Harnessing the Therapeutic Potential of Decoys in Non-Atherosclerotic Cardiovascular Diseases: State of the Art
Abstract
:1. Introduction
2. Decoys
Delivery of Decoy
3. Therapeutic Potential of Decoys
4. Effects of Decoys on Non-Atherosclerotic CVD
4.1. Nuclear Factor-Kappa B
4.2. Activator Protein-1 (AP-1)
4.3. Signal Transducer and Activator of Transcription-1 (STAT-1)
4.4. The E2 Factor (E2F)
4.5. Other Targets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaptoge, S.; Pennells, L.; De Bacquer, D.; Cooney, M.T.; Kavousi, M.; Stevens, G.; Riley, L.M.; Savin, S.; Khan, T.; Altay, S.; et al. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef] [Green Version]
- Fonarow, G.C.; Van Hout, B.; Villa, G.; Arellano, J.; Lindgren, P. Updated Cost-effectiveness Analysis of Evolocumab in Patients with Very High-risk Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2019, 4, 691–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manns, B.; Hemmelgarn, B.; Tonelli, M.; Au, F.; So, H.; Weaver, R.; Quinn, A.E.; Klarenbach, S.; Disease, F.C. The Cost of Care for People with Chronic Kidney Disease. Can. J. Kidney Health Dis. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [Green Version]
- Mehra, M.R.; Desai, S.S.; Kuy, S.; Henry, T.D.; Patel, A.N. Cardiovascular disease, drug therapy, and mortality in COVID-19. N. Engl. J. Med. 2020, 382, e102. [Google Scholar] [CrossRef]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar]
- Panta, R.; Dahal, K.; Kunwar, S. Efficacy and safety of mipomersen in treatment of dyslipidemia: A meta-analysis of randomized controlled trials. J. Clin. Lipidol. 2015, 9, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.; Turner, T.; Visseren, F.; et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N. Engl. J. Med. 2017, 376, 1430–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahjoubin-Tehran, M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. Decoy oligodeoxynucleotide technology: An emerging paradigm for breast cancer treatment. Drug Discov. Today 2019, 25, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Mahjoubin-Tehran, M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Orafai, H.M.; Jamialahmadi, T.; Sahebkar, A. Peptide decoys: A new technology offering therapeutic opportunities for breast cancer. Drug Discov. Today 2020, 25, 593–598. [Google Scholar] [CrossRef]
- Reuveni, E.; Getselter, D.; Oron, O.; Elliott, E. Differential contribution of cis and trans gene transcription regulatory mechanisms in amygdala and prefrontal cortex and modulation by social stress. Sci. Rep. 2018, 8, 6339. [Google Scholar] [CrossRef] [Green Version]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M.T.B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Med. Cell. Longev. 2019, 2019, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Chary, M.A.; Barbuto, A.F.; Izadmehr, S.; Hayes, B.D.; Burns, M.M. COVID-19: Therapeutics and Their Toxicities. J. Med. Toxicol. 2020, 16, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Jin, W.; Sood, A.; Montgomery, D.W.; Grant, O.C.; Fuster, M.M.; Fu, L.; Dordick, J.S.; Woods, R.J.; Zhang, F.; et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antivir. Res. 2020, 181, 104873. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, G.; Gouda, A.S.; Cogoi, S.; Pedersen, E.B.; Xodo, L.E. Nucleic Acid Targeted Therapy: G4 Oligonucleotides Downregulate HRAS in Bladder Cancer Cells through a Decoy Mechanism. ACS Med. Chem. Lett. 2015, 6, 1179–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-P.; Yang, S.-M.; Zhang, L.-R. Small interfering RNA targeting decoy receptor 3 sensitizes colon cancer cells (SW480) to radiation treatment. World Chin. J. Dig. 2009, 17, 2722. [Google Scholar] [CrossRef]
- Njatcha, C.; Farooqui, M.; Kornberg, A.; Johnson, D.E.; Grandis, J.R.; Siegfried, J.M. STAT3 Cyclic Decoy Demonstrates Robust Antitumor Effects in Non–Small Cell Lung Cancer. Mol. Cancer Ther. 2018, 17, 1917–1926. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.; Ni, S.; Arnett, T.C.; McKell, M.; Kennedy, M.A. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability. Mol. Ther. Oncolytics 2018, 8, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Jiang, A.; Zhang, J.; Jing, F. Apoptosis induction by E2F decoy DNA of the prostate cancer cell line. Braz. Arch. Biol. Technol. 2010, 53, 327–334. (In English) [Google Scholar] [CrossRef]
- Wang, L.; Wei, W.; Hu, Y.; Song, S.; Yan, Z. An oligonucleotide decoy for nuclear factor-κB inhibits tumor necrosis factor-α-induced human umbilical cord vein endothelial cell tissue factor expression in vitro. Blood Coagul. Fibrinolysis 2004, 15, 483–490. [Google Scholar] [CrossRef]
- Akimoto, S.; Suzuki, J.-I.; Aoyama, N.; Ikeuchi, R.; Watanabe, H.; Tsujimoto, H.; Wakayama, K.; Kumagai, H.; Ikeda, Y.; Akazawa, H.; et al. A Novel Bioabsorbable Sheet That Delivers NF-κB Decoy Oligonucleotide Restrains Abdominal Aortic Aneurysm Development in Rats. Int. Heart J. 2018, 59, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Yanagihara, K.; Matsuoka, K.; Hanaoka, N.; Toda, K.; Muro, K. A novel strategy of decoy transfection against nuclear factor-κB in myocardial preservation. Ann. Thorac. Surg. 2001, 71, 624–629. (In English) [Google Scholar]
- Yokoseki, O.; Suzuki, J.I.; Kitabayashi, H.; Watanabe, N.; Wada, Y.; Aoki, M.; Morishita, R.; Kaneda, Y.; Ogihara, T.; Futamatsu, H.; et al. cis Element decoy against nuclear factor-κB attenuates development of experimental autoimmune myocarditis in rats. Circ. Res. 2001, 89, 899–906. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, J.; Morishita, R.; Amano, J.; Kaneda, Y.; Isobe, M. Decoy against nuclear factor-kappa B attenuates myocardial cell infiltration and arterial neointimal formation in murine cardiac allografts. Gene Ther. 2000, 7, 1847–1852. [Google Scholar] [CrossRef] [Green Version]
- Sawa, Y.; Morishita, R.; Suzuki, K.; Kagisaki, K.; Kaneda, Y.; Maeda, K.; Kadoba, K.; Matsuda, H. A novel strategy for myocardial protection using in vivo transfection of cis element ‘decoy’ against NFkappaB binding site: Evidence for a role of NFkappaB in ischemia-reperfusion injury. Circulation 1997, 96 (Suppl. 9), II-280. [Google Scholar]
- Morishita, R.; Sugimoto, T.; Aoki, M.; Kida, I.; Tomita, N.; Moriguchi, A.; Maeda, K.; Sawa, Y.; Kaneda, Y.; Higaki, J.; et al. In vivo transfection of cis element “decoy” against nuclear factor-κ B binding site prevents myocardial infarction. Nat. Med. 1997, 3, 894. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, H.; Aoki, M.; Miyake, T.; Kawasaki, T.; Iwai, M.; Jo, N.; Oishi, M.; Kataoka, K.; Ohgi, S.; Ogihara, T.; et al. Inhibition of Experimental Abdominal Aortic Aneurysm in the Rat by Use of Decoy Oligodeoxynucleotides Suppressing Activity of Nuclear Factor κB and ets Transcription Factors. Circulation 2004, 109, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, M.; Viehofer, K.; Hamann, C.; Barry, J.J.; Kleb, B.; Klose, K.J.; Wagner, H.-J.; Alfke, H. Local Administration of NF-κ B Decoy Oligonucleotides to Prevent Restenosis after Balloon Angioplasty: An Experimental Study in New Zealand White Rabbits. Cardiovasc. Interv. Radiol. 2005, 28, 331–337. [Google Scholar] [CrossRef]
- Bonham, C.A.; Peng, L.; Liang, X.; Chen, Z.; Wang, L.; Ma, L.; Hackstein, H.; Robbins, P.D.; Thomson, A.W.; Fung, J.J.; et al. Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-κB oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig. J. Immunol. 2002, 169, 3382–3391. (In English) [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Park, K.W.; Oh, S.; Cho, H.J.; Cho, H.J.; Park, J.S.; Cho, Y.-S.; Koo, B.-K.; Chae, I.-H.; Choi, D.-J.; et al. NF-κB decoy potentiates the effects of radiation on vascular smooth muscle cells by enhancing apoptosis. Exp. Mol. Med. 2005, 37, 18–26. (In English) [Google Scholar] [CrossRef]
- Miyake, T.; Aoki, M.; Nakashima, H.; Kawasaki, T.; Oishi, M.; Kataoka, K.; Tanemoto, K.; Ogihara, T.; Kaneda, Y.; Morishita, R. Prevention of abdominal aortic aneurysms by simultaneous inhibition of NFκB and ets using chimeric decoy oligonucleotides in a rabbit model. Gene Ther. 2006, 13, 695–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannoukakis, N.; Bonham, C.A.; Qian, S.; Zhou, Z.; Peng, L.; Harnaha, J.; Li, W.; Thomson, A.W.; Fung, J.J.; Robbins, P.D.; et al. Prolongation of cardiac allograft survival using dendritic cells treated with NF-κB decoy oligodeoxyribonucleotides. Mol. Ther. 2000, 1, 430–437. (In English) [Google Scholar] [CrossRef] [PubMed]
- Kupatt, C.; Wichels, R.; Deiss, M.; Molnar, A.; Lebherz, C.; Raake, P.; Von Degenfeld, G.; Hahnel, D.; Boekstegers, P. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs. Gene Ther. 2002, 9, 518–526. (In English) [Google Scholar] [CrossRef] [Green Version]
- Ohtani, K.; Egashira, K.; Nakano, K.; Zhao, G.; Funakoshi, K.; Ihara, Y.; Kimura, S.; Tominaga, R.; Morishita, R.; Sunagawa, K. Stent-based local delivery of nuclear factor-κB decoy attenuates in-stent restenosis in hypercholesterolemic rabbits. Circulation 2006, 114, 2773–2779. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, T.; Kataoka, H.; Shimamura, M.; Nakagami, H.; Wakayama, K.; Moriwaki, T.; Ishibashi, R.; Nozaki, K.; Morishita, R.; Hashimoto, N. NF-κB Is a Key Mediator of Cerebral Aneurysm Formation. Circulation 2007, 116, 2830–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraya, S.; Miwa, K.; Aoki, M.; Miyake, T.; Oishi, M.; Kataoka, K.; Ohgi, S.; Ogihara, T.; Kaneda, Y.; Morishita, R. Hypertension accelerated experimental abdominal aortic aneurysm through upregulation of nuclear factor kappaB and Ets. Hypertension 2006, 48, 628–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, T.; Aoki, M.; Masaki, H.; Kawasaki, T.; Oishi, M.; Kataoka, K.; Ogihara, T.; Kaneda, Y.; Morishita, R. Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor kappaB and ets in a rabbit model. Circ. Res. 2007, 101, 1175–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, T.; Kataoka, H.; Nishimura, M.; Ishibashi, R.; Morishita, R.; Miyamoto, S. Regression of intracranial aneurysms by simultaneous inhibition of nuclear factor-κB and Ets with chimeric decoy oligodeoxynucleotide treatment. Neurosurgery 2012, 70, 1534–1543. [Google Scholar] [CrossRef]
- Miyake, T.; Aoki, M.; Osako, M.K.; Shimamura, M.; Nakagami, H.; Morishita, R. Systemic Administration of Ribbon-type Decoy Oligodeoxynucleotide Against Nuclear Factor κB and Ets Prevents Abdominal Aortic Aneurysm in Rat Model. Mol. Ther. 2011, 19, 181–187. [Google Scholar] [CrossRef]
- Miwa, K.; Nakashima, H.; Aoki, M.; Miyake, T.; Kawasaki, T.; Iwai, M.; Oishi, M.; Kataoka, K.; Ohgi, S.; Ogihara, T.; et al. Inhibition of ets, an essential transcription factor for angiogenesis, to prevent the development of abdominal aortic aneurysm in a rat model. Gene Ther. 2005, 12, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Kataoka, H.; Nishimura, M.; Ishibashi, R.; Morishita, R.; Miyamoto, S. Ets-1 promotes the progression of cerebral aneurysm by inducing the expression of MCP-1 in vascular smooth muscle cells. Gene Ther. 2010, 17, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Remes, A.; Franz, M.; Mohr, F.; Weber, A.; Rapti, K.; Jungmann, A.; Karck, M.; Hecker, M.; Kallenbach, K.; Müller, O.J.; et al. AAV-Mediated Expression of AP-1-Neutralizing RNA Decoy Oligonucleotides Attenuates Transplant Vasculopathy in Mouse Aortic Allografts. Mol. Ther. Methods Clin. Dev. 2019, 15, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Zhao, Z.; Chen, L. Stent-based delivery of decoy oligodeoxynucleotides against activator protein-1 binding site decreased restenosis in rabbits. Die Pharm. 2013, 68, 661–667. [Google Scholar]
- Buchwald, A.B.; Wagner, A.H.; Webel, C.; Hecker, M. Decoy oligodeoxynucleotide against activator protein-1 reduces neointimal proliferation after coronary angioplasty in hypercholesterolemic minipigs. J. Am. Coll. Cardiol. 2002, 39, 732–738. (In English) [Google Scholar] [CrossRef] [Green Version]
- Arif, R.; Zaradzki, M.; Remes, A.; Seppelt, P.; Kunze, R.; Schröder, H.; Schwill, S.; Ensminger, S.M.; Robinson, P.N.; Karck, M.; et al. AP-1 Oligodeoxynucleotides Reduce Aortic Elastolysis in a Murine Model of Marfan Syndrome. Mol. Ther. Nucleic Acids 2017, 9, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölschermann, H.; Stadlbauer, T.H.; Wagner, A.H.; Fingerhuth, H.; Muth, H.; Rong, S.; Güler, F.; Tillmanns, H.; Hecker, M. STAT-1 and AP-1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival. Cardiovasc. Res. 2006, 71, 527–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanovic, T.; Wagner, A.H.; Wang, S.; Kiss, E.; Rockstroh, N.; Bedke, J.; Gröne, H.-J.; Hecker, M. STAT-1 decoy oligodeoxynucleotide inhibition of acute rejection in mouse heart transplants. Basic Res. Cardiol. 2009, 104, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Kawauchi, M.; Suzuki, J.; Wada, Y.; Morishita, R.; Kaneda, Y.; Isobe, M.; Amano, J.; Takamoto, S. Downregulation of nuclear factor kappa B expression in primate cardiac allograft arteries after E2F decoy transfection. Transplant. Proc. 2001, 33, 451. [Google Scholar] [CrossRef]
- Suzuki, J.; Isobe, M.; Morishita, R.; Izawa, A.; Yamazaki, S.; Okubo, Y.; Kaneda, Y.; Sekiguchi, M. E2F decoy suppresses E-Selectin expression in murine cardiac allograft arteriopathy. Transplant. Proc. 1999, 31, 2018–2019. [Google Scholar] [CrossRef]
- Kawauchi, M.; Suzuki, J.-I.; Morishita, R.; Wada, Y.; Izawa, A.; Tomita, N.; Amano, J.; Kaneda, Y.; Ogihara, T.; Takamoto, S.; et al. Gene therapy for attenuating cardiac allograft arteriopathy using ex vivo E2F decoy transfection by HVJ-AVE-liposome method in mice and nonhuman primates. Circ. Res. 2000, 87, 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.G.; Kim, J.; Jang, S.P.; Nguen, M.; Yang, D.K.; Jeong, D.; Park, Z.Y.; Park, S.-G.; Hajjar, R.J.; Park, W.J. Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J. Mol. Cell. Cardiol. 2013, 56, 63–71. [Google Scholar] [CrossRef]
- Jeong, N.; Yoo, J.; Lee, P.; Kepreotis, S.V.; Lee, A.; Wahlquist, C.; Brown, B.D.; Kho, C.; Mercola, M.; Hajjar, R.J. miR-25 Tough Decoy Enhances Cardiac Function in Heart Failure. Mol. Ther. 2018, 26, 718–729. [Google Scholar] [CrossRef]
- Kelkenberg, U.; Wagner, A.H.; Sarhaddar, J.; Hecker, M.; Von Der Leyen, H.E. CCAAT/Enhancer-Binding Protein Decoy Oligodeoxynucleotide Inhibition of Macrophage-Rich Vascular Lesion Formation in Hypercholesterolemic Rabbits. Arter. Thromb. Vasc. Biol. 2002, 22, 949–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochain, C.; Auvynet, C.; Poupel, L.; Vilar, J.; Dumeau, E.; Richart, A.; Recalde, A.; Zouggari, Y.; Yin, K.Y.H.W.; Bruneval, P.; et al. The Chemokine Decoy Receptor D6 Prevents Excessive Inflammation and Adverse Ventricular Remodeling After Myocardial Infarction. Arter. Thromb. Vasc. Biol. 2012, 32, 2206–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoppet, M.; Ruppert, V.; Hofbauer, L.C.; Henser, S.; Al-Fakhri, N.; Christ, M.; Pankuweit, S.; Maisch, B. TNF-related apoptosis-inducing ligand and its decoy receptor osteoprotegerin in nonischemic dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 2005, 338, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Horie, T.; Ono, K.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Kuwabara, Y.; Nakashima, Y.; Takanabe-Mori, R.; Nishi, E.; et al. Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res. 2010, 87, 656–664. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.-L.; Chen, C.; Huo, R.; Wang, N.; Li, Z.; Tu, Y.-J.; Hu, J.-T.; Chu, X.; Huang, W.; Yang, B.-F. Reciprocal Repression Between MicroRNA-133 and Calcineurin Regulates Cardiac Hypertrophy. Hypertension 2010, 55, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Kem, D.C.; Zhang, L.; Huang, B.; Liles, C.; Benbrook, A.; Gali, H.; Veitla, V.; Scherlag, B.J.; Cunningham, M.W.; et al. Novel retro-inverso peptide inhibitor reverses angiotensin receptor autoantibody-induced hypertension in the rabbit. Hypertension 2015, 65, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Egashira, K.; Chen, L.; Nakano, K.; Iwata, E.; Miyagawa, M.; Tsujimoto, H.; Hara, K.; Morishita, R.; Sueishi, K.; et al. Nanoparticle-Mediated Delivery of Nuclear Factor κB Decoy into Lungs Ameliorates Monocrotaline-Induced Pulmonary Arterial Hypertension. Hypertension 2009, 53, 877–883. [Google Scholar] [CrossRef]
- Yao, M.; Sturdivant, J.; Ebrahimi, A.; Ganguly, S.; Elbayoumi, T. Novel Pharmaceutical Strategy for Selective Abrogation of TSP1-Induced Vascular Dysfunction by Decoy Recombinant CD47 Soluble Receptor in Prophylaxis and Treatment Models. Biomedicines 2021, 9, 642. [Google Scholar] [CrossRef]
- Van der Heiden, K.; Cuhlmann, S.; Luong le, A.; Zakkar, M.; Evans, P.C. Role of nuclear factor kappaB in cardiovascular health and disease. Clin. Sci. 2010, 118, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Kataoka, H.; Ishibashi, R.; Nozaki, K.; Morishita, R.; Hashimoto, N. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: Contribution of interleukin-1beta and nuclear factor-kappaB. Arter. Thromb Vasc Biol. 2009, 29, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishore, R.; Verma, S.K. Roles of STATs signaling in cardiovascular diseases. JAK-STAT 2012, 1, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Decoy Name | Type of CVD | Target Up (↑)/Down (↓) | Concentration/Dose µM mg/kg/day | Decoy Type | Model/Cell Line | Experimental Replications Treatment/Control | Delivery Method | Results | Ref. |
---|---|---|---|---|---|---|---|---|---|
NF-κB decoy | Thromboembolism diseases | NF-κB ↓ Tissue factor ↓ | 100 µmol/L | ODN | HUVEC | - | Liposomes | Blocked expression of tissue factor gene | [20] |
NF-κB decoy | Abdominal aortic aneurysm | NF-κB ↓ | ODN | SD rats that were induced with abdominal aortic aneurysm | 5/5 | Bioabsorbable sheet | Reduced the aneurysm size | [21] | |
NF-κB decoy | Myocardial ischemia-reperfusion injury | NF-κB ↓ | 10 µmol/L | ODN | Rats | 6/6 | HVJ liposomes | Reduced ischemia-reperfusion injury after prolonged heart preservation | [22] |
NF-κB decoy | Autoimmune myocarditis | NF-κB ↓ | 15 μmol/L | ODN | Rats | 8/6 | HVJ-AVE-Liposomes | Reduces the severity of EAM | [23] |
NF-κB decoy | Cardiac allograft rejection | NF-κB ↓ | - | ODN | Mice | 6/6 | HVJ-AVE-Liposomes | Reduced myocardial cell infiltration and arterial intimal thickening | [24] |
NF-κB decoy | Myocardial ischemia-reperfusion injury | NF-κB ↓ | - | ODN | Rats | 6/6 | HVJ-liposome | The percentages of recovery of left ventricular developed pressure and coronary flow were higher | [25] |
NF-κB decoy | Myocardial infarction | NF-κB ↓ | 1–10 µM | ODN | Rats | 5/5 | HVJ-liposome | Decreased the myocardial infarction area and reduced the expression of adhesion molecules and cytokines including IL-8 and IL-6 | [26] |
Chimeric decoy ODN | Abdominal aortic aneurysm | NF-B ↓ Ets ↓ | 100 nmol/cm2 | ODN | Rat | 6/6 | -Cellulose and polyethylene glycol | Inhibited AAA progression, reduced MMP expression, and inhibited macrophage migration The effect of Chimeric decoy was greater than NF-B decoy | [27] |
NF-κB decoy | NF-B ↓ | ||||||||
NF-B decoy | Restenosis | NF-B ↓ | 100 ng | ODN | hypercholesterolemic rabbits | 14/8 | Liposomal carrier (TfX50) | Did not reduce neointimal hyperplasia | [28] |
NF-B decoy | Cardiac allograft rejection | NF-B ↓ | 10 µM | ODN | mice | 3/3 | - | Suppressed DC maturation | [29] |
NF-B decoy | Restenosis | NF-B ↓ | 2 µmol/l decoy | ODN | VSMCs | - | Lipofectamine | Increased apoptosis and reduced proliferation and survival in the irradiated VSMCs | [30] |
Chimeric decoy NFkB decoy Ets-1 decoy | Abdominal aortic aneurysms | NF-B ↓ Ets ↓ | 100 nmol decoy/cm2 | ODN | Elastase-induced rabbit AAA model | 9/9 | delivery sheet (hydroxypropyl cellulose and PEG) | Prevented aortic dilatation progression and decreased the activities of MMP-9 and MMP-2 | [31] |
NF-κB decoy | Cardiac allograft rejection | NF-B ↓ | 10 µM | ODN | Mice, Bone marrow-derived DC | 10/6 | - | Repressed the cell-surface expression of costimulatory molecules and prolonged allograft survival | [32] |
NF-κB decoy | Myocardial ischemia-reperfusion injury | NF-B ↓ | 75 nmol per heart | ODN | Pig | - | Liposome | Decreased infarct size | [33] |
NF-κB decoy | Restenosis | NF-B ↓ | 500 to 600 µg per stent | ODN | Hypercholesterolemic Rabbit, SMCs | 3/3 | Polyurethane | Attenuated neointimal formation and suppressed proliferation of human coronary artery SMCs | [34] |
NF-κB decoy | Aneurysms | NF-κB ↓ | - | ODN | Rats | 10/7 | - | Prevented CA formation and macrophage infiltration | [35] |
NF-κB decoy | Aneurysms | NF-κB ↓ | - | ODN | Rats | 15/15 | - | Inhibited aortic dilatation and migration of macrophages | [36] |
Chimeric decoy | Aneurysms | NF-κB ↓ Ets-1 ↓ | - | ODN | Rabbits | 24/24 | - | Decreased the size of AAA | [37] |
Chimeric decoy | Aneurysms | NF-κB ↓ Ets-1 ↓ | - | ODN | Rats | 9/10 | - | Decreased IA size and thickened IA walls | [38] |
R-ODN | Abdominal aorticaneurysm | NF-B↓Ets-1 ↓ | 50 nmol/week | ODN | AAA model rat | 9/9 | - | Suppressed the activation of MMP-9 and MMP-12R ODNs but not PS-ODN prevented aneurysm formation | [39] |
PS-ODN | |||||||||
Ets-1 decoy | Aneurysms | Ets-1 ↓ | - | ODN | Rats | 8/86/6 | Delivery sheet | Decreased MMPs expression and suppressed aneurismal dilation | [40] |
Ets-1 decoy | Aneurysms | Ets-1 ↓ | - | ODN | Rats | 8/8 | - | Prevented CA enlargement and upregulation of MCP-1 expression | [41] |
AP-1 decoy | Cardiac allograft transplant vasculopathy | AP-1 ↓ | - | Decoy oligonucleotide | Mouse transplant vasculopathy model | 9/9 | AAV | Reduced intima-to-media ratio, reduced the expression of cytokines, adhesion molecules and decreased the numbers of proliferative SMCs, MMP-9-positive cells, and inflammatory cell infiltration | [42] |
AP-1 decoy | Restenosis | AP-1 ↓ | 20 ug/mL | ODN | Rabbit VSMCs | 10/10 | - | Inhibited the expression of TGF-1 and CTGF and inhibited neointimal thickening and restenosis | [43] |
AP-1 decoy | Restenosis | AP-1 ↓ | 20 nmol | ODN | Hypercholesterolemic minipigs | 3–12/10 | - | Reduced neointimal formation | [44] |
AP-1 decoy | Aneurysms | AP-1 ↓ | 10 μmol/L | ODN | Mice | 7/7 | - | Reduction of basal and interleukin-1β-stimulated MMP expression and activity in mAoSMCs | [45] |
AP-1 decoy | Cardiac allograft rejection | AP-1 ↓ | 5 μmol/l | ODN | Ex vivo Rat | 5/5 | - | Suppressed graft, reduced graft infiltration and delayed acute rejection | [46] |
STAT-1 decoy | STAT-1 ↓ | ||||||||
STAT-1 decoy | Acute rejection of heart transplants | STAT-1↓ | 10 µM | ODN | Mice | 3/3 | - | Decreased rejection scores and reduced infiltration of monocyte and T cells | [47] |
E2F decoy | Cardiac allograft arteriosclerosis | E2F ↓ NF-κB ↓ | - | ODN | Monkeys | 5/4 | HVJ-liposome | Blocked the NF-κB expression in the mildly thickened arterial intima | [48] |
E2F decoy | Cardiac allograft arteriopathy cardiac transplantation | E2F ↓ E-selectin ↓ | - | ODN | Mice | - | HVJ-liposome | Limited E-selectin expression | [49] |
E2F decoy | Neointimal formation cardiac allograft arteriopathy | E2F ↓ | - | ODN | mice and Japanese monkeys | 5/5 | HVJ liposome | Suppressed neointimal formation, prevented expression of cell-cycle regulatory genes and reduced Cardiac allograft arteriopathy | [50] |
ΨPLB-SEΨPLB-TE | Heart failure | protein phosphatase 1 ↓ | 1 μM for 4 h | Peptide | Cardiomyocytes | - | cell-permeable peptide (TAT) | Increased PLB phosphorylation, restored activity of SERCA2a and improved recovery after ischemia/reperfusion in the heart. | [51] |
Tough decoy (TuD) | Heart failure | miR-25 ↓ | 300 mg | ODN | SERCA2 KO mice/cardiomyoblast | 5/5 | AAV9 vector | Increased protein levels of SERCA2a and improved cardiac dysfunction and fibrosis | [52] |
C/EBP decoy | Restenosis | C/EBP ↓ Endothelin-1 ↓ | 20 μmol/l | ODN | Hypercholesterolemic Rabbit | 7/7 | - | Reduced neointimal formation and intravascular inflammation | [53] |
Chemokine decoy receptor D6 | Adverse ventricular Remodeling following myocardial infarction | inflammatory CC-chemokines↓ | - | Peptide | Myocardial infarcted D6-/-murine model | 6/6 | - | Limited CC-chemokine-dependent pathogenic inflammation that is needed for adequate cardiac remodeling following myocardial infarction | [54] |
Decoy receptor osteoprotegerin (OPG) | Dilated cardiomyopathy | TRAIL↓ | - | Peptide | Human | 24/22 | - | Limited systemic activation of TRAIL | [55] |
miR-146a | Chemotherapy-induced cardiotoxicity | miR-146a ↓ ErbB4↑ | - | ODN | Mice | - | - | Up-regulated ErbB4 expression and reduced Dox-induced cell death | [56] |
miR-133 decoy | Cardiac hypertrophy | miR-133 ↓ | - | ODN | Primary cardiomyocytes, Rats | 5/5 | Lipofectamine 2000 | Downregulated miR-133 expression, and enhanced calcineurin activity | [57] |
RID decoy | Hypertensive disorders | AT1R-AAbs ↓ | 1 mg/kg | Peptide | Rabbits | 6/6 | - | Led to the body developing tolerance to this epitope and suppression of autoantibody production | [58] |
NF-κB decoy | Hypertensive disorders | NF-κB ↓ | 50 µg | ODN | Rat model of PAH | 33/33 | PEG-PLGA | Attenuated the development of PAH | [59] |
TSP1 decoy | Hypertensive disorders | TSP1 ↓ | - | Peptide | Mice | 5/7 | - | Abrogated TSP1-associated cardiovascular complications | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahjoubin-Tehran, M.; Atkin, S.L.; Bezsonov, E.E.; Jamialahmadi, T.; Sahebkar, A. Harnessing the Therapeutic Potential of Decoys in Non-Atherosclerotic Cardiovascular Diseases: State of the Art. J. Cardiovasc. Dev. Dis. 2021, 8, 103. https://doi.org/10.3390/jcdd8090103
Mahjoubin-Tehran M, Atkin SL, Bezsonov EE, Jamialahmadi T, Sahebkar A. Harnessing the Therapeutic Potential of Decoys in Non-Atherosclerotic Cardiovascular Diseases: State of the Art. Journal of Cardiovascular Development and Disease. 2021; 8(9):103. https://doi.org/10.3390/jcdd8090103
Chicago/Turabian StyleMahjoubin-Tehran, Maryam, Stephen L. Atkin, Evgeny E. Bezsonov, Tannaz Jamialahmadi, and Amirhossein Sahebkar. 2021. "Harnessing the Therapeutic Potential of Decoys in Non-Atherosclerotic Cardiovascular Diseases: State of the Art" Journal of Cardiovascular Development and Disease 8, no. 9: 103. https://doi.org/10.3390/jcdd8090103
APA StyleMahjoubin-Tehran, M., Atkin, S. L., Bezsonov, E. E., Jamialahmadi, T., & Sahebkar, A. (2021). Harnessing the Therapeutic Potential of Decoys in Non-Atherosclerotic Cardiovascular Diseases: State of the Art. Journal of Cardiovascular Development and Disease, 8(9), 103. https://doi.org/10.3390/jcdd8090103