; Einarsson, K. Hepatic cholesterol metabolism in human obesity. Hepatology 1997, 25, 1447–1450. [Google Scholar] [CrossRef]
- Gylling, H.; Miettinen, T.A. Serum cholesterol and cholesterol and lipoprotein metabolism in hypercholesterolaemic NIDDM patients before and during sitostanol ester-margarine treatment. Diabetologia 1994, 37, 773–780. [Google Scholar] [CrossRef]
- Vanhanen, H.T.; Kajander, J.; Lehtovirta, H.; Miettinen, T.A. Serum levels, absorption efficiency, faecal elimination and synthesis of cholesterol during increasing doses of dietary sitostanol esters in hypercholesterolaemic subjects. Clin. Sci. 1994, 87, 61–67. [Google Scholar] [CrossRef]
- Miettinen, T.A.; Vuoristo, M.; Nissinen, M.; Järvinen, H.J.; Gylling, H. Serum, biliary, and fecal cholesterol and plant sterols in colectomized patients before and during consumption of stanol ester margarine. Am. J. Clin. Nutr. 2000, 71, 1095–1102. [Google Scholar] [CrossRef]
- Spilburg, C.A.; Goldberg, A.C.; McGill, J.B.; Stenson, W.F.; Racette, S.B.; Bateman, J.; McPherson, T.B.; Ostlund, R.E., Jr. Fat-free foods supplemented with soy stanol-lecithin powder reduce cholesterol absorption and LDL cholesterol. J. Am. Diet. Assoc. 2003, 103, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Egusa, G.; Beltz, W.F.; Grundy, S.M.; Howard, B.V. Influence of obesity on the metabolism of apolipoprotein B in humans. J. Clin. Investig. 1985, 76, 596–603. [Google Scholar] [CrossRef]
- Plat, J.; Mensink, R.P. Effects of plant stanol esters on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase mRNA expression in mononuclear blood cells of healthy men and women. FASEB J. 2002, 16, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Zhong, V.W.; Van Horn, L.; Cornelis, M.C.; Wilkins, J.T.; Ning, H.; Carnethon, M.R.; Greenland, P.; Mentz, R.J.; Tucker, K.L.; Zhao, L.; et al. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA 2019, 321, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Hallikainen, M.; Simonen, P.; Gylling, H. Cholesterol metabolism and serum non-cholesterol sterols: Summary of 13 plant stanol ester interventions. Lipids Health Dis. 2014, 13, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Jiao, J.; Xu, J.; Zimmermann, D.; Actis-Goretta, L.; Guan, L.; Zhao, Y.; Qin, L. Effects of plant stanol or sterol-enriched diets on lipid profiles in patients treated with statins: Systematic review and meta-analysis. Sci. Rep. 2016, 6, 31337. [Google Scholar] [CrossRef] [PubMed]
Variables | Normal-Weight Subjects, n = 9 | Overweight/Obese Subjects, n = 11 | ||
---|---|---|---|---|
Control Diet | Plant-Stanol-ester Diet | Control Diet | Plant-Stanol-ester Diet | |
Age, years | 53 ± 0.7 | 52 ± 0.8 | ||
Weight, kg | 58 ± 1 | 58 ± 1 | 74 ± 2 * | 74 ± 2 * |
BMI, kg/m2 | 22.6 ± 0.4 | 22.4 ± 0.5 | 28.4 ± 0.7 * | 28.4 ± 0.7 * |
Dietary cholesterol, mg/day | 231 ± 26 | 220 ± 34 | 185 ± 20 | 200 ± 24 |
Dietary total fatty acids, g/day | 73 ± 54 | 70 ± 6 | 60 ± 4 | 57 ± 4 |
Fecal plant stanols, mg/day | 28 ± 13 | 2629 ± 296 † | 39 ± 21 | 2596 ± 239 † |
Variables | Control Diet | Plant-Stanol-Ester Diet |
---|---|---|
Serum cholesterol, mmol/L | ||
BMI ≤ 25 kg/m2, n = 9 | 5.82 ± 0.30 | 5.19 ± 0.38 * |
BMI > 25 kg/m2, n = 11 | 6.00 ± 0.28 | 5.24 ± 0.22 * |
p-value 1 | 0.849 | 0.518 |
Serum lathosterol 2 | ||
BMI ≤ 25 kg/m2, n = 9 | 139 ± 14 | 165 ± 19 |
BMI > 25 kg/m2, n = 11 | 189 ± 14 | 206 ± 20 |
p-value 1 | 0.037 | 0.138 |
Serum sitosterol 2 | ||
BMI ≤ 25 kg/m2, n = 9 | 185 ± 19 | 137 ± 16 * |
BMI > 25 kg/m2, n = 11 | 116 ± 12 | 89 ± 9 * |
p-value 1 | 0.017 | 0.030 |
Cholesterol absorption efficiency, % | ||
BMI ≤ 25 kg/m2, n = 9 | 49 ± 3 | 24 ± 3 * |
BMI > 25 kg/m2, n = 11 | 37 ± 2 | 22 ± 1 * |
p-value 1 | 0.007 | 0.543 |
Total cholesterol absorbed 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 479 ± 46 | 246 ± 35 * |
BMI > 25 kg/m2, n = 11 | 483 ± 53 | 295 ± 15 * |
p-value 1 | 0.569 | 0.382 |
Dietary cholesterol absorbed 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 113 ± 13 | 58 ± 14 * |
BMI > 25 kg/m2, n = 11 | 67 ± 7 | 43 ± 5 * |
p-value 1 | 0.007 | 0.790 |
Biliary cholesterol absorbed 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 365 ± 39 | 188 ± 24 * |
BMI > 25 kg/m2, n = 11 | 416 ± 52 | 252 ± 15 * |
p-value 1 | 0.425 | 0.074 |
Total intestinal cholesterol pool 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 966 ± 65 | 986 ± 60 |
BMI > 25 kg/m2, n = 11 | 1322 ± 143 | 1333 ± 62 |
p-value 1 | 0.044 | 0.003 |
Dietary intestinal cholesterol pool 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 230 ± 26 | 220 ± 34 |
BMI > 25 kg/m2, n = 11 | 185 ± 20 | 200 ± 24 |
p-value 1 | 0.184 | 0.732 |
Biliary intestinal cholesterol pool 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 735 ± 51 | 766 ± 48 |
BMI > 25 kg/m2, n = 11 | 1137 ± 141 | 1133 ± 59 |
p-value 1 | 0.004 | 0.001 |
Fecal bile acids 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 316 ± 37 | 324 ± 36 |
BMI > 25 kg/m2, n = 11 | 349 ± 30 | 305 ± 28 |
p-value 1 | 0.425 | 0.518 |
Fecal neutral sterols 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 487 ± 40 | 740 ± 44 * |
BMI > 25 kg/m2, n = 11 | 839 ± 99 | 1038 ± 56 |
p-value 1 | 0.002 | 0.002 |
Cholesterol synthesis 3 | ||
BMI ≤ 25 kg/m2, n = 9 | 572 ± 54 | 844 ± 63 * |
BMI > 25 kg/m2, n = 11 | 1003 ± 111 | 1143 ± 58 |
p-value 1 | 0.001 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonen, P.; Arte, E.; Gylling, H. Obesity Does Not Interfere with the Cholesterol-Lowering Effect of Plant Stanol Ester Consumption (as Part of a Heart-Healthy Diet). J. Cardiovasc. Dev. Dis. 2021, 8, 36. https://doi.org/10.3390/jcdd8040036
Simonen P, Arte E, Gylling H. Obesity Does Not Interfere with the Cholesterol-Lowering Effect of Plant Stanol Ester Consumption (as Part of a Heart-Healthy Diet). Journal of Cardiovascular Development and Disease. 2021; 8(4):36. https://doi.org/10.3390/jcdd8040036
Chicago/Turabian StyleSimonen, Piia, Elisa Arte, and Helena Gylling. 2021. "Obesity Does Not Interfere with the Cholesterol-Lowering Effect of Plant Stanol Ester Consumption (as Part of a Heart-Healthy Diet)" Journal of Cardiovascular Development and Disease 8, no. 4: 36. https://doi.org/10.3390/jcdd8040036
APA StyleSimonen, P., Arte, E., & Gylling, H. (2021). Obesity Does Not Interfere with the Cholesterol-Lowering Effect of Plant Stanol Ester Consumption (as Part of a Heart-Healthy Diet). Journal of Cardiovascular Development and Disease, 8(4), 36. https://doi.org/10.3390/jcdd8040036