Congenitally Corrected Transposition of the Great Arteries in Adults—A Contemporary Single Center Experience
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Follow-Up
3.2. Predictors of Primary Endpoint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kutty, S.; Danford, D.A.; Diller, G.P.; Tutarel, O. Contemporary management and outcomes in congenitally corrected transposition of the great arteries. Heart 2018, 104, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Wallis, G.A.; Debich-Spicer, D.; Anderson, R.H. Congenitally corrected transposition. Orphanet J. Rare Dis. 2011, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connelly, M.S.; Liu, P.P.; Williams, W.G.; Webb, G.D.; Robertson, P.; McLaughlin, P.R. Congenitally corrected transposition of the great arteries in the adult: Functional status and complications. J. Am. Coll. Cardiol. 1996, 27, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Graham, T.P.; Bernard, Y.D.; Mellen, B.G.; Celermajer, D.; Baumgartner, H.; Cetta, F.; Connolly, H.M.; Davidson, W.R.; Dellborg, M.; Foster, E.; et al. Long-term outcome in congenitally corrected transposition of the great arteries. J. Am. Coll. Cardiol. 2000, 36, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Ott, I.; Rumpf, P.M.; Kasel, M.; Kastrati, A.; Kaemmerer, H.; Schunkert, H.; Ewert, P.; Tutarel, O. Transcatheter Valve Repair in Congenitally Corrected Transposition of the Great Arteries. EuroIntervention 2021. [Google Scholar] [CrossRef]
- Budts, W.; Roos-Hesselink, J.; Radle-Hurst, T.; Eicken, A.; McDonagh, T.A.; Lambrinou, E.; Crespo-Leiro, M.G.; Walker, F.; Frogoudaki, A.A. Treatment of heart failure in adult congenital heart disease: A position paper of the Working Group of Grown-Up Congenital Heart Disease and the Heart Failure Association of the European Society of Cardiology. Eur. Heart J. 2016, 37, 1419–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.P.; Sharma, R.; Li, W.; Leenarts, M.; Kalra, P.R.; Kemp, M.; Coats, A.J.S.; Anker, S.D.; Gatzoulis, M.A. Neurohormonal Activation and the Chronic Heart Failure Syndrome in Adults With Congenital Heart Disease. Circulation 2002, 106, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Munoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; West, C.; McGhie, J.; van den Bosch, A.E.; Babu-Narayan, S.V.; Meijboom, F.; Mongeon, F.P.; Khairy, P.; Kimball, T.R.; Beauchesne, L.M.; et al. Consensus recommendations for echocardiography in adults with congenital heart defects from the International Society of Adult Congenital Heart Disease (ISACHD). Int. J. Cardiol. 2018, 272, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Bredy, C.; Ministeri, M.; Kempny, A.; Alonso-Gonzalez, R.; Swan, L.; Uebing, A.; Diller, G.P.; Gatzoulis, M.A.; Dimopoulos, K. New York Heart Association (NYHA) classification in adults with congenital heart disease: Relation to objective measures of exercise and outcome. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Tutarel, O.; Kempny, A.; Alonso-Gonzalez, R.; Jabbour, R.; Li, W.; Uebing, A.; Dimopoulos, K.; Swan, L.; Gatzoulis, M.A.; Diller, G.P. Congenital heart disease beyond the age of 60: Emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur. Heart J. 2014, 35, 725–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surkova, E.; Segura, T.; Dimopoulos, K.; Bispo, D.; Flick, C.; West, C.; Babu-Narayan, S.V.; Senior, R.; Gatzoulis, M.A.; Li, W. Systolic dysfunction of the subpulmonary left ventricle is associated with the severity of heart failure in patients with a systemic right ventricle. Int. J. Cardiol. 2021, 324, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Surkova, E.; Dimopoulos, K.; Li, W. Reply to: “Systolic dysfunction of the subpulmonary left ventricle in the systemic right ventricle: Late manifestation or subclinical predictor of heart failure?”. Int. J. Cardiol. 2021, 332, 69. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, J.; Santens, B.; Van De Bruaene, A.; Budts, W. Systolic dysfunction of the subpulmonary left ventricle in the systemic right ventricle: Late manifestation or subclinical predictor of heart failure? Int. J. Cardiol. 2021, 333, 97. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef] [PubMed]
- Baruteau, A.E.; Abrams, D.J.; Ho, S.Y.; Thambo, J.B.; McLeod, C.J.; Shah, M.J. Cardiac Conduction System in Congenitally Corrected Transposition of the Great Arteries and Its Clinical Relevance. J. Am. Heart Assoc. 2017, 6, e007759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhta, J.C.; Maloney, J.D.; Ritter, D.G.; Ilstrup, D.M.; Feldt, R.H. Complete atrioventricular block in patients with atrioventricular discordance. Circulation 1983, 67, 1374–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofferberth, S.C.; Alexander, M.E.; Mah, D.Y.; Bautista-Hernandez, V.; del Nido, P.J.; Fynn-Thompson, F. Impact of pacing on systemic ventricular function in L-transposition of the great arteries. J. Thorac. Cardiovasc. Surg. 2016, 151, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All | Alive | Dead | p | |
---|---|---|---|---|
n | 96 | 86 | 10 | |
Age (years) | 32.8 ± 16.0 | 32.2 ± 15.9 | 37.9 ± 16.8 | 0.325 |
Female, n (%) | 48 (50.0) | 44 (51.2) | 4 (40.0) | 0.504 |
Situs Inversus | 11 (11.5) | 8 (9.3) | 3 (30.0) | 0.052 |
Additional Lesions (all) | 81 (84.4) | 72 (83.7) | 9 (90.0) | 0.605 |
VSD | 56 (58.3) | 48 (55.8) | 8 (80.0) | 0.142 |
LVOTO | 55 (57.3) | 51 (59.3) | 4 (40.0) | 0.243 |
Ebstein | 13 (13.5) | 12 (14.0) | 1 (10.0) | 0.729 |
Extracardiac Comorbidity | 59 (61.5) | 53 (61.6) | 6 (60.0) | 0.920 |
Previous Cardiac Surgery | 45 (46.9) | 40 (46.5) | 5 (50.0) | 0.834 |
History of Atrial Arrhythmias | 29 (30.2) | 24 (27.9) | 5 (50.0) | 0.150 |
History of Ventricular Arrhythmias | 8 (8.3) | 8 (9.3) | 0 (0) | 0.314 |
History of Electrophysiological Ablation | 5 (5.2) | 4 (4.7) | 1 (10.0) | 0.471 |
NYHA class, n (%) | 0.042 | |||
I | 59 (61.5) | 55 (64.0) | 4 (40.0) | |
II | 18 (18.8) | 17 (19.8) | 1 (10.0) | |
III | 15 (15.6) | 12 (14.0) | 3 (30.0) | |
IV | 4 (4.2) | 2 (2.3) | 2 (20.0) | |
Pacemaker | 25 (26.0) | 20 (23.3) | 5 (50.0) | 0.068 |
ICD | 2 (2.1) | 2 (2.3) | 0 (0) | 0.626 |
All | Alive | Dead | p | |
---|---|---|---|---|
Systemic Right Ventricular Systolic Function | 0.028 | |||
Normal | 63 (65.6) | 59 (68.6) | 4 (40.0) | |
Mild–Moderately Reduced | 16 (16.7) | 15 (17.4) | 1 (10.0) | |
Severely Reduced | 17 (17.7) | 12 (14.0) | 5 (50.0) | |
Left Ventricular Systolic Function | 0.011 | |||
Normal | 88 (91.7) | 81 (94.2) | 7 (70.0) | |
Mild–Moderately Reduced | 4 (4.2) | 2 (2.3) | 2 (20.0) | |
Severely Reduced | 4 (4.2) | 3 (3.5) | 1 (10.0) | |
Tricuspid Regurgitation | 0.021 | |||
None–Mild | 44 (45.8) | 42 (48.8) | 2 (20.0) | |
Moderate | 30 (31.3) | 29 (33.7) | 1 (10.0) | |
Severe | 17 (17.7) | 12 (14.0) | 5 (50.0) | |
Tricuspid Valve Prosthesis | 5 (5.2) | 3 (3.5) | 2 (20.0) | 0.220 |
Univariate | Multivariate | |||
---|---|---|---|---|
Variable | HR (95% CI) | p | HR (95% CI) | p |
Age | 1.04 (0.9998–1.09) | 0.051 | ||
Additional Lesions | 0.99 (0.12–8.10) | 0.995 | ||
VSD | 2.93 (0.62–13.85) | 0.174 | ||
Male | 1.37 (0.39–4.87) | 0.623 | ||
Pacemaker | 2.82 (0.81–9.77) | 0.103 | ||
NYHA class ≥ III | 15.06 (3.43–66.03) | <0.001 | 18.66 (3.01–115.80) | 0.0017 |
Severe TR | 16.78 (3.19–88.22) | <0.001 | ||
Severe SRV Dysfunction | 14.48 (3.29–63.67) | <0.001 | ||
Reduced LV Function | 10.84 (2.52–46.67) | 0.001 | 7.36 (1.18–45.99) | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auer, J.; Pujol, C.; Maurer, S.J.; Nagdyman, N.; Ewert, P.; Tutarel, O. Congenitally Corrected Transposition of the Great Arteries in Adults—A Contemporary Single Center Experience. J. Cardiovasc. Dev. Dis. 2021, 8, 113. https://doi.org/10.3390/jcdd8090113
Auer J, Pujol C, Maurer SJ, Nagdyman N, Ewert P, Tutarel O. Congenitally Corrected Transposition of the Great Arteries in Adults—A Contemporary Single Center Experience. Journal of Cardiovascular Development and Disease. 2021; 8(9):113. https://doi.org/10.3390/jcdd8090113
Chicago/Turabian StyleAuer, Josef, Claudia Pujol, Susanne J. Maurer, Nicole Nagdyman, Peter Ewert, and Oktay Tutarel. 2021. "Congenitally Corrected Transposition of the Great Arteries in Adults—A Contemporary Single Center Experience" Journal of Cardiovascular Development and Disease 8, no. 9: 113. https://doi.org/10.3390/jcdd8090113
APA StyleAuer, J., Pujol, C., Maurer, S. J., Nagdyman, N., Ewert, P., & Tutarel, O. (2021). Congenitally Corrected Transposition of the Great Arteries in Adults—A Contemporary Single Center Experience. Journal of Cardiovascular Development and Disease, 8(9), 113. https://doi.org/10.3390/jcdd8090113