The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Computed Tomography Image Acquisition
2.3. Coronary CT Angiography Analysis
2.4. Assessment of Other Risk Factors
2.5. Follow-Up Methods
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. CCTA Plaque Characteristics
3.3. TG/HDL-C and Cardiovascular Events
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boekholdt, S.M.; Arsenault, B.J.; Mora, S.; Pedersen, T.R.; LaRosa, J.C.; Nestel, P.J.; Simes, R.J.; Durrington, P.; Hitman, G.A.; Welch, K.M.; et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: A meta-analysis. JAMA 2012, 307, 1302–1309. [Google Scholar] [CrossRef]
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P.; Emberson, J.; Halsey, J.; Qizilbash, N.; Peto, R.; Collins, R. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007, 370, 1829–1839. [Google Scholar] [CrossRef]
- Elshazly, M.B.; Quispe, R.; Michos, E.D.; Sniderman, A.D.; Toth, P.P.; Banach, M.; Kulkarni, K.R.; Coresh, J.; Blumenthal, R.S.; Jones, S.R.; et al. Patient-level discordance in population percentiles of the total cholesterol to high-density lipoprotein cholesterol ratio in comparison with low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol: The very large database of lipids study (VLDL-2B). Circulation 2015, 132, 667–676. [Google Scholar] [CrossRef]
- Aimo, A.; Chiappino, S.; Clemente, A.; Della Latta, D.; Martini, N.; Georgiopoulos, G.; Panichella, G.; Piagneri, V.; Storti, S.; Monteleone, A.; et al. The triglyceride/HDL cholesterol ratio and TyG index predict coronary atherosclerosis and outcome in the general population. Eur. J. Prev. Cardiol. 2022, 29, e203–e204. [Google Scholar] [CrossRef]
- Murguía-Romero, M.; Jiménez-Flores, J.R.; Sigrist-Flores, S.C.; Espinoza-Camacho, M.A.; Jiménez-Morales, M.; Piña, E.; Méndez-Cruz, A.R.; Villalobos-Molina, R.; Reaven, G.M. Plasma triglyceride/HDL-cholesterol ratio, insulin resistance, and cardiometabolic risk in young adults. J. Lipid Res. 2013, 54, 2795–2799. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, G.; Qin, H.; Cai, Z.; Huang, J.; Chen, H.; Wu, W.; Chen, Z.; Wu, S.; Chen, Y. Higher triglyceride to high-density lipoprotein cholesterol ratio increases cardiovascular risk: 10-year prospective study in a cohort of Chinese adults. J. Diabetes Investig. 2020, 11, 475–481. [Google Scholar] [CrossRef]
- Yang, S.H.; Du, Y.; Li, X.L.; Zhang, Y.; Li, S.; Xu, R.X.; Zhu, C.G.; Guo, Y.L.; Wu, N.Q.; Qing, P.; et al. Triglyceride to high-density lipoprotein cholesterol ratio and cardiovascular events in diabetics with coronary artery disease. Am. J. Med. Sci. 2017, 354, 117–124. [Google Scholar] [CrossRef]
- Bittner, V.; Johnson, B.D.; Zineh, I.; Rogers, W.J.; Vido, D.; Marroquin, O.C.; Bairey-Merz, C.N.; Sopko, G. The triglyceride/high-density lipoprotein cholesterol ratio predicts all-cause mortality in women with suspected myocardial ischemia: A report from the Women’s Ischemia Syndrome Evaluation (WISE). Am. Heart J. 2009, 157, 548–555. [Google Scholar] [CrossRef]
- Sultani, R.; Tong, D.C.; Peverelle, M.; Lee, Y.S.; Baradi, A.; Wilson, A.M. Elevated triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio predicts long-term mortality in high-risk patients. Heart Lung Circ. 2020, 29, 414–421. [Google Scholar] [CrossRef]
- Motoyama, S.; Sarai, M.; Harigaya, H.; Anno, H.; Inoue, K.; Hara, T.; Naruse, H.; Ishii, J.; Hishida, H.; Wong, N.D.; et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J. Am. Coll. Cardiol. 2009, 54, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.C.; Moss, A.J.; Dweck, M.; Adamson, P.D.; Alam, S.; Hunter, A.; Shah, A.S.V.; Pawade, T.; Weir-McCall, J.R.; Roditi, G.; et al. Coronary artery Plaque Characteristics Associated with Adverse Outcomes in the SCOT-HEART Study. J. Am. Coll. Cardiol. 2019, 73, 291–301. [Google Scholar] [CrossRef]
- Ichikawa, K.; Miyoshi, T.; Osawa, K.; Miki, T.; Nakamura, K.; Ito, H. Prognostic value of coronary computed tomographic angiography in patients with nonalcoholic fatty liver disease. Cardiovasc. Imaging 2020, 13, 1628–1630. [Google Scholar] [CrossRef]
- Ichikawa, K.; Miyoshi, T.; Osawa, K.; Miki, T.; Toda, H.; Ejiri, K.; Yoshida, M.; Nakamura, K.; Morita, H.; Ito, H. Incremental prognostic value of non-alcoholic fatty liver disease over coronary computed tomography angiography findings in patients with suspected coronary artery disease. Eur. J. Prev. Cardiol. 2022, 28, 2059–2066. [Google Scholar] [CrossRef]
- Ichikawa, K.; Miyoshi, T.; Kotani, K.; Osawa, K.; Nakashima, M.; Nishihara, T.; Ito, H. Association between high oxidized high-density lipoprotein levels and increased pericoronary inflammation determined by coronary computed tomography angiography. J. Cardiol. 2022, in press. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S.; et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int. J. Cardiovasc. Imaging 2002, 18, 539–542. [Google Scholar]
- Osawa, K.; Miyoshi, T.; Yamauchi, K.; Koyama, Y.; Nakamura, K.; Sato, S.; Kanazawa, S.; Ito, H. Nonalcoholic hepatic steatosis is a strong predictor of high-risk coronary-artery plaques as determined by multidetector CT. PLoS ONE 2015, 10, e0131138. [Google Scholar] [CrossRef]
- International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes: Response to the International Expert Committee. Diabetes Care 2009, 32, e159. [Google Scholar] [CrossRef]
- Suruga, K.; Miyoshi, T.; Kotani, K.; Ichikawa, K.; Miki, T.; Osawa, K.; Ejiri, K.; Toda, H.; Nakamura, K.; Morita, H.; et al. Higher oxidized high-density lipoprotein to apolipoprotein A-I ratio is associated with high-risk coronary plaque characteristics determined by CT angiography. Int. J. Cardiol. 2021, 324, 193–198. [Google Scholar] [CrossRef]
- Wan, K.; Zhao, J.; Huang, H.; Zhang, Q.; Chen, X.; Zeng, Z.; Zhang, L.; Chen, Y. The association between triglyceride/high-density lipoprotein cholesterol ratio and all-cause mortality in acute coronary syndrome after coronary revascularization. PLoS ONE 2015, 10, e0123521. [Google Scholar] [CrossRef]
- Thomsen, C.; Abdulla, J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 120–129. [Google Scholar] [CrossRef]
- Ichikawa, K.; Miyoshi, T.; Osawa, K.; Miki, T.; Morimitsu, Y.; Akagi, N.; Nakashima, M.; Ito, H. Association between higher pericoronary adipose tissue attenuation measured by coronary computed tomography angiography and nonalcoholic fatty liver disease: A matched case-control study. Medicine 2021, 100, e27043. [Google Scholar] [CrossRef]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef]
- Natali, A.; Baldi, S.; Bonnet, F.; Petrie, J.; Trifirò, S.; Tricò, D.; Mari, A.; RISC Investigators. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects. Metabolism 2017, 69, 33–42. [Google Scholar] [CrossRef]
- Burnett, J.R.; Hooper, A.J.; Hegele, R.A. Remnant cholesterol and atherosclerotic cardiovascular disease risk. J. Am. Coll. Cardiol. 2020, 76, 2736–2739. [Google Scholar] [CrossRef]
- Pantoja-Torres, B.; Toro-Huamanchumo, C.J.; Urrunaga-Pastor, D.; Guarnizo-Poma, M.; Lazaro-Alcantara, H.; Paico-Palacios, S.; Del Carmen Ranilla-Seguin, V.; Benites-Zapata, V.A.; Insulin Resistance and Metabolic Syndrome Research Group. High triglycerides to HDL-cholesterol ratio is associated with insulin resistance in normal-weight healthy adults. Diabetes Metab. Syndr. 2019, 13, 382–388. [Google Scholar] [CrossRef]
- Sekimoto, T.; Koba, S.; Mori, H.; Arai, T.; Matsukawa, N.; Sakai, R.; Yokota, Y.; Sato, S.; Tanaka, H.; Masaki, R.; et al. Impact of small dense low-density lipoprotein cholesterol on cholesterol crystals in patients with acute coronary syndrome: An optical coherence tomography study. J. Clin. Lipidol. 2022, 16, 438–446. [Google Scholar] [CrossRef]
- Salazar, M.R.; Carbajal, H.A.; Espeche, W.G.; Aizpurúa, M.; Leiva Sisnieguez, C.E.; March, C.E.; Balbín, E.; Stavile, R.N.; Reaven, G.M. Identifying cardiovascular disease risk and outcome: Use of the plasma triglyceride/high-density lipoprotein cholesterol concentration ratio versus metabolic syndrome criteria. J. Intern. Med. 2013, 273, 595–601. [Google Scholar] [CrossRef]
- Vega, G.L.; Barlow, C.E.; Grundy, S.M.; Leonard, D.; DeFina, L.F. Triglyceride-to-high-density-lipoprotein-cholesterol ratio is an index of heart disease mortality and of incidence of type 2 diabetes mellitus in men. J. Investig. Med. 2014, 62, 345–349. [Google Scholar] [CrossRef]
- Pacifico, L.; Bonci, E.; Andreoli, G.; Romaggioli, S.; Di Miscio, R.; Lombardo, C.V.; Chiesa, C. Association of serum triglyceride-to-HDL cholesterol ratio with carotid artery intima-media thickness, insulin resistance and nonalcoholic fatty liver disease in children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 737–743. [Google Scholar] [CrossRef]
- Nakanishi, R.; Ceponiene, I.; Osawa, K.; Luo, Y.; Kanisawa, M.; Megowan, N.; Nezarat, N.; Rahmani, S.; Broersen, A.; Kitslaar, P.H.; et al. Plaque progression assessed by a novel semi-automated quantitative plaque software on coronary computed tomography angiography between diabetes and non-diabetes patients: A propensity-score matching study. Atherosclerosis 2016, 255, 73–79. [Google Scholar] [CrossRef]
- Kammerlander, A.A.; Mayrhofer, T.; Ferencik, M.; Pagidipati, N.J.; Karady, J.; Ginsburg, G.S.; Lu, M.T.; Bittner, D.O.; Puchner, S.B.; Bihlmeyer, N.A.; et al. Association of metabolic phenotypes with coronary artery disease and cardiovascular events in patients with stable chest pain. Diabetes Care 2021, 44, 1038–1045. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Jakob, T.; Nordmann, A.J.; Schandelmaier, S.; Ferreira-González, I.; Briel, M. Fibrates for primary prevention of cardiovascular disease events. Cochrane Database Syst. Rev. 2016, 11, CD009753. [Google Scholar] [CrossRef]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 144, e368–e454. [Google Scholar] [CrossRef]
- SCOT-HEART Investigators; Newby, D.E.; Adamson, P.D.; Berry, C.; Boon, N.A.; Dweck, M.R.; Flather, M.; Forbes, J.; Hunter, A.; Lewis, S.; et al. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N. Engl. J. Med. 2018, 379, 924–933. [Google Scholar] [CrossRef]
TG/HDL Ratio | |||||
---|---|---|---|---|---|
All | Tertile 1 (0.31–1.56) | Tertile 2 (1.57–2.66) | Tertile 3 (2.67–14.69) | p Value for Trend | |
n | 935 | 315 | 315 | 305 | |
Age, years | 64 ± 14 | 63 ± 15 | 64 ± 15 | 63 ± 12 | 0.436 |
Male | 516 (55) | 152 (48) | 164 (52) | 200 (55) | <0.001 |
BMI, kg/m2 | 23.8 ± 4.0 | 22.6 ± 3.9 | 23.7 ± 4.1 | 25.1 ± 3.5 | <0.001 |
Hypertension | 552 (59) | 159 (21) | 187 (59) | 206 (67) | <0.001 |
Dyslipidemia | 472 (50) | 129 (41) | 153 (48) | 190 (62) | <0.001 |
Diabetes mellitus | 306 (33) | 84 (27) | 103 (32) | 123 (40) | 0.001 |
Current smoking | 211 (23) | 53 (17) | 68 (22) | 90 (29) | <0.001 |
LDL-C, mg/dL | 114 ± 31 | 107 ± 27 | 114 ± 32 | 121 ± 32 | <0.001 |
TG, mg/dL | 111 (2, 161) | 73 (59, 88] | 111 (96, 129] | 207 ± 79 | <0.001 |
HDL-C, mg/dL | 58 ± 16 | 71 ± 16 | 56 ± 11 | 46 ± 10 | <0.001 |
TG/HDL-C | 1.98 (1.30, 3.16) | 1.08 (0.83, 1.31) | 2.00 (1.79, 2.27) | 3.94 [3.18–5.25] | <0.001 |
HemoglobinA1c, % | 6.3 ± 1.2 | 6.1 ± 1.0 | 6.3 ± 1.2 | 6.4 ± 1.3 | <0.001 |
eGFR, mL/min/1.73 m2 | 69.7 ± 18 | 71.1 ± 19.0 | 68.4 ± 17.5 | 68.9 ± 16.7 | 0.154 |
Medications | |||||
Statins | 318 (34) | 92 (29) | 112 (35) | 114 (37) | 0.078 |
ACEIs or ARBs | 355 (38) | 102 (32) | 127 (40) | 126 (41) | 0.042 |
CCBs | 317 (34) | 95 (30) | 109 (35) | 113 (37) | 0.184 |
Antidiabetic agents | 196 (23) | 46 (15) | 61 (20) | 89 (29) | <0.001 |
TG/HDL Ratio | |||||
---|---|---|---|---|---|
All | Tertile (0.31–1.56) | Tertile 2 (1.57–2.66) | Tertile 3 (2.67–14.69) | p Value for Trend | |
n | 935 | 315 | 315 | 305 | |
Calcified plaque | 608 (65) | 201(56) | 206 (65) | 219 (72) | 0.002 |
Non-calcified plaque | 462 (49) | 129 (41) | 159 (51) | 174 (57) | <0.001 |
Positive remodeling | 373 (40) | 95 (30) | 132 (42) | 146 (48) | <0.001 |
Low density plaque | 277 (30) | 66 (21) | 100 (31) | 111 (36) | <0.001 |
Spotty calcification | 77 (24) | 108 (34) | 108 (34) | 120 (39) | <0.001 |
High risk plaque | 136 (15) | 27 (9) | 45 (14) | 64 (21) | <0.001 |
Significant stenosis | 193 (21) | 53 (17) | 63 (20) | 77 (25) | 0.033 |
Agatston score | 20 (0, 245) | 5 (0, 210) | 33 (0, 286) | 26 (0, 225) | 0.016 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Log TG/HDL-C | 2.009 (1.514–2.666) | <0.001 | 1.581 (1.150–2.173) | 0.005 |
LDL-C | 0.999 (0.994–1.005) | 0.085 | – | – |
Age, per year | 1.032 (1.016–1.048) | <0.001 | 1.029 (1.011–1.048) | 0.002 |
Male | 2.917 (1.925–4.422) | <0.001 | 2.797 (1.773–4.412) | <0.001 |
Hypertension | 2.543 (1.673–3.876) | <0.001 | 1.129 (0.654–1.949) | 0.664 |
Dyslipidemia | 1.981 (1.358–2.892) | <0.001 | 1.472 (0.879–2.465) | 0.142 |
Diabetes mellitus | 1.998 (1.382–2.889) | <0.001 | 1.460 (0.803–2.655) | 0.214 |
Current smoking | 1.530 (1.020–2.296) | 0.040 | 1.050 (0.655–1.657) | 0.834 |
Statin | 1.598 (1.103–2.313) | 0.013 | 1.126 (0.682–1.857) | 0.643 |
ACEIs or ARBs | 2.534 (1.751–3.668) | <0.001 | 1.889 (1.192–2.992) | 0.007 |
CCB | 1.665 (1.151–2.409) | 0.007 | 1.079 (0.695–1.675) | 0.734 |
Antidiabetic agents | 2.110 (1.414–3.147) | <0.001 | 1.032 (0.537–1.981) | 0.925 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | |
Log TG/HDL-C | 1.551 (1.185–1.927) | <0.001 | 1.183 (0.893–1.568) | 0.242 |
LDL-C | 1.000 (0.995–1.00) | 0.981 | – | – |
Age, per year | 1.051 (1.035–1.067) | <0.001 | 1.055 (1.036–1.074) | <0.001 |
Male | 2.829 (1.988–4.026) | <0.001 | 3.075 (2.064–4.580) | <0.001 |
Hypertension | 2.051 (1.451–2.898) | <0.001 | 0.980 (0.617–1.557) | 0.932 |
Dyslipidemia | 2.214 (1.591–3.082) | <0.001 | 2.116 (1.340–3.342) | 0.001 |
Diabetes mellitus | 2.017 (1.459–2.789) | <0.001 | 1.390 (0.811–2.381) | 0.231 |
Current smoking | 1.399 (0.975–2.009) | 0.069 | 1.043 (0.687–1.583) | 0.843 |
Statins | 1.628 (1.177–2.251) | 0.003 | 0.898 (0.574–1.694) | 0.639 |
ACEIs or ARBs | 1.704 (1.237–2.346) | <0.001 | 1.128 (0.751–1.694) | 0.562 |
CCB | 1.778 (1.286–2.457) | <0.001 | 1.442 (0.969–2.147) | 0.071 |
Antidiabetic agents | 2.106 (1.472–3.013) | <0.001 | 1.182 (0.653–2.139) | 0.581 |
Univariate Analysis | Multivariate Analysis: Model 1 | Multivariate Analysis: Model 2 | ||||
---|---|---|---|---|---|---|
Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
TG/HDL-C ratio | ||||||
Tertile 1 (0.31–1.56) | reference | − | reference | − | reference | − |
Tertile 2 (1.57–2.66) | 2.733 (0.725–10.305) | 0.138 | 2.339 (0.614–8.961) | 0.213 | 2.308 (0.601–8.868) | 0.223 |
Tertile 3 (2.67–14.69) | 5.545 (1.605–19.159) | 0.007 | 3.752 (1.043–13.501) | 0.043 | 3.295 (0.994–12.003) | 0.071 |
LDL-C, per 1 mg/dL | 1.006 (0.994–1.018) | 0.337 | 1.006 (0.993–1.020) | 0.361 | 1.007 (0.994–1.020) | 0.312 |
Age, per year | 1.019 (0.987–1.053) | 0.248 | 1.018 (0.981–1.056) | 0.355 | 1.013 (0.976–1.051) | 0.506 |
Male | 2.349 (1.013–5.448) | 0.047 | 1.452 (0.585–3.608) | 0.421 | 1.212 (0.478–3.075) | 0.686 |
Hypertension | 3.039 (1.146–8.060) | 0.026 | 1.961 (0.698–5.509) | 0.201 | 1.822 (0.650–5.102) | 0.254 |
Dyslipidemia | 1.606 (0.728–3.539) | 0.240 | − | − | − | − |
Diabetes mellitus | 3.204 (1.452–7.073) | 0.004 | 2.707 (1.178–6.233) | 0.019 | 2.342 (1.009–5.440) | 0.048 |
Current smoking | 2.283 (1.033–5.045) | 0.041 | 1.791 (0.749–4.278) | 0.190 | 1.947 (0.817–4.639) | 0.132 |
Statins | 1.028 (0.458–2.306) | 0.947 | 0.720 (0.309–1.679) | 0.447 | 0.888 (0.387–2.037) | 0.779 |
ACEIs or ARBs | 2.731 (1.238–6.024) | 0.013 | − | − | − | − |
CCBs | 1.712 (0.782–3.745) | 0.178 | − | − | − | − |
Antidiabetic agents | 2.237 (1.013–4.938) | 0.046 | − | − | − | − |
High-risk plaque | 2.952 (1.283–6.794) | 0.011 | − | − | 1.625 (0.645–4.091) | 0.303 |
Significant stenosis | 3.552 (1.566–8.058) | 0.002 | − | − | 1.853 (0.731–4.678) | 0.192 |
Univariate Analysis | Multivariate Analysis: Model 1 | Multivariate Analysis: Model 2 | ||||
---|---|---|---|---|---|---|
Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
TG/HDL-C ratio | ||||||
Tertile 1 (0.31–1.56) | reference | − | reference | − | reference | − |
Tertile 2 (1.57–2.66) | 2.133 (1.109–4.103) | 0.023 | 1.843 (0.950–3.578) | 0.071 | 1.762 (0.906–3.427) | 0.095 |
Tertile 3 (2.67–14.69) | 2.754 (1.459–5.200) | 0.002 | 2.085 (1.075–4.046) | 0.030 | 1.884 (0.964–3.681) | 0.064 |
LDL-C, per 1 mg/dL | 1.003 (0.996–1.011) | 0.356 | 1.005 (0.997–1.012) | 0.257 | 1.004 (0.996–1.012) | 0.319 |
Age, per year | 1.032 (1.011–1.053) | 0.003 | 1.033 (1.010–1.056) | 0.004 | 1.027 (1.004–1.051) | 0.021 |
Male | 2.311 (1.411–2.786) | <0.001 | 1.858 (1.083–3.186) | 0.024 | 1.539 (0.887–2.669) | 0.125 |
Hypertension | 1.740 (1.062–2.850) | 0.028 | 1.211 (0.711–2.063) | 0.480 | 1.118 (0.656–1.907) | 0.682 |
Dyslipidemia | 1.377 (0.874–2.167) | 0.168 | − | − | − | − |
Diabetes mellitus | 1.947 (1.249–3.036) | 0.003 | 1.750 (1.099–2.789) | 0.019 | 1.642 (1.027–2.625) | 0.038 |
Current smoking | 1.875 (1.176–2.990) | 0.008 | 1.552 (0.945–2.547) | 0.082 | 1.552 (0.945–2.555) | 0.083 |
Statins | 1.690 (1.225–2.331) | <0.001 | 0.837 (0.508–1.379) | 0.485 | 0.798 (0.483–1.318) | 0.378 |
ACEIs or ARBs | 1.791 (1.149–2.793) | 0.010 | − | − | − | − |
CCBs | 1.856 (1.190–2.895) | 0.006 | − | − | − | − |
Antidiabetic agents | 1.454 (0.887–2.385) | 0.138 | − | − | − | − |
High-risk plaque | 3.033 (1.901–4.840) | <0.001 | − | − | 1.741 (1.041–2.910) | 0.034 |
Significant stenosis | 2.979 (1.897–4.676) | <0.001 | − | − | 1.706 (1.029–2.828) | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koide, Y.; Miyoshi, T.; Nishihara, T.; Nakashima, M.; Ichikawa, K.; Miki, T.; Osawa, K.; Ito, H. The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease. J. Cardiovasc. Dev. Dis. 2022, 9, 329. https://doi.org/10.3390/jcdd9100329
Koide Y, Miyoshi T, Nishihara T, Nakashima M, Ichikawa K, Miki T, Osawa K, Ito H. The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease. Journal of Cardiovascular Development and Disease. 2022; 9(10):329. https://doi.org/10.3390/jcdd9100329
Chicago/Turabian StyleKoide, Yuji, Toru Miyoshi, Takahiro Nishihara, Mitsutaka Nakashima, Keishi Ichikawa, Takashi Miki, Kazuhiro Osawa, and Hiroshi Ito. 2022. "The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease" Journal of Cardiovascular Development and Disease 9, no. 10: 329. https://doi.org/10.3390/jcdd9100329
APA StyleKoide, Y., Miyoshi, T., Nishihara, T., Nakashima, M., Ichikawa, K., Miki, T., Osawa, K., & Ito, H. (2022). The Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio with High-Risk Coronary Plaque Characteristics Determined by CT Angiography and Its Risk of Coronary Heart Disease. Journal of Cardiovascular Development and Disease, 9(10), 329. https://doi.org/10.3390/jcdd9100329