May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review
Abstract
:1. Introduction
2. Acute Effects
2.1. Acute ECG Abnormalities
2.2. Acute Atrial Dysfunction
2.3. Acute Ventricular Dysfunction
2.4. Atrial and Ventricular Ectopic Beats
2.5. Troponin Elevation
3. Chronic Effects
3.1. Atrioventricular Conduction Defects
3.2. QT-Interval Prolongation
3.3. Atrial Fibrillation
3.4. Exercise-Induced Arrhythmogenic Right Ventricular Cardiomyopathy
3.5. Myocarditis and Left Ventricular Fibrosis
Reference | Year | N° Cases | Mean Age | Males % | Controls | Inclusion Criteria | % LGE | LGE Patterns in Cases |
---|---|---|---|---|---|---|---|---|
Mousavi et al. [61] | 2009 | 14 | 33 | 57 | NO | Marathon runners, moderately trained | 0 | |
Breuckmann et al. [118] | 2009 | 102 | 57 | 100 | YES | Marathon runners (≥5 marathons in the last 3 years), age ≥ 50 yrs old | 12 (4 controls) | 5: subendocardial 7: midmyocardial/subepicardial |
O’Hanlon et al. [119] | 2010 | 17 | 34 | 100 | NO | Marathon runners mean 7 h training/week | 0 | |
Oomanh et al. [120] | 2011 | 15 | 32 | 47 | NO | Half marathon runners, non-elite | 0 | |
Wilson et al. [121] | 2011 | 12 | 57 | 100 | YES | Endurance elite, various sports, >50 yrs old | 50 (0 controls) | 4: junctional 1: subendocardial 1: subepicardial stria |
Karlstedt et al. [122] | 2012 | 25 | 55 | 84 | NO | Elite athletes (≥3 marathons in the last 2 years), age > 50 yrs | 9 | 2: subendocardial |
La Gerche et al. [123] | 2012 | 40 | 37 | 90 | NO | Endurance, >10 h/training, high performance | 13 | 1: junctional 4: spots in the septum |
Erz et al. [124] | 2013 | 45 | 35 | 100 | NO | Endurance, >7 h/week for >2 yrs | 2 | 1: inferior wal spot 1: lateral wall spot |
Mangold et al. [125] | 2013 | 95 | 33 | 77 | NO | Elite athletes, various sports, training history ≥2 yrs and 15 h/week | 2 | 2: spot-shaped pattern |
Franzen et al. [126] | 2013 | 40 | 41 | 100 | NO | Triathlon running, >5 h/week for >2 yrs | 0 | |
Bohm et al. [127] | 2016 | 33 | 47 | 100 | YES | Endurance, >10 h/week for > 10 yrs | 3 (0 controls) | 1: subepicardial strain |
Tahir et al. [116] | 2018 | 83 | 43 | 65 | YES | Triathletes training ≥10 h/week, competitions in the previous 3 yrs | 17 (only in males) | 5: subepicardial 2: junctional |
Tahir et al. [128] | 2019 | 78 | 43 | 100 | YES | Triathletes training ≥10 h/week, competitions in the previous 3 yrs | 19 (3.5 controls) | 7: subepicardial 6: mid-myocardial 2: junctional |
3.6. Aortic Dilatation
3.7. Coronary Artery Calcifications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar]
- Fletcher, G.F.; Balady, G.; Blair, S.N.; Blumenthal, J.; Caspersen, C.; Chaitman, B.; Epstein, S.; Sivarajan Froelicher, E.S.; Froelicher, V.F.; Pina, I.L.; et al. Statement on exercise: Benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation 1996, 94, 857–862. [Google Scholar]
- Thompson, P.D.; Buchner, D.; Pina, I.L.; Balady, G.J.; Williams, M.A.; Marcus, B.H.; Berra, K.; Blair, S.N.; Costa, F.; Franklin, B.; et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: A Statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation 2003, 107, 3109–3116. [Google Scholar] [PubMed] [Green Version]
- Corrado, D.; Zorzi, A. Sudden death in athletes. Int. J. Cardiol. 2017, 237, 67–70. [Google Scholar] [CrossRef]
- Schnohr, P.; O’Keefe, J.H.; Marott, J.L.; Lange, P.; Jensen, G.B. Dose of jogging and long-term mortality: The Copenhagen City heart study. J. Am. Coll. Cardiol. 2015, 65, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Jurcut, R.; Giusca, S.; La Gerche, A.; Vasile, S.; Ginghina, C.; Voigt, J.-U. The Echocardiographic Assessment of the right ventricle: What to do in 2010? Eur. J. Echocardiogr. 2010, 11, 81–96. [Google Scholar] [CrossRef] [Green Version]
- La Gerche, A.; Heidbüchel, H.; Burns, A.T.; Mooney, D.J.; Taylor, A.J.; Pfluger, H.B.; Inder, W.J.; Macisaac, A.I.; Prior, D.L. Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med. Sci. Sport. Exerc. 2011, 43, 974–981. [Google Scholar] [CrossRef]
- Lord, R.; Somauroo, J.; Stembridge, M.; Jain, N.; Hoffman, M.D.; George, K.; Jones, H.; Shave, R.; Haddad, F.; Ashley, E.; et al. The right ventricle following ultra-endurance exercise: Insights from novel echocardiography and 12-lead electrocardiography. Eur. J. Appl. Physiol. 2015, 115, 71–80. [Google Scholar] [CrossRef]
- Lord, R.; George, K.; Somauroo, J.; Jain, N.; Reese, K.; Hoffman, M.D.; Haddad, F.; Ashley, E.; Jones, H.; Oxborough, D. Exploratory insights from the right-sided electrocardiogram following prolonged endurance exercise. Eur. J. Sport Sci. 2016, 16, 1014–1022. [Google Scholar] [CrossRef]
- D’Ascenzi, F.; Anselmi, F.; Ceccon, C.; Baccani, B.; Sisti, N.; Gismondi, A.; Sciaccaluga, C.; Aprile, F.; Fiorentini, C.; Graziano, F.; et al. The acute impact of an ultramarathon on right heart: A 12-lead ECG study. Scand. J. Med. Sci. Sport. 2020, 30, 549–555. [Google Scholar] [CrossRef]
- Wilhelm, M.; Zueger, T.; De Marchi, S.; Rimoldi, S.F.; Brugger, N.; Steiner, R.; Stettler, C.; Nuoffer, J.-M.; Seiler, C.; Ith, M. Inflammation and atrial remodeling after a mountain marathon. Scand. J. Med. Sci. Sport. 2014, 24, 519–525. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, F.; Pelliccia, A.; Natali, B.M.; Cameli, M.; Lisi, M.; Focardi, M.; Padeletti, M.; Palmitesta, P.; Corrado, D.; Bonifazi, M.; et al. Training-induced dynamic changes in left atrial reservoir, conduit, and active volumes in professional soccer players. Eur. J. Appl. Physiol. 2015, 115, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, F.; Cameli, M.; Padeletti, M.; Lisi, M.; Zacà, V.; Natali, B.; Malandrino, A.; Alvino, F.; Morelli, M.; Vassallo, G.M.; et al. Characterization of right atrial function and dimension in top-level athletes: A speckle tracking study. Int. J. Cardiovasc. Imaging 2013, 29, 87–94. [Google Scholar] [CrossRef]
- Brugger, N.; Krause, R.; Carlen, F.; Rimensberger, C.; Hille, R.; Steck, H.; Wilhelm, M.; Seiler, C. Effect of lifetime endurance training on left atrial mechanical function and on the risk of atrial fibrillation. Int. J. Cardiol. 2014, 170, 419–425. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, F.; Anselmi, F.; Focardi, M.; Mondillo, S. Atrial enlargement in the athlete’s heart: Assessment of atrial function may help distinguish adaptive from pathologic remodeling. J. Am. Soc. Echocardiogr. 2018, 31, 148–157. [Google Scholar] [CrossRef]
- Oxborough, D.; Whyte, G.; Wilson, M.; O’Hanlon, R.; Birch, K.; Shave, R.; Smith, G.; Godfrey, R.; Prasad, S.; George, K. A depression in left ventricular diastolic filling following prolonged strenuous exercise is associated with changes in left atrial mechanics. J. Am. Soc. Echocardiogr. 2010, 23, 968–976. [Google Scholar] [CrossRef]
- Sanz-de la Garza, M.; Grazioli, G.; Bijnens, B.H.; Sarvari, S.I.; Guasch, E.; Pajuelo, C.; Brotons, D.; Subirats, E.; Brugada, R.; Roca, E.; et al. Acute, exercise dose-dependent impairment in atrial performance during an endurance race: 2D ultrasound speckle-tracking strain analysis. JACC Cardiovasc. Imaging 2016, 9, 1380–1388. [Google Scholar] [CrossRef]
- Chen, H.; Warncke, M.L.; Muellerleile, K.; Saering, D.; Beitzen-Heineke, A.; Kisters, A.; Swiderska, M.; Cavus, E.; Jahnke, C.M.; Adam, G.; et al. Acute impact of an endurance race on biventricular and biatrial myocardial strain in competitive male and female triathletes evaluated by feature-tracking CMR. Eur. Radiol. 2022, 32, 3423–3435. [Google Scholar] [CrossRef]
- Cavigli, L.; Zorzi, A.; Spadotto, V.; Mandoli, G.E.; Melani, A.; Fusi, C.; D’Andrea, A.; Focardi, M.; Valente, S.; Cameli, M.; et al. The acute effects of an ultramarathon on atrial function and supraventricular arrhythmias in master athletes. J. Clin. Med. 2022, 11, 528. [Google Scholar] [CrossRef]
- Lasocka, Z.; Lewicka-Potocka, Z.; Faran, A.; Daniłowicz-Szymanowicz, L.; Nowak, R.; Kaufmann, D.; Kaleta-Duss, A.; Kalinowski, L.; Raczak, G.; Lewicka, E.; et al. Exercise-Induced atrial remodeling in female amateur marathon runners assessed by three-dimensional and speckle tracking echocardiography. Front. Physiol. 2022, 13, 863217. [Google Scholar] [CrossRef]
- Dawson, E.; George, K.; Shave, R.; Whyte, G.; Ball, D. Does the human heart fatigue subsequent to prolonged exercise? Sport. Med. 2003, 33, 365–380. [Google Scholar] [CrossRef]
- Saltin, B.; Stenberg, J. Circulatory response to prolonged severe exercise. J. Appl. Physiol. 1964, 19, 833–838. [Google Scholar] [CrossRef]
- McGavock, J.M.; Warburton, D.E.R.; Taylor, D.; Welsh, R.C.; Quinney, H.A.; Haykowsky, M.J. The effects of prolonged strenuous exercise on left ventricular function: A brief review. Heart Lung 2002, 31, 279–292. [Google Scholar] [CrossRef]
- Lord, R.N.; Utomi, V.; Oxborough, D.L.; Curry, B.A.; Brown, M.; George, K.P. Left ventricular function and mechanics following prolonged endurance exercise: An update and meta-analysis with insights from novel techniques. Eur. J. Appl. Physiol. 2018, 118, 1291–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexiou, S.; Kouidi, E.; Fahadidou-Tsiligiroglou, A.; Karamouzis, M.; Deligiannis, A. Cardiac function after exhaustive open-sea swimming. J. Sport. Med. Phys. Fit. 2005, 45, 98–104. [Google Scholar]
- Elliott, A.D.; La Gerche, A. The right ventricle following prolonged endurance exercise: Are we overlooking the more important side of the heart? A meta-analysis. Br. J. Sport. Med. 2015, 49, 724–729. [Google Scholar] [CrossRef]
- Chan-Dewar, F.; Oxborough, D.; Shave, R.; Gregson, W.; Whyte, G.; George, K. Left ventricular myocardial strain and strain rates in sub-endocardial and sub-epicardial layers before and after a marathon. Eur. J. Appl. Physiol. 2010, 109, 1191–1196. [Google Scholar] [CrossRef]
- Cavigli, L.; Zorzi, A.; Spadotto, V.; Gismondi, A.; Sisti, N.; Valentini, F.; Anselmi, F.; Mandoli, G.E.; Spera, L.; Di Florio, A.; et al. The acute effects of an ultramarathon on biventricular function and ventricular arrhythmias in master athletes. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 423–430. [Google Scholar] [CrossRef]
- Gajda, R.; Kowalik, E.; Rybka, S.; Rębowska, E.; Śmigielski, W.; Nowak, M.; Kwaśniewska, M.; Hoffman, P.; Drygas, W. Evaluation of the heart function of swimmers subjected to exhaustive repetitive endurance efforts during a 500-km relay. Front. Physiol. 2019, 10, 296. [Google Scholar] [CrossRef]
- La Gerche, A.; Connelly, K.A.; Mooney, D.J.; MacIsaac, A.I.; Prior, D.L. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 2008, 94, 860–866. [Google Scholar] [CrossRef]
- Neilan, T.G.; Yoerger, D.M.; Douglas, P.S.; Marshall, J.E.; Halpern, E.F.; Lawlor, D.; Picard, M.H.; Wood, M.J. Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur. Heart J. 2006, 27, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, A.; Vio, R.; Mastella, G.; Ciarmatori, N.; Del Monte, A.; Trovato, D.; Iliceto, S.; Schiavon, M.; Bertaglia, E.; Corrado, D.; et al. Burden of premature atrial beats in middle-aged endurance athletes with and without lone atrial fibrillation versus sedentary controls. Eur. J. Prev. Cardiol. 2020, 27, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Wundersitz, D.W.T.; Wright, B.J.; Gordon, B.A.; Pompei, S.; Lavie, C.J.; Nadurata, V.; Nolan, K.; Kingsley, M.I.C. Sympathovagal balance is a strong predictor of post high-volume endurance exercise cardiac arrhythmia. Front. Physiol. 2022, 13, 848174. [Google Scholar] [CrossRef]
- Bjørnstad, H.; Storstein, L.; Meen, H.D.; Hals, O. Ambulatory electrocardiographic findings in top athletes, athletic students and control subjects. Cardiology 1994, 84, 42–50. [Google Scholar] [PubMed]
- Talan, D.A.; Bauernfeind, R.A.; Ashley, W.W.; Kanakis, C.; Rosen, K.M. Twenty-four hour continuous ECG recordings in long-distance runners. Chest 1982, 82, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viitasalo, M.T.; Kala, R.; Eisalo, A. Ambulatory electrocardiographic recording in endurance athletes. Br. Heart J. 1982, 47, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Pilcher, G.F.; Cook, A.J.; Johnston, B.L.; Fletcher, G.F. Twenty-four-hour continuous electrocardiography during exercise and free activity in 80 apparently healthy runners. Am. J. Cardiol. 1983, 52, 859–861. [Google Scholar] [CrossRef]
- Palatini, P.; Maraglino, G.; Sperti, G.; Calzavara, A.; Libardoni, M.; Pessina, A.C.; Dal Palù, C. Prevalence and possible mechanisms of ventricular arrhythmias in athletes. Am. Heart J. 1985, 110, 560–567. [Google Scholar] [CrossRef]
- Zorzi, A.; De Lazzari, M.; Mastella, G.; Niero, A.; Trovato, D.; Cipriani, A.; Peruzza, F.; Portolan, L.; Berton, G.; Sciacca, F.; et al. Ventricular arrhythmias in young competitive athletes: Prevalence, determinants, and underlying substrate. J. Am. Heart Assoc. 2018, 7, e009171. [Google Scholar] [CrossRef] [Green Version]
- Zorzi, A.; Mastella, G.; Cipriani, A.; Berton, G.; Del Monte, A.; Gusella, B.; Nese, A.; Portolan, L.; Sciacca, F.; Tikvina, S.; et al. Burden of ventricular arrhythmias at 12-lead 24-hour ambulatory ECG monitoring in middle-aged endurance athletes versus sedentary controls. Eur. J. Prev. Cardiol. 2018, 25, 2003–2011. [Google Scholar] [CrossRef]
- Zorzi, A.; D’Ascenzi, F.; Anselmi, F.; Spera, L.; Ibrahim, A.; Ceccon, C.; Mondillo, S.; Corrado, D.; Antonini-Canterin, F.; Pagliani, L. The acute effect of a high-altitude ultra-trail race on ECG features. Eur. J. Prev. Cardiol. 2019, 26, 892–894. [Google Scholar] [CrossRef] [PubMed]
- Grabs, V.; Peres, T.; Zelger, O.; Haller, B.; Pressler, A.; Braun, S.; Halle, M.; Scherr, J. Decreased prevalence of cardiac arrhythmias during and after vigorous and prolonged exercise in healthy male marathon runners. Am. Heart J. 2015, 170, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Franco, V.; Callaway, C.; Salcido, D.; McEntire, S.; Roth, R.; Hostler, D. Characterization of electrocardiogram changes throughout a marathon. Eur. J. Appl. Physiol. 2014, 114, 1725–1735. [Google Scholar] [CrossRef]
- Whyte, G.P. Clinical significance of cardiac damage and changes in function after exercise. Med. Sci. Sports Exerc. 2008, 40, 1416–1423. [Google Scholar] [CrossRef]
- Shave, R.; George, K.P.; Atkinson, G.; Hart, E.; Middleton, N.; Whyte, G.; Gaze, D.; Collinson, P.O. Exercise-induced cardiac troponin T release: A meta-analysis. Med. Sci. Sport. Exerc. 2007, 39, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Kleiven, Ø.; Omland, T.; Skadberg, Ø.; Melberg, T.H.; Bjørkavoll-Bergseth, M.F.; Auestad, B.; Bergseth, R.; Greve, O.J.; Aakre, K.M.; Ørn, S. Race duration and blood pressure are major predictors of exercise-induced cardiac troponin elevation. Int. J. Cardiol. 2019, 283, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eijsvogels, T.M.H.; Hoogerwerf, M.D.; Maessen, M.F.H.; Seeger, J.P.H.; George, K.P.; Hopman, M.T.E.; Thijssen, D.H.J. Predictors of cardiac troponin release after a marathon. J. Sci. Med. Sport. 2015, 18, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Neilan, T.G.; Januzzi, J.L.; Lee-Lewandrowski, E.; Ton-Nu, T.-T.; Yoerger, D.M.; Jassal, D.S.; Lewandrowski, K.B.; Siegel, A.J.; Marshall, J.E.; Douglas, P.S.; et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 2006, 114, 2325–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortescue, E.B.; Shin, A.Y.; Greenes, D.S.; Mannix, R.C.; Agarwal, S.; Feldman, B.J.; Shah, M.I.; Rifai, N.; Landzberg, M.J.; Newburger, J.W.; et al. Cardiac troponin increases among runners in the Boston marathon. Ann. Emerg. Med. 2007, 49, 137–143.e1. [Google Scholar] [CrossRef] [PubMed]
- Aengevaeren, V.L.; Baggish, A.L.; Chung, E.H.; George, K.; Kleiven, Ø.; Mingels, A.M.A.; Ørn, S.; Shave, R.E.; Thompson, P.D.; Eijsvogels, T.M.H. Exercise-induced cardiac troponin elevations: From underlying mechanisms to clinical relevance. Circulation 2021, 144, 1955–1972. [Google Scholar] [CrossRef]
- Eijsvogels, T.M.H.; Januzzi, J.L.; Taylor, B.A.; Isaacs, S.K.; D’Hemecourt, P.; Zaleski, A.; Dyer, S.; Troyanos, C.; Weiner, R.B.; Thompson, P.D.; et al. Impact of statin use on exercise-induced cardiac troponin elevations. Am. J. Cardiol. 2014, 114, 624–628. [Google Scholar] [CrossRef]
- Paana, T.; Jaakkola, S.; Bamberg, K.; Saraste, A.; Tuunainen, E.; Wittfooth, S.; Kallio, P.; Heinonen, O.J.; Knuuti, J.; Pettersson, K.; et al. Cardiac troponin elevations in marathon runners. Role of coronary atherosclerosis and skeletal muscle injury. The MaraCat study. Int. J. Cardiol. 2019, 295, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Möhlenkamp, S.; Leineweber, K.; Lehmann, N.; Braun, S.; Roggenbuck, U.; Perrey, M.; Broecker-Preuss, M.; Budde, T.; Halle, M.; Mann, K.; et al. Coronary atherosclerosis burden, but not transient troponin elevation, predicts long-term outcome in recreational marathon runners. Basic Res. Cardiol. 2014, 109, 391. [Google Scholar] [CrossRef]
- Kleiven, Ø.; Omland, T.; Skadberg, Ø.; Melberg, T.H.; Bjørkavoll-Bergseth, M.F.; Auestad, B.; Bergseth, R.; Greve, O.J.; Aakre, K.M.; Ørn, S. Occult obstructive coronary artery disease is associated with prolonged cardiac troponin elevation following strenuous exercise. Eur. J. Prev. Cardiol. 2020, 27, 1212–1221. [Google Scholar] [CrossRef]
- Orn, S.; Melberg, T.H.; Omland, T.; Skadberg, O.; Bjorkavoll-Bergseth, M.F.; Erevik, C.B.; Hansen, M.W.; Auestad, B.; Bergseth, R.; Aakre, K.M.; et al. Is cardiac troponin elevation following strenuous exercise clinically relevant in healthy subjects? Eur. Heart J. 2020, 41, ehaa946.3121. [Google Scholar] [CrossRef]
- Zorzi, A.; Perazzolo Marra, M.; Rigato, I.; De Lazzari, M.; Susana, A.; Niero, A.; Pilichou, K.; Migliore, F.; Rizzo, S.; Giorgi, B.; et al. Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes. Circ. Arrhythm. Electrophysiol. 2016, 9, e004229. [Google Scholar] [CrossRef]
- Tahir, E.; Scherz, B.; Starekova, J.; Muellerleile, K.; Fischer, R.; Schoennagel, B.; Warncke, M.; Stehning, C.; Cavus, E.; Bohnen, S.; et al. Acute impact of an endurance race on cardiac function and biomarkers of myocardial injury in triathletes with and without myocardial fibrosis. Eur. J. Prev. Cardiol. 2020, 27, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Trivax, J.E.; Franklin, B.A.; Goldstein, J.A.; Chinnaiyan, K.M.; Gallagher, M.J.; de Jong, A.T.; Colar, J.M.; Haines, D.E.; McCullough, P.A. Acute cardiac effects of marathon running. J. Appl. Physiol. 2010, 108, 1148–1153. [Google Scholar] [CrossRef] [Green Version]
- Aengevaeren, V.L.; Froeling, M.; Hooijmans, M.T.; Monte, J.R.; van den Berg-Faay, S.; Hopman, M.T.E.; Strijkers, G.J.; Nederveen, A.J.; Bakermans, A.J.; Eijsvogels, T.M.H. Myocardial injury and compromised cardiomyocyte integrity following a marathon run. JACC Cardiovasc. Imaging 2020, 13, 1445–1447. [Google Scholar] [CrossRef]
- Mousavi, N.; Czarnecki, A.; Kumar, K.; Fallah-Rad, N.; Lytwyn, M.; Han, S.-Y.; Francis, A.; Walker, J.R.; Kirkpatrick, I.D.C.; Neilan, T.G.; et al. Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am. J. Cardiol. 2009, 103, 1467–1472. [Google Scholar] [CrossRef]
- Cantinotti, M.; Clerico, A.; Giordano, R.; Assanta, N.; Franchi, E.; Koestenberger, M.; Marchese, P.; Storti, S.; D’Ascenzi, F. Cardiac troponin-t release after sport and differences by age, sex, training type, volume, and intensity: A critical review. Clin. J. Sport. Med. 2022, 32, e230–e242. [Google Scholar] [CrossRef] [PubMed]
- Boyett, M.R.; D’Souza, A.; Zhang, H.; Morris, G.M.; Dobrzynski, H.; Monfredi, O. Viewpoint: Is the resting bradycardia in athletes the result of remodeling of the sinoatrial node rather than high vagal tone? J. Appl. Physiol. 2013, 114, 1351–1355. [Google Scholar] [CrossRef]
- Zdravkovic, M.; Perunicic, J.; Krotin, M.; Ristic, M.; Vukomanovic, V.; Soldatovic, I.; Zdravkovic, D. Echocardiographic study of early left ventricular remodeling in highly trained preadolescent footballers. J. Sci. Med. Sport. 2010, 13, 602–606. [Google Scholar] [CrossRef]
- Luthi, P.; Zuber, M.; Ritter, M.; Oechslin, E.N.; Jenni, R.; Seifert, B.; Baldesberger, S.; Jost, C.H.A. Echocardiographic findings in former professional cyclists after long-term deconditioning of more than 30 years. Eur. J. Echocardiogr. 2008, 9, 261–267. [Google Scholar] [PubMed] [Green Version]
- Drezner, J.A.; Sharma, S.; Baggish, A.; Papadakis, M.; Wilson, M.G.; Prutkin, J.M.; Gerche, A.L.; Ackerman, M.J.; Borjesson, M.; Salerno, J.C.; et al. International criteria for electrocardiographic interpretation in athletes: Consensus statement. Br. J. Sport. Med. 2017, 51, 704–731. [Google Scholar] [CrossRef] [PubMed]
- Zadvorev, S.F.; Krysiuk, O.B.; Obrezan, A.G.; Yakovlev, A.A. The influence of personal history of athletic activity on clinical course of cardiovascular diseases in former athletes. Adv. Gerontol. 2018, 31, 531–537. [Google Scholar]
- Hood, S.; Northcote, R.J. Cardiac assessment of veteran endurance athletes: A 12 year follow up study. Br. J. Sport. Med. 1999, 33, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Baldesberger, S.; Bauersfeld, U.; Candinas, R.; Seifert, B.; Zuber, M.; Ritter, M.; Jenni, R.; Oechslin, E.; Luthi, P.; Scharf, C.; et al. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur. Heart J. 2008, 29, 71–78. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, A.; Sharma, S.; Boyett, M.R. CrossTalk opposing view: Bradycardia in the trained athlete is attributable to a downregulation of a pacemaker channel in the sinus node. J. Physiol. 2015, 593, 1749–1751. [Google Scholar] [CrossRef]
- Stein, R.; Medeiros, C.M.; Rosito, G.A.; Zimerman, L.I.; Ribeiro, J.P. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J. Am. Coll. Cardiol. 2002, 39, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Mesirca, P.; Nakao, S.; Nissen, S.D.; Forte, G.; Anderson, C.; Trussell, T.; Li, J.; Cox, C.; Zi, M.; Logantha, S.; et al. Intrinsic electrical remodeling underlies atrioventricular block in athletes. Circ. Res. 2021, 129, e1–e20. [Google Scholar] [CrossRef]
- Basavarajaiah, S.; Wilson, M.; Whyte, G.; Shah, A.; Behr, E.; Sharma, S. Prevalence and significance of an isolated long QT interval in elite athletes. Eur. Heart J. 2007, 28, 2944–2949. [Google Scholar] [CrossRef] [Green Version]
- Malfatto, G.; Beria, G.; Sala, S.; Bonazzi, O.; Schwartz, P.J. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J. Am. Coll. Cardiol. 1994, 23, 296–301. [Google Scholar] [CrossRef] [Green Version]
- Dagradi, F.; Spazzolini, C.; Castelletti, S.; Pedrazzini, M.; Kotta, M.-C.; Crotti, L.; Schwartz, P.J. Exercise training-induced repolarization abnormalities masquerading as congenital long QT syndrome. Circulation 2020, 142, 2405–2415. [Google Scholar] [CrossRef]
- Viskin, S. Important developments in long QT syndrome. Circulation 2020, 142, 2416–2419. [Google Scholar] [CrossRef]
- Roden, D.M. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 2004, 350, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Elliott, A.D.; Maatman, B.; Emery, M.S.; Sanders, P. The role of exercise in atrial fibrillation prevention and promotion: Finding optimal ranges for health. Heart Rhythm 2017, 14, 1713–1720. [Google Scholar] [CrossRef] [Green Version]
- Faselis, C.; Kokkinos, P.; Tsimploulis, A.; Pittaras, A.; Myers, J.; Lavie, C.J.; Kyritsi, F.; Lovic, D.; Karasik, P.; Moore, H. Exercise capacity and atrial fibrillation risk in veterans: A cohort study. Mayo. Clin. Proc. 2016, 91, 558–566. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Furberg, C.D.; Psaty, B.M.; Siscovick, D. Physical activity and incidence of atrial fibrillation in older adults: The cardiovascular health study. Circulation 2008, 118, 800–807. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.; Farahmand, B.; Ahlbom, A.; Held, C.; Ljunghall, S.; Michaëlsson, K.; Sundström, J. Risk of arrhythmias in 52,755 long-distance cross-country skiers: A cohort study. Eur. Heart J. 2013, 34, 3624–3631. [Google Scholar] [CrossRef] [Green Version]
- Aizer, A.; Gaziano, J.M.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Albert, C.M. Relation of vigorous exercise to risk of atrial fibrillation. Am. J. Cardiol. 2009, 103, 1572–1577. [Google Scholar] [CrossRef] [Green Version]
- Mont, L.; Sambola, A.; Brugada, J.; Vacca, M.; Marrugat, J.; Elosua, R.; Paré, C.; Azqueta, M.; Sanz, G. Long-lasting sport practice and lone atrial fibrillation. Eur. Heart J. 2002, 23, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Mont, L.; Elosua, R.; Brugada, J. Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. Europace 2009, 11, 11–17. [Google Scholar] [CrossRef]
- Morseth, B.; Graff-Iversen, S.; Jacobsen, B.K.; Jørgensen, L.; Nyrnes, A.; Thelle, D.S.; Vestergaard, P.; Løchen, M.-L. Physical activity, resting heart rate, and atrial fibrillation: The Tromsø study. Eur. Heart J. 2016, 37, 2307–2313. [Google Scholar] [CrossRef]
- Thelle, D.S.; Selmer, R.; Gjesdal, K.; Sakshaug, S.; Jugessur, A.; Graff-Iversen, S.; Tverdal, A.; Nystad, W. Resting heart rate and physical activity as risk factors for lone atrial fibrillation: A prospective study of 309,540 men and women. Heart 2013, 99, 1755–1760. [Google Scholar] [CrossRef] [Green Version]
- D’Ascenzi, F.; Cameli, M.; Ciccone, M.M.; Maiello, M.; Modesti, P.A.; Mondillo, S.; Muiesan, M.L.; Scicchitano, P.; Novo, S.; Palmiero, P.; et al. The controversial relationship between exercise and atrial fibrillation: Clinical studies and pathophysiological mechanisms. J. Cardiovasc. Med. 2015, 16, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Benito, B.; Gay-Jordi, G.; Serrano-Mollar, A.; Guasch, E.; Shi, Y.; Tardif, J.-C.; Brugada, J.; Nattel, S.; Mont, L. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 2011, 123, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Estes, N.A.M.; Madias, C. Atrial fibrillation in athletes: A lesson in the virtue of moderation. JACC Clin. Electrophysiol. 2017, 3, 921–928. [Google Scholar] [CrossRef]
- Jensen, M.T.; Suadicani, P.; Hein, H.O.; Gyntelberg, F. Elevated resting heart rate, physical fitness and all-cause mortality: A 16-year follow-up in the Copenhagen male study. Heart 2013, 99, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Corrado, D.; Link, M.S.; Calkins, H. Arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 2017, 376, 61–72. [Google Scholar] [CrossRef]
- Zorzi, A.; Cipriani, A.; Bariani, R.; Pilichou, K.; Corrado, D.; Bauce, B. Role of exercise as a modulating factor in arrhythmogenic cardiomyopathy. Curr. Cardiol. Rep. 2021, 23, 57. [Google Scholar] [CrossRef]
- Heidbüchel, H.; Hoogsteen, J.; Fagard, R.; Vanhees, L.; Ector, H.; Willems, R.; Van Lierde, J. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur. Heart J. 2003, 24, 1473–1480. [Google Scholar] [CrossRef]
- La Gerche, A.; Claessen, G.; Dymarkowski, S.; Voigt, J.-U.; De Buck, F.; Vanhees, L.; Droogne, W.; Van Cleemput, J.; Claus, P.; Heidbuchel, H. Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur. Heart J. 2015, 36, 1998–2010. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A. Exercise-induced arrhythmogenic (right ventricular) cardiomyopathy is real…if you consider it. JACC Cardiovasc. Imaging 2021, 14, 159–161. [Google Scholar] [CrossRef]
- La Gerche, A.; Robberecht, C.; Kuiperi, C.; Nuyens, D.; Willems, R.; de Ravel, T.; Matthijs, G.; Heidbüchel, H. Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart 2010, 96, 1268–1274. [Google Scholar] [CrossRef]
- Sawant, A.C.; Bhonsale, A.; te Riele, A.S.J.M.; Tichnell, C.; Murray, B.; Russell, S.D.; Tandri, H.; Tedford, R.J.; Judge, D.P.; Calkins, H.; et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. J. Am. Heart Assoc. 2014, 3, e001471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leischik, R.; Dworrak, B.; Strauss, M.; Horlitz, M.; Pareja-Galeano, H.; de la Guía-Galipienso, F.; Lippi, G.; Lavie, C.J.; Perez, M.V.; Sanchis-Gomar, F. Special article—Exercise-induced right ventricular injury or Arrhythmogenic Cardiomyopathy (ACM): The bright side and the dark side of the moon. Prog. Cardiovasc. Dis. 2020, 63, 671–681. [Google Scholar] [CrossRef]
- Perazzolo Marra, M.; Rizzo, S.; Bauce, B.; De Lazzari, M.; Pilichou, K.; Corrado, D.; Thiene, G.; Iliceto, S.; Basso, C. Arrhythmogenic right ventricular cardiomyopathy. Contribution of cardiac magnetic resonance imaging to the diagnosis. Herz 2015, 40, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Eijsvogels, T.M.; Fernandez, A.B.; Thompson, P.D. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol. Rev. 2016, 96, 99–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vio, R.; Zorzi, A.; Corrado, D. Myocarditis in the athlete: Arrhythmogenic substrates, clinical manifestations, management, and eligibility decisions. J. Cardiovasc. Transl. Res. 2020, 13, 284–295. [Google Scholar] [CrossRef]
- Brolinson, P.G.; Elliott, D. Exercise and the immune system. Clin. Sport. Med. 2007, 26, 311–319. [Google Scholar] [CrossRef]
- Nieman, D.C. Is infection risk linked to exercise workload? Med. Sci. Sport. Exerc. 2000, 32, S406–S411. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the regulation of immune functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar] [PubMed]
- Nieman, D.C. Nutrition, exercise, and immune system function. Clin. Sport. Med. 1999, 18, 537–548. [Google Scholar] [CrossRef]
- Keaney, L.C.; Kilding, A.E.; Merien, F.; Dulson, D.K. The impact of sport related stressors on immunity and illness risk in team-sport athletes. J. Sci. Med. Sport. 2018, 21, 1192–1199. [Google Scholar] [CrossRef]
- Moreira, A.; Mortatti, A.L.; Arruda, A.F.S.; Freitas, C.G.; de Arruda, M.; Aoki, M.S. Salivary IgA response and upper respiratory tract infection symptoms during a 21-week competitive season in young soccer players. J. Strength Cond. Res. 2014, 28, 467–473. [Google Scholar] [CrossRef]
- Gleeson, M.; Pyne, D.B. Respiratory inflammation and infections in high-performance athletes. Immunol. Cell Biol. 2016, 94, 124–131. [Google Scholar] [CrossRef]
- Kiel, R.J.; Smith, F.E.; Chason, J.; Khatib, R.; Reyes, M.P. Coxsackievirus B3 myocarditis in C3H/HeJ mice: Description of an inbred model and the effect of exercise on virulence. Eur. J. Epidemiol. 1989, 5, 348–350. [Google Scholar] [CrossRef]
- Gatmaitan, B.G.; Chason, J.L.; Lerner, A.M. Augmentation of the virulence of murine Coxsackie-virus B-3 myocardiopathy by exercise. J. Exp. Med. 1970, 131, 1121–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchau, R.; Cariou, E.; Deney, A.; Belaid, S.; Itier, R.; Blanchard, V.; Fournier, P.; Duparc, A.; Galinier, M.; Carrié, D.; et al. Sports participation and myocarditis: Influence of sport types on disease severity. Int. J. Cardiol. Heart Vasc. 2021, 37, 100895. [Google Scholar] [CrossRef]
- Simonson, S.R.; Jackson, C.G.R. Leukocytosis occurs in response to resistance exercise in men. J. Strength Cond. Res. 2004, 18, 266–271. [Google Scholar] [PubMed]
- Lindsay, M.M.; Dunn, F.G. Biochemical evidence of myocardial fibrosis in veteran endurance athletes. Br. J. Sport. Med. 2007, 41, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Mordi, I.; Carrick, D.; Bezerra, H.; Tzemos, N. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 797–803. [Google Scholar] [CrossRef]
- Görmeli, C.A.; Görmeli, G.; Yağmur, J.; Özdemir, Z.M.; Kahraman, A.S.; Çolak, C.; Özdemir, R. Assessment of myocardial changes in athletes with native T1 mapping and cardiac functional evaluation using 3 T MRI. Int. J. Cardiovasc. Imaging 2016, 32, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Tahir, E.; Starekova, J.; Muellerleile, K.; von Stritzky, A.; Münch, J.; Avanesov, M.; Weinrich, J.M.; Stehning, C.; Bohnen, S.; Radunski, U.K.; et al. Myocardial fibrosis in competitive triathletes detected by contrast-enhanced CMR correlates with exercise-induced hypertension and competition history. JACC Cardiovasc. Imaging 2018, 11, 1260–1270. [Google Scholar] [CrossRef]
- Zorzi, A.; Cipriani, A.; Corrado, D. COVID-19 viral infection and myocarditis in athletes: The need for caution in interpreting cardiac magnetic resonance findings. Br. J. Sport. Med. 2022, 56, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- Breuckmann, F.; Möhlenkamp, S.; Nassenstein, K.; Lehmann, N.; Ladd, S.; Schmermund, A.; Sievers, B.; Schlosser, T.; Jöckel, K.-H.; Heusch, G.; et al. Myocardial late gadolinium enhancement: Prevalence, pattern, and prognostic relevance in marathon runners. Radiology 2009, 251, 50–57. [Google Scholar] [CrossRef] [PubMed]
- O’Hanlon, R.; Wilson, M.; Wage, R.; Smith, G.; Alpendurada, F.D.; Wong, J.; Dahl, A.; Oxborough, D.; Godfrey, R.; Sharma, S.; et al. Troponin release following endurance exercise: Is inflammation the cause? A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2010, 12, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oomah, S.R.; Mousavi, N.; Bhullar, N.; Kumar, K.; Walker, J.R.; Lytwyn, M.; Colish, J.; Wassef, A.; Kirkpatrick, I.D.C.; Sharma, S.; et al. The role of three-dimensional echocardiography in the assessment of right ventricular dysfunction after a half marathon: Comparison with cardiac magnetic resonance imaging. J. Am. Soc. Echocardiogr. 2011, 24, 207–213. [Google Scholar] [CrossRef]
- Wilson, M.; O’Hanlon, R.; Prasad, S.; Deighan, A.; Macmillan, P.; Oxborough, D.; Godfrey, R.; Smith, G.; Maceira, A.; Sharma, S.; et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J. Appl. Physiol. 2011, 110, 1622–1626. [Google Scholar] [CrossRef]
- Karlstedt, E.; Chelvanathan, A.; Da Silva, M.; Cleverley, K.; Kumar, K.; Bhullar, N.; Lytwyn, M.; Bohonis, S.; Oomah, S.; Nepomuceno, R.; et al. The impact of repeated marathon running on cardiovascular function in the aging population. J. Cardiovasc. Magn. Reson. 2012, 14, 58. [Google Scholar] [CrossRef] [Green Version]
- La Gerche, A.; Burns, A.T.; Mooney, D.J.; Inder, W.J.; Taylor, A.J.; Bogaert, J.; Macisaac, A.I.; Heidbüchel, H.; Prior, D.L. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 2012, 33, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Erz, G.; Mangold, S.; Franzen, E.; Claussen, C.D.; Niess, A.M.; Burgstahler, C.; Kramer, U. Correlation between ECG abnormalities and cardiac parameters in highly trained asymptomatic male endurance athletes: Evaluation using cardiac magnetic resonance imaging. Int. J. Cardiovasc. Imaging 2013, 29, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Mangold, S.; Kramer, U.; Franzen, E.; Erz, G.; Bretschneider, C.; Seeger, A.; Claussen, C.D.; Niess, A.M.; Burgstahler, C. Detection of cardiovascular disease in elite athletes using cardiac magnetic resonance imaging. Rofo 2013, 185, 1167–1174. [Google Scholar] [CrossRef] [Green Version]
- Franzen, E.; Mangold, S.; Erz, G.; Claussen, C.D.; Niess, A.M.; Kramer, U.; Burgstahler, C. Comparison of morphological and functional adaptations of the heart in highly trained triathletes and long-distance runners using cardiac magnetic resonance imaging. Heart Vessel. 2013, 28, 626–631. [Google Scholar] [CrossRef]
- Bohm, P.; Schneider, G.; Linneweber, L.; Rentzsch, A.; Krämer, N.; Abdul-Khaliq, H.; Kindermann, W.; Meyer, T.; Scharhag, J. Right and left ventricular function and mass in male elite master athletes: A controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation 2016, 133, 1927–1935. [Google Scholar] [CrossRef]
- Tahir, E.; Starekova, J.; Muellerleile, K.; Freiwald, E.; von Stritzky, A.; Münch, J.; Avanesov, M.; Weinrich, J.M.; Stehning, C.; Cavus, E.; et al. Impact of myocardial fibrosis on left ventricular function evaluated by feature-tracking myocardial strain cardiac magnetic resonance in competitive male triathletes with normal ejection fraction. Circ. J. 2019, 83, 1553–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunetti, G.; Cipriani, A.; Perazzolo Marra, M.; De Lazzari, M.; Bauce, B.; Calore, C.; Rigato, I.; Graziano, F.; Vio, R.; Corrado, D.; et al. Role of cardiac magnetic resonance imaging in the evaluation of athletes with premature ventricular beats. J. Clin. Med. 2022, 11, 426. [Google Scholar] [CrossRef]
- Pelliccia, A.; Di Paolo, F.M.; De Blasiis, E.; Quattrini, F.M.; Pisicchio, C.; Guerra, E.; Culasso, F.; Maron, B.J. Prevalence and clinical significance of aortic root dilation in highly trained competitive athletes. Circulation 2010, 122, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, A.; Thompson, P.D. A meta-analysis of aortic root size in elite athletes. Circulation 2013, 127, 791–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gati, S.; Malhotra, A.; Sedgwick, C.; Papamichael, N.; Dhutia, H.; Sharma, R.; Child, A.H.; Papadakis, M.; Sharma, S. Prevalence and progression of aortic root dilatation in highly trained young athletes. Heart 2019, 105, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Churchill, T.W.; Groezinger, E.; Kim, J.H.; Loomer, G.; Guseh, J.S.; Wasfy, M.M.; Isselbacher, E.M.; Lewis, G.D.; Weiner, R.B.; Schmied, C.; et al. Association of ascending aortic dilatation and long-term endurance exercise among older masters-level athletes. JAMA Cardiol. 2020, 5, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, L.; Corneloup, L.; Carré, F.; Mignot, A.; Jaussaud, J.; Gencel, L.; Clement-Guinaudeau, S.; Pospiech, T. Aortic dilatation: Value of echocardiography in the systematic assessment of elite rugby players in the French National Rugby League (LNR). Scand. J. Med. Sci. Sport. 2021, 31, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.; Moore, B.M.; Moore, L.; Seco, M.; Barnes, C.; Marshman, D.; Grieve, S.M.; Celermajer, D.S. Rugby player’s Aorta: Alarming prevalence of ascending aortic dilatation and effacement in elite rugby players. Heart Lung Circ. 2020, 29, 196–201. [Google Scholar] [CrossRef]
- Babaee Bigi, M.A.; Aslani, A. Aortic root size and prevalence of aortic regurgitation in elite strength trained athletes. Am. J. Cardiol. 2007, 100, 528–530. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Mosterd, A.; Braber, T.L.; Prakken, N.H.J.; Doevendans, P.A.; Grobbee, D.E.; Thompson, P.D.; Eijsvogels, T.M.H.; Velthuis, B.K. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation 2017, 136, 138–148. [Google Scholar] [CrossRef]
- Merghani, A.; Maestrini, V.; Rosmini, S.; Cox, A.T.; Dhutia, H.; Bastiaenan, R.; David, S.; Yeo, T.J.; Narain, R.; Malhotra, A.; et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation 2017, 136, 126–137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graziano, F.; Juhasz, V.; Brunetti, G.; Cipriani, A.; Szabo, L.; Merkely, B.; Corrado, D.; D’Ascenzi, F.; Vago, H.; Zorzi, A. May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review. J. Cardiovasc. Dev. Dis. 2022, 9, 347. https://doi.org/10.3390/jcdd9100347
Graziano F, Juhasz V, Brunetti G, Cipriani A, Szabo L, Merkely B, Corrado D, D’Ascenzi F, Vago H, Zorzi A. May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review. Journal of Cardiovascular Development and Disease. 2022; 9(10):347. https://doi.org/10.3390/jcdd9100347
Chicago/Turabian StyleGraziano, Francesca, Vencel Juhasz, Giulia Brunetti, Alberto Cipriani, Liliana Szabo, Béla Merkely, Domenico Corrado, Flavio D’Ascenzi, Hajnalka Vago, and Alessandro Zorzi. 2022. "May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review" Journal of Cardiovascular Development and Disease 9, no. 10: 347. https://doi.org/10.3390/jcdd9100347
APA StyleGraziano, F., Juhasz, V., Brunetti, G., Cipriani, A., Szabo, L., Merkely, B., Corrado, D., D’Ascenzi, F., Vago, H., & Zorzi, A. (2022). May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review. Journal of Cardiovascular Development and Disease, 9(10), 347. https://doi.org/10.3390/jcdd9100347