Genetic Variation in LRP1 Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Uncomplicated STBAD: Succesfull conservative treatment without initial or developing criteria for surgical intervention during follow-up.
- Complicated STBAD: Initial or developing criteria needing surgical intervention by thoracic endovascular aortic repair (TEVAR) or open surgery. Criteria for surgical intervention included: therapeutic resistant arterial hypertension/increasing pleural effusion and/or persistent pain, aortic diameter progression, radiomorphologic rupture signs, dissection related malperfusion of organs/extremities or stroke.
2.2. Control Reference Group for LRP1 Testing
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagan, P.G.; Nienaber, C.A.; Isselbacher, E.M.; Bruckman, D.; Karavite, D.J.; Russman, P.L.; Evangelista, A.; Fattori, R.; Suzuki, T.; Oh, J.K.; et al. The International Registry of Acute Aortic Dissection (IRAD): New insights into an old disease. JAMA 2000, 283, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.; Thelin, S.; Ståhle, E.; Ekbom, A.; Granath, F. Thoracic aortic aneurysm and dissection: Increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation 2006, 114, 2611–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aday, A.W.; Kreykes, S.E.; Fanola, C.L. Vascular Genetics: Presentations, Testing, and Prognostics. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Grove, M.L.; Prakash, S.K.; Eriksson, P.; Hostetler, E.M.; LeMaire, S.A.; Body, S.C.; Shalhub, S.; Estrera, A.L.; Safi, H.J.; et al. Genetic Variants in LRP1 and ULK4 Are Associated with Acute Aortic Dissections. Am. J. Hum. Genet. 2016, 99, 762–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albornoz, G.; Coady, M.A.; Roberts, M.; Davies, R.R.; Tranquilli, M.; Rizzo, J.A.; Elefteriades, J.A. Familial Thoracic Aortic Aneurysms and Dissections—Incidence, Modes of Inheritance, and Phenotypic Patterns. Ann. Thorac. Surg. 2006, 82, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1120/ (accessed on 15 November 2021).
- Guo, D.-C.; Pannu, H.; Tran-Fadulu, V.; Papke, C.L.; Yu, R.K.; Avidan, N.; Bourgeois, S.; Estrera, A.L.; Safi, H.J.; Sparks, E.; et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat. Genet. 2007, 39, 1488–1493. [Google Scholar] [CrossRef]
- Pannu, H.; Fadulu, V.T.; Chang, J.; Lafont, A.; Hasham, S.N.; Sparks, E.; Giampietro, P.F.; Zaleski, C.; Estrera, A.L.; Safi, H.J.; et al. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 2005, 112, 513–520. [Google Scholar] [CrossRef]
- Zhu, L.; Vranckx, R.; Khau Van Kien, P.; Lalande, A.; Boisset, N.; Mathieu, F.; Wegman, M.; Glancy, L.; Gasc, J.-M.; Brunotte, F.; et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat. Genet. 2006, 38, 343–349. [Google Scholar] [CrossRef]
- Au, D.T.; Ying, Z.; Hernández-Ochoa, E.O.; Fondrie, W.E.; Hampton, B.; Migliorini, M.; Galisteo, R.; Schneider, M.F.; Daugherty, A.; Rateri, D.L.; et al. LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca2+ Signaling and Expression of Cytoskeleton-Related Proteins. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2651–2664. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.M.; Rateri, D.L.; Balakrishnan, A.; Howatt, D.A.; Strickland, D.K.; Muratoglu, S.C.; Haggerty, C.M.; Fornwalt, B.K.; Cassis, L.A.; Daugherty, A. Smooth Muscle Cell Deletion of Low-Density Lipoprotein Receptor–Related Protein 1 Augments Angiotensin II–Induced Superior Mesenteric Arterial and Ascending Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Basford, J.E.; Koch, S.; Anjak, A.; Singh, V.P.; Krause, E.G.; Robbins, N.; Weintraub, N.L.; Hui, D.Y.; Rubinstein, J. Smooth Muscle LDL Receptor-Related Protein-1 Deletion Induces Aortic Insufficiency and Promotes Vascular Cardiomyopathy in Mice. PLoS ONE 2013, 8, e82026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schürks, M. Genetics of migraine in the age of genome-wide association studies. J. Headache Pain 2012, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erhart, P.; Gieldon, L.; Ante, M.; Körfer, D.; Strom, T.; Grond-Ginsbach, C.; Böckler, D. Acute Stanford type B aortic dissection-who benefits from genetic testing? J. Thorac. Dis. 2020, 12, 6806–6812. [Google Scholar] [CrossRef]
- Palm, F.; Aigner, A.; Pussinen, P.J.; Urbanek, C.; Buggle, F.; Safer, A.; Becher, H.; Grau, A.J. Association of a Multigenetic Pro-Inflammatory Profile with Ischaemic Stroke. Cerebrovasc. Dis. 2020, 49, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Smedberg, C.; Steuer, J.; Leander, K.; Hultgren, R. Sex differences and temporal trends in aortic dissection: A population-based study of incidence, treatment strategies, and outcome in Swedish patients during 15 years. Eur. Heart J. 2020, 41, 2430–2438. [Google Scholar] [CrossRef]
- Jacob, A.G.; Smith, C.W. J Intron retention as a component of regulated gene expression programs. Hum. Genet. 2017, 136, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Yuan, Q.; Jiang, P.; Sun, L.; Ma, Y.; Ma, X. Association of gene polymorphism in MYH11 and TGF-β signaling with the susceptibility and clinical outcomes of DeBakey type III aortic dissection. Mamm. Genome 2021. ahead of print. [Google Scholar] [CrossRef]
- Pinard, A.; Jones, G.T.; Milewicz, D.M. Genetics of Thoracic and Abdominal Aortic Diseases: Aneurysms, Dissections, and Ruptures. Circ. Res. 2019, 124, 588–606. [Google Scholar] [CrossRef]
- Bown, M.J.; Jones, G.T.; Harrison, S.C.; Wright, B.J.; Bumpstead, S.; Baas, A.F.; Gretarsdottir, S.; Badger, S.A.; Bradley, D.T.; Burnand, K.; et al. Abdominal Aortic Aneurysm Is Associated with a Variant in Low-Density Lipoprotein Receptor-Related Protein 1. Am. J. Hum. Genet. 2011, 89, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Takayama, Y.; Boucher, P.; Tallquist, M.D.; Herz, J. LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation. PLoS ONE 2009, 4, e6922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galora, S.; Saracini, C.; Pratesi, G.; Sticchi, E.; Pulli, R.; Pratesi, C.; Abbate, R.; Giusti, B. Association of rs1466535 LRP1 but not rs3019885 SLC30A8 and rs6674171 TDRD10 gene polymorphisms with abdominal aortic aneurysm in Italian patients. J. Vasc. Surg. 2015, 61, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.Y.T.; Chan, Y.C.; Cheuk, B.L.Y.; Cheng, S.W.K. Clearance of matrix metalloproteinase-9 is dependent on low-density lipoprotein receptor-related protein-1 expression downregulated by microRNA-205 in human abdominal aortic aneurysm. J. Vasc. Surg. 2017, 65, 509–520. [Google Scholar] [CrossRef]
- Liu, O.; Li, J.; Gong, M.; Xu, M.; Du, J.; Zhang, H. Genetic analysis of six SNPs in candidate genes associated with high cross-race risk of development of thoracic aortic aneurysms and dissections in Chinese Han population. Acta Pharmacol. Sin. 2010, 31, 1376–1380. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Tokuda, Y.; Inagaki, N.; Yoshida, T.; Fujimaki, T.; Oguri, M.; Hibino, T.; Yokoi, K.; Murohara, T.; Yamada, Y. Association of a matrix metallopeptidase 1 gene polymorphism with long-term outcome of thoracic aortic aneurysm. Int. J. Mol. Med. 2012, 29, 125–132. [Google Scholar] [CrossRef]
- Erhart, P.; Brandt, T.; Straub, B.K.; Hausser, I.; Hentze, S.; Böckler, D.; Grond-Ginsbach, C. Familial aortic disease and a large duplication in chromosome 16p13.1. Mol. Genet. Genomic Med. 2018, 6, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Kuang, S.-Q.; Guo, D.-C.; Prakash, S.K.; McDonald, M.-L.N.; Johnson, R.J.; Wang, M.; Regalado, E.S.; Russell, L.; Cao, J.-M.; Kwartler, C.; et al. Recurrent chromosome 16p13.1 duplications are a risk factor for aortic dissections. PLoS Genet. 2011, 7, e1002118. [Google Scholar] [CrossRef]
- Liao, M.; Zou, S.; Weng, J.; Hou, L.; Yang, L.; Zhao, Z.; Bao, J.; Jing, Z. A microRNA profile comparison between thoracic aortic dissection and normal thoracic aorta indicates the potential role of microRNAs in contributing to thoracic aortic dissection pathogenesis. J. Vasc. Surg. 2011, 53, 1341–1349.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.A.; Stroud, R.E.; O’Quinn, E.C.; Black, L.E.; Barth, J.L.; Elefteriades, J.A.; Bavaria, J.E.; Gorman, J.H.; Gorman, R.C.; Spinale, F.G.; et al. Selective microRNA suppression in human thoracic aneurysms: Relationship of miR-29a to aortic size and proteolytic induction. Circ. Cardiovasc. Genet. 2011, 4, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, P.; Pharm, N.H.; Benarroch, L.; Aubart, M.; Bal, L.; Bouvagnet, P.; Busa, T.; Dulac, Y.; Dupuis-Girod, S.; Edouard, T. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD). Genet Med. 2019, 21, 2015–2024. [Google Scholar] [CrossRef]
- Debette, S.; Kamatani, Y.; Metso, T.M.; Kloss, M.; Chauhan, G.; Engelter, S.T.; Pezzini, A.; Thijs, V.; Markus, H.S.; Dichgans, M.; et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat. Genet. 2015, 47, 78–83. [Google Scholar] [CrossRef]
- Georges, A.; Yang, M.-L.; Berrandou, T.-E.; Bakker, M.K.; Dikilitas, O.; Kiando, S.R.; Ma, L.; Satterfield, B.A.; Sengupta, S.; Yu, M.; et al. Genetic investigation of fibromuscular dysplasia identifies risk loci and shared genetics with common cardiovascular diseases. Nat. Commun. 2021, 12, 6031. [Google Scholar] [CrossRef] [PubMed]
- Gormley, P.; Anttila, V.; Winsvold, B.S.; Palta, P.; Esko, T.; Pers, T.H.; Farh, K.-H.; Cuenca-Leon, E.; Muona, M.; Furlotte, N.A.; et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 2016, 48, 856–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, D.T.; Badger, S.A.; McFarland, M.; Hughes, A.E. Abdominal aortic aneurysm genetic associations: Mostly false? A systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hata, M.; Sezai, A.; Niino, T.; Yoda, M.; Wakui, S.; Unosawa, S.; Umeda, T.; Shimura, K.; Osaka, S.; Furukawa, N. Prognosis for patients with type B acute aortic dissection: Risk analysis of early death and requirement for elective surgery. Circ. J. 2007, 71, 1279–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riambau, V.; Böckler, D.; Brunkwall, J.; Chiesa, R.; Coppi, G.; Czerny, M.; Fraedrich, G.; Haulon, S.; Jacobs, M.J.; Lachat, M.L. Editor’s Choice—Management of descending thoracic aorta diseases: Clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 4–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|
Control Group | STBAD Group | p-Value | p-Value | Odds Ratio | |
Total number | 768 | 113 | |||
Female sex | 445 (57.9%) | 35 (31.0%) | |||
Age (mean ± SD) | 67.4 ± 10.1 | 56.4 ± 11.5 * | |||
Arterial Hypertension | 508 (66.1%) | 101 (89.4%) | <0.001 | <0.001 | 15.4 (7.2–32.6) |
Diabetes mellitus | 132 (17.2%) | 22 (19.5%) | 0.053 | 0.429 | 1.3 (0.7–2.4) |
Smoking history | 109 (14.2%) | 31 (27.4%) | 0.497 | 0.454 | 1.2 (0.7–2.2) |
LRP1 CC genotype | 114 (14.8%) | 8 (7.1%) | <0.001 ** 0.003 *** | 0.002 ** 0.004 *** | 1.8 (1.3–2.6) ** 2.0 (1.3–3.2) *** |
LRP1 TC genotype | 393 (51.2%) | 46 (40.7%) | |||
LRP1 TT genotype | 261 (33.9%) | 59 (52.2%) |
Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|
Uncomplicated STBAD | Complicated STBAD | p-Value | p-Value | Odds Ratio | |
Total number | 29 | 84 | |||
Follow-up in years (median, IQR) | 2.0 (5) | 2.0 (6) | 0.669 | 0.529 | 1.0 (0.9–1.2) |
Age at disease onset (mean, ± SD) | 60.3 (±12.8) | 55.0 (±10.8) | 0.037 | 0.038 | 0.96 (0.92–1.0) |
Female sex | 5 (17.2%) | 30 (35.7%) | 0.070 | 0.028 | 3.8 (1.2–12.6) |
LRP1 CC genotype | 3 (10.3%) | 5 (6.0%) | 0.084 * 0.077 ** | 0.022 * 0.021 ** | 2.5 (1.1–5.3) * 3.3 (1.2–9.1) ** |
LRP1 TC genotype | 15 (51.7%) | 31 (36.9%) | |||
LRP1 TT genotype | 11 (37.9%) | 48 (57.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erhart, P.; Körfer, D.; Grond-Ginsbach, C.; Qiao, J.-L.; Bischoff, M.S.; Hempel, M.; Schaaf, C.P.; Grau, A.; Böckler, D. Genetic Variation in LRP1 Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome. J. Cardiovasc. Dev. Dis. 2022, 9, 14. https://doi.org/10.3390/jcdd9010014
Erhart P, Körfer D, Grond-Ginsbach C, Qiao J-L, Bischoff MS, Hempel M, Schaaf CP, Grau A, Böckler D. Genetic Variation in LRP1 Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome. Journal of Cardiovascular Development and Disease. 2022; 9(1):14. https://doi.org/10.3390/jcdd9010014
Chicago/Turabian StyleErhart, Philipp, Daniel Körfer, Caspar Grond-Ginsbach, Jia-Lu Qiao, Moritz S. Bischoff, Maja Hempel, Christian P. Schaaf, Armin Grau, and Dittmar Böckler. 2022. "Genetic Variation in LRP1 Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome" Journal of Cardiovascular Development and Disease 9, no. 1: 14. https://doi.org/10.3390/jcdd9010014
APA StyleErhart, P., Körfer, D., Grond-Ginsbach, C., Qiao, J. -L., Bischoff, M. S., Hempel, M., Schaaf, C. P., Grau, A., & Böckler, D. (2022). Genetic Variation in LRP1 Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome. Journal of Cardiovascular Development and Disease, 9(1), 14. https://doi.org/10.3390/jcdd9010014