Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Variables
2.3. Study Design
2.4. Model Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Fleisher, L.A.; Jneid, H.; Mack, M.J.; McLeod, C.J.; O’Gara, P.T.; et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e1159–e1195. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Falk, V.; Bax, J.J.; de Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Muñoz, D.R.; et al. 2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Rev. Española Cardiol. 2018, 71, 110. [Google Scholar] [CrossRef] [Green Version]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef]
- Makkar, R.R.; Thourani, V.H.; Mack, M.J.; Kodali, S.K.; Kapadia, S.; Webb, J.G.; Yoon, S.-H.; Trento, A.; Svensson, L.G.; Herrmann, H.C.; et al. Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Muratori, M.; Fusini, L.; Tamborini, G.; Gripari, P.; Ali, S.G.; Mapelli, M.; Fabbiocchi, F.; Trabattoni, P.; Roberto, M.; Agrifoglio, M.; et al. Five-year echocardiographic follow-up after TAVI: Structural and functional changes of a balloon-expandable prosthetic aortic valve. Eur. Heart J. Cardiovasc. Imaging 2017, 19, 389–397. [Google Scholar] [CrossRef]
- Zelis, J.M.; Veer, M.V.T.; Houterman, S.; Pijls, N.H.; Tonino, P.A. Survival and quality of life after transcatheter aortic valve implantation relative to the general population. IJC Heart Vasc. 2020, 28, 100536. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Introduction to Statistical Learning with Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822. [Google Scholar] [CrossRef]
- Shouval, R.; Bondi, O.; Mishan, H.; Shimoni, A.; Unger, R.E.; Nagler, A. Application of machine learning algorithms for clinical predictive modeling: A data-mining approach in SCT. Bone Marrow Transplant. 2014, 49, 332–337. [Google Scholar] [CrossRef]
- Hernandez-Suarez, D.F.; Kim, Y.; Villablanca, P.; Gupta, T.; Wiley, J.; Nieves-Rodriguez, B.G.; Rodriguez-Maldonado, J.; Maldonado, R.F.; Sant’Ana, I.D.L.; Sanina, C.; et al. Machine Learning Prediction Models for In-Hospital Mortality After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2019, 12, 1328–1338. [Google Scholar] [CrossRef]
- Lopes, R.R.; van Mourik, M.S.; Schaft, E.V.; Ramos, L.A.; Baan, J.; Vendrik, J.; de Mol, B.A.J.M.; Vis, M.M.; Marquering, H.A., Jr. Value of machine learning in predicting TAVI outcomes. Neth. Heart J. 2019, 27, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [CrossRef]
- Zoghbi, W.A. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and doppler echocardiography. J. Am. Soc. Echocardiogr. 2003, 16, 777–802. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Akins, C.W.; Vahanian, A. Mitral regurgitation. Lancet 2009, 373, 1382–1394. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Evangelista, A.; Griffin, B.P.; Iung, B.; Otto, C.M.; Pellikka, P.A.; Quiñones, M. Echocardiographic Assessment of Valve Stenosis: EAE/ASE Recommendations for Clinical Practice. J. Am. Soc. Echocardiogr. 2009, 22, 1–23. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardio Thorac. Surg. 2012, 41, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Nargesian, F.; Samulowitz, H.; Khurana, U.; Khalil, E.B.; Turaga, D. Learning Feature Engineering for Classification. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2529–2535. [Google Scholar]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.-A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. J. Thorac. Cardiovasc. Surg. 2013, 145, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Bi, Q.; Goodman, K.E.; Kaminsky, J.; Lessler, J. What is Machine Learning? A Primer for the Epidemiologist. Am. J. Epidemiol. 2019, 188, 2222–2239. [Google Scholar] [CrossRef]
- Itchhaporia, D.; Snow, P.B.; Almassy, R.J.; Oetgen, W.J. Artificial neural networks: Current status in cardiovascular medicine. J. Am. Coll. Cardiol. 1996, 28, 515–521. [Google Scholar] [CrossRef]
- Potdar, K. Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers. Int. J. Comput. Appl. 2017, 175, 7–9. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar] [CrossRef] [Green Version]
- Sill, M.; Hielscher, T.; Becker, N.; Zucknick, M. c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models. J. Stat. Softw. 2014, 62, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Krauss, C.; Do, X.A.; Huck, N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. Eur. J. Oper. Res. 2017, 259, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta—A System for Feature Selection. Fundam. Inform. 2010, 101, 271–285. [Google Scholar] [CrossRef]
- Yang, J.-B.; Shen, K.-Q.; Ong, C.-J.; Li, X.-P. Feature Selection for MLP Neural Network: The Use of Random Permutation of Probabilistic Outputs. IEEE Trans. Neural Netw. 2009, 20, 1911–1922. [Google Scholar] [CrossRef]
- García, M.V.; Aznarte, J.L. Shapley additive explanations for NO2 forecasting. Ecol. Inform. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Parikh, R.B.; Manz, C.; Chivers, C.; Regli, S.H.; Braun, J.; Draugelis, M.E.; Schuchter, L.M.; Shulman, L.N.; Navathe, A.S.; Patel, M.S.; et al. Machine Learning Approaches to Predict 6-Month Mortality Among Patients with Cancer. JAMA Netw. Open 2019, 2, e1915997. [Google Scholar] [CrossRef] [Green Version]
- Debonnaire, P.; Fusini, L.; Wolterbeek, R.; Kamperidis, V.; van Rosendael, P.; van der Kley, F.; Katsanos, S.; Joyce, E.; Tamborini, G.; Muratori, M.; et al. Value of the “TAVI2-SCORe” Versus Surgical Risk Scores for Prediction of One Year Mortality in 511 Patients Who Underwent Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2015, 115, 234–242. [Google Scholar] [CrossRef]
- Bombelli, M.; Facchetti, R.; Cuspidi, C.; Villa, P.; Dozio, D.; Brambilla, G.; Grassi, G.; Mancia, G. Prognostic Significance of Left Atrial Enlargement in a General Population. Hypertension 2014, 64, 1205–1211. [Google Scholar] [CrossRef] [Green Version]
- Muratori, M.; Fusini, L.; Tamborini, G.; Ali, S.G.; Gripari, P.; Fabbiocchi, F.; Salvi, L.; Trabattoni, P.; Roberto, M.; Agrifoglio, M.; et al. Mitral valve regurgitation in patients undergoing TAVI: Impact of severity and etiology on clinical outcome. Int. J. Cardiol. 2020, 299, 228–234. [Google Scholar] [CrossRef]
- Maréchaux, S.; Rusinaru, D.; Altes, A.; Pasquet, A.; Vanoverschelde, J.L.; Tribouilloy, C. Prognostic Value of Low Flow in Patients with High Transvalvular Gradient Severe Aortic Stenosis and Preserved Left Ventricular Ejection Fraction. Circ. Cardiovasc. Imaging 2019, 12, e009299. [Google Scholar] [CrossRef]
- Rodriguez-Gabella, T.; Nombela-Franco, L.; Auffret, V.; Asmarats, L.; Islas, F.; Maes, F.; Ferreira-Neto, A.N.; Paradis, J.-M.; Dumont, E.; Côté, M.; et al. Transcatheter Aortic Valve Implantation in Patients With Paradoxical Low-Flow, Low-Gradient Aortic Stenosis. Am. J. Cardiol. 2018, 122, 625–632. [Google Scholar] [CrossRef]
- Osman, M.; Ghaffar, Y.A.; Foster, T.; Osman, K.; Alqahtani, F.; Shah, K.; Kheiri, B.; Alkhouli, M. Meta-Analysis of Outcomes of Transcatheter Aortic Valve Implantation Among Patients with Low Gradient Severe Aortic Stenosis. Am. J. Cardiol. 2019, 124, 423–429. [Google Scholar] [CrossRef]
- Bruse, J.L.; McLeod, K.; Biglino, G.; Ntsinjana, H.N.; Capelli, C.; Hsia, T.-Y.; Sermesant, M.; Pennec, X.; Taylor, A.M. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: Assessing arch morphology of repaired coarctation of the aorta. BMC Med. Imaging 2016, 16, 1–19. [Google Scholar] [CrossRef]
Characteristics | n = 471 |
---|---|
Age, years | 81 ± 6 |
Female, n (%) | 300 (63.7%) |
Body mass index, kg/m2 Overweight (BMI 25 to <30) Obesity (BMI 30 or higher) | 25 ± 5 154 (32.7%) 68 (14.4%) |
Hypertension | 411 (87.3%) |
Diabetes mellitus | 122 (2.6%) |
Dyslipidemia | 276 (58.6%) |
Angina | 147 (31.2%) |
Dyspnea | 432 (91.7%) |
Syncope | 87 (18.5%) |
COPD | 131 (27.8%) |
NYHA functional class III or IV | 369 (78.3%) |
EuroSCORE II | 16 (10–21) |
Previous stroke | 60 (12.7%) |
Porcelain aorta | 32 (6.8%) |
Cardiac history | |
Coronary artery disease | 270 (57.3%) |
Previous myocardial infarction | 92 (19.5%) |
Previous PCI | 144 (30.6%) |
Previous CABG | 71 (15.1%) |
Atrial fibrillation | 86 (18.3%) |
Procedural characteristics | |
Prosthesis size | |
23-mm | 195 (41.4%) |
26-mm | 228 (48.4%) |
29-mm | 41 (8.7%) |
31-mm | 7 (1.5%) |
Pre-operative echocardiographic characteristics | |
LVEDV index (mL/m2) | 54 (43–69) |
LVESV index (mL/m2) | 21 (16–34) |
LVEF (%) | 59 (48–66) |
LV mass index (g/m2) | 147 ± 39 |
Left atrial volume index (mL/m2) | 57 ± 24 |
Aortic valve area (cm2) | 0.65 ± 0.14 |
Mean aortic pressure gradient (mmHg) | 51 ± 15 |
Peak aortic pressure gradient (mmHg) | 82 ± 22 |
PAPS (mmHg) | 42 ± 12 |
Aortic regurgitation ≥2 | 120 (25.5%) |
Mitral regurgitation ≥2 | 144 (30.6%) |
Tricuspid regurgitation ≥2 | 89 (18.9%) |
MR etiology | |
Functional MR | 295 (62.6%) |
Organic MR | 176 (37.4%) |
Univariate | Multivariate | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age, years | 1.035 (1.004–1.066) | 0.028 | 1.031 (0.996–1.067) | 0.079 |
Left ventricular ejection fraction, % | 0.975 (0.961–0.990) | 0.001 | 1.004 (0.982–1.025) | 0.745 |
Left atrial area, cm2 | 1.062 (1.030–1.095) | <0.001 | 1.011 (0.974–1.049) | 0.565 |
Mean aortic pressure gradient, mmHg | 0.978 (0.966–0.991) | 0.001 | 0.982 (0.966–0.998) | 0.025 |
Mitral regurgitation ≥2 | 1.773 (1.194–2.633) | 0.005 | 1.129 (0.701–1.818) | 0.617 |
Organic mitral regurgitation | 2.071 (1.417–3.026) | <0.001 | 1.642 (1.071–2.517) | 0.023 |
Tricuspid regurgitation ≥2 | 1.950 (1.221–3.114) | 0.005 | 0.860 (0.465–1.590) | 0.631 |
Pulmonary artery systolic pressure, mmHg | 1.031 (1.014–1.048) | <0.001 | 1.012 (0.990–1.033) | 0.284 |
New York Heart Association ≥3 | 1.864 (1.177–2.951) | 0.008 | 1.133 (0.661–1.943) | 0.649 |
Diuretics | 2.191 (1.410–3.405) | <0.001 | 1.206 (0.709–2.052) | 0.489 |
Spironolactone | 2.185 (1.403–3.401) | 0.001 | 1.607 (0.907–2.664) | 0.066 |
Creatinine, mg/dL | 2.819 (1.776–4.473) | <0.001 | 1.941 (1.257–2.996) | 0.003 |
Hemoglobin, g/dL | 0.818 (0.732–0.915) | <0.001 | 0.867 (0.776–0.992) | 0.022 |
International normalized ratio | 4.735 (1.943–11.539) | 0.001 | 1.992 (0.825–4.811) | 0.125 |
Atrial fibrillation | 2.740 (1.682–4.463) | <0.001 | 1.693 (0.898–3.195) | 0.104 |
Survivor (n = 259) | Non-Survivor (n = 212) | p-Value | |
---|---|---|---|
Echocardiographic parameters | |||
Mitral regurgitation etiology, n (%) | Functional 182 (70.3%) Organic 77 (29.7%) | Functional 113 (53.3%) Organic 99 (46.7%) | <0.001 |
Stroke volume index, mL/m2 | 42 ± 8 | 40 ± 9 | 0.020 |
Interventricular septal thickness, mm | 13 ± 2 | 14 ± 2 | 0.496 |
Left atrium area, cm2 | 26 ± 6 | 28 ± 7 | <0.001 |
Aortic valve area, cm2 | 0.64 ± 0.14 | 0.66 ± 0.14 | 0.078 |
Mean aortic pressure gradient, mmHg | 53 ± 14 | 48 ± 15 | 0.001 |
Blood chemistry tests | |||
Creatinine, mg/dL | 0.92 (0.77–1.20) | 1.16 (0.91–1.48) | <0.001 |
Alanine aminotransferase, UI/L | 17 (12–23) | 16 (12–22) | 0.448 |
Hemoglobin, g/dL | 12.4 ± 1.7 | 11.9 ± 1.6 | <0.001 |
International normalized ratio | 1.05 ± 0.19 | 1.17 ± 0.42 | <0.001 |
Other patient characteristics | |||
Age, years | 80 ± 6 | 82 ± 6 | 0.025 |
Spironolactone, n(%) | 42 (16.2%) | 63 (29.7%) | <0.001 |
Angina, n(%) | 90 (34.7%) | 57 (26.9%) | 0.057 |
EuroSCORE II, % | 14 (8–20) | 18 (12–25) | <0.001 |
Algorithm | Feature Selection Method | AUC | Accuracy | Positive Predictive Value | Sensitivity | F1-Score |
---|---|---|---|---|---|---|
multilayer perceptron | LASSO + RFE | 0.79 | 0.73 | 0.73 | 0.71 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penso, M.; Pepi, M.; Fusini, L.; Muratori, M.; Cefalù, C.; Mantegazza, V.; Gripari, P.; Ali, S.G.; Fabbiocchi, F.; Bartorelli, A.L.; et al. Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques. J. Cardiovasc. Dev. Dis. 2021, 8, 44. https://doi.org/10.3390/jcdd8040044
Penso M, Pepi M, Fusini L, Muratori M, Cefalù C, Mantegazza V, Gripari P, Ali SG, Fabbiocchi F, Bartorelli AL, et al. Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques. Journal of Cardiovascular Development and Disease. 2021; 8(4):44. https://doi.org/10.3390/jcdd8040044
Chicago/Turabian StylePenso, Marco, Mauro Pepi, Laura Fusini, Manuela Muratori, Claudia Cefalù, Valentina Mantegazza, Paola Gripari, Sarah Ghulam Ali, Franco Fabbiocchi, Antonio L. Bartorelli, and et al. 2021. "Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques" Journal of Cardiovascular Development and Disease 8, no. 4: 44. https://doi.org/10.3390/jcdd8040044
APA StylePenso, M., Pepi, M., Fusini, L., Muratori, M., Cefalù, C., Mantegazza, V., Gripari, P., Ali, S. G., Fabbiocchi, F., Bartorelli, A. L., Caiani, E. G., & Tamborini, G. (2021). Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques. Journal of Cardiovascular Development and Disease, 8(4), 44. https://doi.org/10.3390/jcdd8040044