Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment
Abstract
:1. Introduction
2. The Coagulation Cascade: Targeting the Intrinsic Coagulation Pathway
2.1. Targeting Factor XII
2.2. Targeting Factor XI
2.3. Targeting Factor IX
3. Targeting the Platelet: What Is in the Pipeline for Novel Antiplatelet Agents?
3.1. Targeting Platelet Adhesion
3.1.1. Inhibition of Von Willebrand Factor-Glycoprotein 1bα-Mediated Platelet Activation
3.1.2. Glycoprotein VI: Inhibition of Collagen-Mediated Platelet Activation
Antiplatelet | Type | Mechanism of Action | Studies Conducted So Far |
---|---|---|---|
TAGX-0004 (studies in vitro) | Aptamer | VWF inhibition | It has excellent affinity with VWF-A1 domain and a superior antithrombotic potential than ARC1779 [116]. |
ARC1779 (intravenous) | Aptamer | VWF inhibition | In a phase II trial, it reduced cerebral thromboembolism in patients undergoing carotid endarterectomy [117]. However, the study was terminated due to a lack of funding and associated increased bleeding risk. Further development of ARC1779 was halted. |
AJW200 (intravenous) | Monoclonal antibody | VWF inhibition | Tested as adjunctive therapy with tPA in a mouse model of embolic stroke where it showed a synergistic effect and improved behavioural function [118]. In monkeys, it has been shown to inhibit high-shear-stress-induced platelet adhesion, aggregation, and thrombin generation [119]. |
82D6A3 (intravenous) | Monoclonal antibody (A3 domain) | VWF inhibition | It has been tested in baboons, showing potent antithrombotic activities without significantly prolonging the bleeding time [120]. |
Caplacizumab (intravenous/subcutaneous) | Nanobody | VWF inhibition | Approved for the treatment of immune-mediated thrombotic thrombocytopenic purpura [121]. |
h6B4-Fab (intravenous) | Monoclonal antibody | GPIb inhibition | Reduce thrombus formation in baboons with minimal effect on bleeding time [122]. |
SZ2 (intravenous) | Monoclonal antibody | GPIb inhibition | In vitro, functional studies revealed that it prevents platelet adhesion to VWF under high-shear stress and inhibits ristocetin-induced platelet aggregation in a dose-dependent manner [123]. |
JAQ1 (Intravenous) | Monoclonal antibody | GPVI inhibition | It protects against lethal thromboembolism in mice with minimal impact on hemostasis [124,125]. |
SCH-28 (studies in vitro) | Small molecule | PAR4 inhibition | It inhibits PAR-4-mediated platelet activation and aggregation by blocking the thrombin exosite II binding domain [126]. |
HPW-RX40 (intravenous) | Small molecule | PDI inhibition | Reduces thrombus formation in whole human blood under flow conditions and protects mice from ferric chloride-induced thrombus formation [127]. |
ML359 (studies in vitro) | Small molecule | PDI Inhibition | It exerts no cytotoxicity in three human cell lines and inhibits platelet aggregation [128]. |
ML355 (oral) | Small molecule | 12-Lipoxygenase inhibition | It reduces thrombus growth and vessel occlusion in a mouse model of arterial thrombosis with minimal impact on hemostasis [129]. |
MIPS-9922 (intravenous) | Small molecule | PI3Kβ inhibition | It prevents arterial thrombus formation in an in vivo electrolytic mouse model of thrombosis with minimal impact on hemostasis [130]. |
scFv (intravenous) | Antibody | GPIIb/IIIa inhibition | It has demonstrated comparable antithrombotic efficacy to currently used GPIIb/IIIa inhibitors (tirofiban and eptifibatide) in a mice model of ferric chloride-induced thrombosis with minimal impact on hemostasis [131]. |
mP6 (intravenous) | Péptide | GPIIb/IIIa inhibition | It has proven superior to aspirin and is similar to ticagrelor in a mice model of ferric chloride-induced thrombosis with minimal effects on hemostasis [132]. |
SAR216471 (oral) | Small molecule | P2Y12 Inhibition | It has shown potent antithrombotic activity in a rat arterio-venous shunt model with no effect on hemostasia [133]. |
AZD1283 (oral) | Small molecule | P2Y12 Inhibition | It has shown potent antithrombotic efficacy in a rat model of ferric chloride-induced thrombosis and lowers bleeding risk compared to clopidogrel [134]. |
BMS-884775 (oral) | Small molecule | P2Y1 Inhibition | It has demonstrated, in a rabbit model of thrombosis, similar efficacy to prasugrel with less bleeding risk [135]. |
MRS2500 (intravenous) | Small molecule | P2Y1 Inhibition | It prevents carotid artery thrombosis in monkey models of electrolytic-mediated arterial thrombosis with a concomitant mild prolongation in bleeding time [136]. |
GLS-409 (intravenous) | Small molecule | P2Y1 and P2Y12 Inhibition | A It attenuates thrombosis in a canine model of unstable angina and reduces platelet aggregation to a comparable extent to cangrelor or the combination of cangrelor with a selective P2Y1 inhibitor [137]. |
Troα6 and Troα10 (intravenous) | Peptides | GPVI inhibition | It inhibits collagen-induced platelet aggregation and thrombus formation in a ferric chloride-induced thrombosis model without prolonging bleeding time [138]. |
BI1002494 (oral) | Peptide | GPVI inhibition | It reduces infarct sizes and improves neurological outcomes in a mouse model of cerebral ischemia without affecting hemostasis [139]. |
3.2. Targeting Platelet Activation
3.2.1. PAR1 and PAR4: Inhibition of Thrombin-Mediated Platelet Activation
3.2.2. Inhibition of Phosphoinositide 3-Kinase Beta (PI3Kβ)
3.2.3. Selatogrel: The New Antagonist of the P2Y12 Receptor
3.2.4. New P2Y1 Receptor Antagonists
3.3. Targeting Platelet Aggregation and Thrombus Propagation
3.3.1. New Inhibitor of GP IIb/IIIa
3.3.2. Inhibition of Protein Disulfide Isomerase (PDI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs) [Internet]. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 24 September 2022).
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.J. Demographic and Epidemiologic Drivers of Global Cardiovascular Mortality. N. Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results; Institute for Health Metrics and Evaluation (IHME): Seattle, WA, USA, 2019; Available online: http://ghdx.healthdata.org/gbd-results-tool (accessed on 15 September 2022).
- Vilahur, G.; Badimon, J.J.; Bugiardini, R.; Badimon, L. Perspectives: The burden of cardiovascular risk factors and coronary heart disease in Europe and worldwide. Eur. Heart J. Suppl. 2014, 16, A7–A11. [Google Scholar] [CrossRef] [Green Version]
- Badimon, L.; Storey, R.F.; Vilahur, G. Update on lipids, inflammation and atherothrombosis. Thromb. Haemost. 2011, 105, 34–42. [Google Scholar]
- Patrono, C.; Morais, J.; Baigent, C.; Collet, J.P.; Fitzgerald, D.; Halvorsen, S.; Rocca, B.; Siegbahn, A.; Storey, R.F.; Vilahur, G. Antiplatelet Agents for the Treatment and Prevention of Coronary Atherothrombosis. J. Am. Coll. Cardiol. 2017, 70, 1760–1776. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Vilahur, G. Platelets, arterial thrombosis and cerebral ischemia. Cerebrovasc. Dis. 2007, 24, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Padró, T.; Vilahur, G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care 2012, 1, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Parker, W.A.E.; Gorog, D.A.; Geisler, T.; Vilahur, G.; Sibbing, D.; Rocca, B.; Storey, R.F. Prevention of stroke in patients with chronic coronary syndromes or peripheral arterial disease. Eur. Heart J. Suppl. 2020, 22, M26–M34. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar]
- Díaz-Guzmán, J.; Freixa-Pamias, R.; García-Alegría, J.; Cabeza, A.-I.P.; Roldán-Rabadán, I.; Antolin-Fontes, B.; Rebollo, P.; Llorac, A.; Genís-Gironés, M.; Escobar-Cervantes, C. Epidemiology of atrial fibrillation-related ischemic stroke and its association with DOAC uptake in Spain: First national population-based study 2005 to 2018. Rev. Esp. Cardiol. 2022, 75, 496–505. [Google Scholar] [CrossRef]
- Cha, M.-J.; Choi, E.-K.; Han, K.-D.; Lee, S.-R.; Lim, W.-H.; Oh, S.; Lip, G.Y.H. Effectiveness and Safety of Non-Vitamin K Antagonist Oral Anticoagulants in Asian Patients with Atrial Fibrillation. Stroke 2017, 48, 3040–3048. [Google Scholar] [CrossRef]
- Dhakal, P.; Rayamajhi, S.; Verma, V.; Gundabolu, K.; Bhatt, V.R. Reversal of Anticoagulation and Management of Bleeding in Patients on Anticoagulants. Clin. Appl. Thromb. Hemost. 2017, 23, 410–415. [Google Scholar] [CrossRef]
- Desai, N.R.; Cornutt, D. Reversal agents for direct oral anticoagulants: Considerations for hospital physicians and intensivists. Hosp. Pract. 2019, 47, 113–122. [Google Scholar] [CrossRef]
- Jourdi, G.; Le Bonniec, B.; Gouin-Thibault, I. Strategies of neutralization of the direct oral anticoagulants effect: Review of the literature. Ann. Biol. Clin. 2019, 77, 67–78. [Google Scholar] [CrossRef]
- Ansell, J.; Laulicht, B.E.; Bakhru, S.H.; Burnett, A.; Jiang, X.; Chen, L.; Baker, C.; Villano, S.; Steiner, S. Ciraparantag, an anticoagulant reversal drug: Mechanism of action, pharmacokinetics, and reversal of anticoagulants. Blood 2021, 137, 115–125. [Google Scholar] [CrossRef]
- Ansell, J.E.; Bakhru, S.H.; Laulicht, B.E.; Steiner, S.S.; Grosso, M.; Brown, K.; Dishy, V.; Noveck, R.J.; Costin, J.C. Use of PER977 to reverse the anticoagulant effect of edoxaban. N. Engl. J. Med. 2014, 371, 2141–2142. [Google Scholar] [CrossRef]
- Sheffield, W.P.; Lambourne, M.D.; Eltringham-Smith, L.J.; Bhakta, V.; Arnold, D.M.; Crowther, M.A. γT-S195A thrombin reduces the anticoagulant effects of dabigatran in vitro and in vivo. J. Thromb. Haemost. 2014, 12, 1110–1115. [Google Scholar] [CrossRef]
- Jourdi, G.; Abdoul, J.; Siguret, V.; Decleves, X.; Frezza, E.; Pailleret, C.; Gouin-Thibault, I.; Gandrille, S.; Neveux, N.; Samama, C.M.; et al. Induced forms of α2-macroglobulin neutralize heparin and direct oral anticoagulant effects. Int. J. Biol. Macromol. 2021, 184, 209–217. [Google Scholar] [CrossRef]
- Chan, N.; Sobieraj-Teague, M.; Eikelboom, J.W. Direct oral anticoagulants: Evidence and unresolved issues. Lancet 2020, 396, 1767–1776. [Google Scholar] [CrossRef]
- Eikelboom, J.W.; Connolly, S.J.; Brueckmann, M.; Granger, C.B.; Kappetein, A.P.; Mack, M.J.; Blatchford, J.; Devenny, K.; Friedman, J.; Guiver, K.; et al. Dabigatran versus warfarin in patients with mechanical heart valves. N. Engl. J. Med. 2013, 369, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Pengo, V.; Denas, G.; Zoppellaro, G.; Jose, S.P.; Hoxha, A.; Ruffatti, A.; Andreoli, L.; Tincani, A.; Cenci, C.; Prisco, D.; et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood 2018, 132, 1365–1371. [Google Scholar] [CrossRef]
- Merlini, P.A.; Bauer, K.A.; Oltrona, L.; Ardissino, D.; Cattaneo, M.; Belli, C.; Mannucci, P.M.; Rosenberg, R.D. Persistent activation of coagulation mechanism in unstable angina and myocardial infarction. Circulation 1994, 90, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothberg, M.B.; Celestin, C.; Fiore, L.D.; Lawler, E.; Cook, J.R. Warfarin plus aspirin after myocardial infarction or the acute coronary syndrome: Meta-analysis with estimates of risk and benefit. Ann. Intern. Med. 2005, 143, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.L.; Braunwald, E.; Wiviott, S.D.; Bassand, J.P.; Bhatt, D.L.; Bode, C.; Burton, P.; Cohen, M.; Cook-Bruns, N.; Fox, K.A.; et al. Rivaroxaban in patients with a recent acute coronary syndrome. N. Engl. J. Med. 2012, 366, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallentin, L.; Wilcox, R.G.; Weaver, W.D.; Emanuelsson, H.; Goodvin, A.; Nyström, P.; Bylock, A.; ESTEEM Investigators. Oral ximelagatran for secondary prophylaxis after myocardial infarction: The ESTEEM randomised controlled trial. Lancet 2003, 362, 789–797. [Google Scholar] [CrossRef]
- Wheeler, A.P.; Gailani, D. The Intrinsic Pathway of Coagulation as a Target for Antithrombotic Therapy. Hematol. Oncol. Clin. N. Am. 2016, 30, 1099–1114. [Google Scholar] [CrossRef] [Green Version]
- Schmaier, A.H.; Stavrou, E.X. Factor XII—What’s important but not commonly thought about. Res. Pract. Thromb. Haemost. 2019, 3, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Heestermans, M.; Naudin, C.; Mailer, R.K.; Konrath, S.; Klaetschke, K.; Jämsä, A.; Frye, M.; Deppermann, C.; Pula, G.; Kuta, P.; et al. Identification of the factor XII contact activation site enables sensitive coagulation diagnostics. Nat. Commun. 2021, 12, 5596. [Google Scholar] [CrossRef]
- Srivastava, P.; Gailani, D. The rebirth of the contact pathway: A new therapeutic target. Curr. Opin. Hematol. 2020, 27, 311–319. [Google Scholar] [CrossRef]
- Kalinin, D.V. Factor XII(a) inhibitors: A review of the patent literature. Expert Opin. Ther. Pat. 2021, 31, 1155–1176. [Google Scholar] [CrossRef]
- Fredenburgh, J.C.; Weitz, J.I. New anticoagulants: Moving beyond the direct oral anticoagulants. J. Thromb. Haemost. 2021, 19, 20–29. [Google Scholar] [CrossRef]
- Craig, T.; Magerl, M.; Levy, D.S.; Reshef, A.; Lumry, W.R.; Martinez-Saguer, I.; Jacobs, J.S.; Yang, W.H.; Ritchie, B.; Aygören-Pürsün, E.; et al. Prophylactic use of an anti-activated factor XII monoclonal antibody, garadacimab, for patients with C1-esterase inhibitor-deficient hereditary angioedema: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2022, 399, 945–955. [Google Scholar] [CrossRef]
- McKenzie, A.; Roberts, A.; Malandkar, S.; Feuersenger, H.; Panousis, C.; Pawaskar, D. A phase I, first-in-human, randomized dose-escalation study of anti-activated factor XII monoclonal antibody garadacimab. Clin. Transl. Sci. 2022, 15, 626–637. [Google Scholar] [CrossRef]
- Larsson, M.; Rayzman, V.; Nolte, M.W.; Nickel, K.F.; Björkqvist, J.; Jämsä, A.; Hardy, M.P.; Fries, M.; Schmidbauer, S.; Hedenqvist, P.; et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci. Transl. Med. 2014, 6, 222ra17. [Google Scholar] [CrossRef] [Green Version]
- Worm, M.; Köhler, E.C.; Panda, R.; Long, A.; Butler, L.M.; Stavrou, E.X.; Nickel, K.F.; Fuchs, T.A.; Renné, T. The factor XIIa blocking antibody 3F7: A safe anticoagulant with anti-inflammatory activities. Ann. Transl. Med. 2015, 3, 247. [Google Scholar] [CrossRef]
- Matafonov, A.; Leung, P.Y.; Gailani, A.E.; Grach, S.L.; Puy, C.; Cheng, Q.; Sun, M.F.; McCarty, O.J.; Tucker, E.I.; Kataoka, H.; et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014, 123, 1739–1746. [Google Scholar] [CrossRef] [Green Version]
- Wallisch, M.; Lorentz, C.U.; Lakshmanan, H.H.S.; Johnson, J.; Carris, M.R.; Puy, C.; Gailani, D.; Hinds, M.T.; McCarty, O.J.T.; Gruber, A.; et al. Antibody inhibition of contact factor XII reduces platelet deposition in a model of extracorporeal membrane oxygenator perfusion in nonhuman primates. Res. Pract. Thromb. Haemost. 2020, 4, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Pireaux, V.; Tassignon, J.; Demoulin, S.; Derochette, S.; Borenstein, N.; Ente, A.; Fiette, L.; Douxfils, J.; Lancellotti, P.; Guyaux, M.; et al. Anticoagulation with an Inhibitor of Factors XIa and XIIa During Cardiopulmonary Bypass. J. Am. Coll. Cardiol. 2019, 74, 2178–2189. [Google Scholar] [CrossRef]
- Demoulin, S.; Godfroid, E.; Hermans, C. Dual inhibition of factor XIIa and factor XIa as a therapeutic approach for safe thromboprotection. J. Thromb. Haemost. 2021, 19, 323–329. [Google Scholar] [CrossRef]
- Decrem, Y.; Rath, G.; Blasioli, V.; Cauchie, P.; Robert, S.; Beaufays, J.; Frère, J.M.; Feron, O.; Dogné, J.M.; Dessy, C.; et al. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J. Exp. Med. 2009, 206, 2381–2395. [Google Scholar] [CrossRef] [Green Version]
- Yau, J.W.; Liao, P.; Fredenburgh, J.C.; Stafford, A.R.; Revenko, A.S.; Monia, B.P.; Weitz, J.I. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits. Blood 2014, 123, 2102–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Cooley, B.C.; Akinc, A.; Butler, J.; Borodovsky, A. Knockdown of liver-derived factor XII by GalNAc-siRNA ALN-F12 prevents thrombosis in mice without impacting hemostatic function. Thromb. Res. 2020, 196, 200–205. [Google Scholar] [CrossRef] [PubMed]
- May, F.; Krupka, J.; Fries, M.; Thielmann, I.; Pragst, I.; Weimer, T.; Panousis, C.; Nieswandt, B.; Stoll, G.; Dickneite, G.; et al. FXIIa inhibitor rHA-Infestin-4: Safe thromboprotection in experimental venous, arterial and foreign surface-induced thrombosis. Br. J. Haematol. 2016, 173, 769–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupka, J.; May, F.; Weimer, T.; Pragst, I.; Kleinschnitz, C.; Stoll, G.; Panousis, C.; Dickneite, G.; Nolte, M.W. The Coagulation Factor XIIa Inhibitor rHA-Infestin-4 Improves Outcome after Cerebral Ischemia/Reperfusion Injury in Rats. PLoS ONE 2016, 11, e0146783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopp, S.; Albert-Weissenberger, C.; Mencl, S.; Bieber, M.; Schuhmann, M.K.; Stetter, C.; Nieswandt, B.; Schmidt, P.M.; Monoranu, C.M.; Alafuzoff, I.; et al. Targeting coagulation factor XII as a novel therapeutic option in brain trauma. Ann. Neurol. 2016, 79, 970–982. [Google Scholar] [CrossRef]
- Salomon, O.; Steinberg, D.M.; Zucker, M.; Varon, D.; Zivelin, A.; Seligsohn, U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb. Haemost. 2011, 105, 269–273. [Google Scholar] [CrossRef]
- Tucker, E.I.; Marzec, U.M.; White, T.C.; Hurst, S.; Rugonyi, S.; McCarty, O.J.; Gailani, D.; Gruber, A.; Hanson, S.R. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 2009, 113, 936–944. [Google Scholar] [CrossRef] [Green Version]
- Salomon, O.; Steinberg, D.M.; Koren-Morag, N.; Tanne, D.; Seligsohn, U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood 2008, 111, 4113–4117. [Google Scholar] [CrossRef] [Green Version]
- Preis, M.; Hirsch, J.; Kotler, A.; Zoabi, A.; Stein, N.; Rennert, G.; Saliba, W. Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events. Blood 2017, 129, 1210–1215. [Google Scholar] [CrossRef] [Green Version]
- James, P.; Salomon, O.; Mikovic, D.; Peyvandi, F. Rare bleeding disorders—Bleeding assessment tools, laboratory aspects and phenotype and therapy of FXI deficiency. Haemophilia 2014, 20, 71–75. [Google Scholar] [CrossRef]
- Nourse, J.; Danckwardt, S. A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol. Ther. 2021, 218, 107676. [Google Scholar] [CrossRef]
- Weitz, J.I.; Bauersachs, R.; Becker, B.; Berkowitz, S.D.; Freitas, M.C.S.; Lassen, M.R.; Metzig, C.; Raskob, G.E. Effect of Osocimab in Preventing Venous Thromboembolism Among Patients Undergoing Knee Arthroplasty: The FOXTROT Randomized Clinical Trial. JAMA 2020, 323, 130–139. [Google Scholar] [CrossRef]
- Verhamme, P.; Yi, B.A.; Segers, A.; Salter, J.; Bloomfield, D.; Büller, H.R.; Raskob, G.E.; Weitz, J.I. Abelacimab for Prevention of Venous Thromboembolism. N. Engl. J. Med. 2021, 385, 609–617. [Google Scholar] [CrossRef]
- Lorentz, C.U.; Tucker, E.I.; Verbout, N.G.; Shatzel, J.J.; Olson, S.R.; Markway, B.D.; Wallisch, M.; Ralle, M.; Hinds, M.T.; McCarty, O.J.T.; et al. The contact activation inhibitor AB023 in heparin-free hemodialysis: Results of a randomized phase 2 clinical trial. Blood 2021, 138, 2173–2184. [Google Scholar] [CrossRef]
- Cheng, Q.; Tucker, E.I.; Pine, M.S.; Sisler, I.; Matafonov, A.; Sun, M.F.; White-Adams, T.C.; Smith, S.A.; Hanson, S.R.; McCarty, O.J.; et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 2010, 116, 3981–3989. [Google Scholar] [CrossRef] [Green Version]
- Van Montfoort, M.L.; Knaup, V.L.; Marquart, J.A.; Bakhtiari, K.; Castellino, F.J.; Hack, C.E.; Meijers, J.C. Two novel inhibitory anti-human factor XI antibodies prevent cessation of blood flow in a murine venous thrombosis model. Thromb. Haemost. 2013, 110, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Hayward, N.J.; Goldberg, D.I.; Morrel, E.M.; Friden, P.M.; Bokesch, P.M. Abstract 13747: Phase 1a/1b Study of EP-7041: A novel, potent, selective, small molecule FXIa inhibitor. Circulation 2017, 136, A13747. [Google Scholar]
- Weitz, J.I.; Strony, J.; Ageno, W.; Gailani, D.; Hylek, E.M.; Lassen, M.R.; Mahaffey, K.W.; Notani, R.S.; Roberts, R.; Segers, A.; et al. Milvexian for the Prevention of Venous Thromboembolism. N. Engl. J. Med. 2021, 385, 2161–2172. [Google Scholar] [CrossRef]
- Wong, P.C.; Crain, E.J.; Bozarth, J.M.; Wu, Y.; Dilger, A.K.; Wexler, R.R.; Ewing, W.R.; Gordon, D.; Luettgen, J.M. Milvexian, an orally bioavailable, small-molecule, reversible, direct inhibitor of factor XIa: In vitro studies and in vivo evaluation in experimental thrombosis in rabbits. J. Thromb. Haemost. 2022, 20, 399–408. [Google Scholar] [CrossRef]
- Bristol Myers Squibb—Late-Breaking Results from Phase 2 AXIOMATIC-SSP Study of Milvexian, an Investigational OralFactor XIa Inhibitor, Show Favorable Antithrombotic Profile in Combination with Dual Antiplatelet Therap. Available online: https://news.bms.com/news/details/2022/Late-Breaking-Results-From-Phase-2-AXIOMATIC-SSP-Study-of-Milvexian-an-Investigational-Oral-Factor-XIa-Inhibitor-Show-Favorable-Antithrombotic-Profile-in-Combination-With-Dual-Antiplatelet-Therapy/default.aspx (accessed on 29 September 2022).
- Piccini, J.P.; Caso, V.; Connolly, S.J.; Fox, K.A.A.; Oldgren, J.; Jones, W.S.; Gorog, D.A.; Durdil, V.; Viethen, T.; Neumann, C.; et al. Safety of the oral factor XIa inhibitor asundexian compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): A multicentre, randomised, double-blind, double-dummy, dose-finding phase 2 study. Lancet 2022, 399, 1383–1390. [Google Scholar] [CrossRef]
- Rao, S.V.; Kirsch, B.; Bhatt, D.L.; Budaj, A.; Coppolecchia, R.; Eikelboom, J.; James, S.K.; Jones, W.S.; Merkely, B.; Keller, L.; et al. A Multicenter, Phase 2, Randomized, Placebo-Controlled, Double-Blind, Parallel-Group, Dose-Finding Trial of the Oral Factor XIa Inhibitor Asundexian to Prevent Adverse Cardiovascular Outcomes Following Acute Myocardial Infarction. Circulation 2022, 146, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Shoamanesh, A.; Mundl, H.; Smith, E.E.; Masjuan, J.; Milanov, I.; Hirano, T.; Agafina, A.; Campbell, B.; Caso, V.; Mas, J.-L.; et al. Factor XIa inhibition with asundexian after acute non-cardioembolic ischaemic stroke (PACIFIC-Stroke): An international, randomised, double-blind, placebo-controlled, phase 2b trial. Lancet 2022, 400, 997–1007. [Google Scholar] [CrossRef]
- Perera, V.; Luettgen, J.M.; Wang, Z.; Frost, C.E.; Yones, C.; Russo, C.; Lee, J.; Zhao, Y.; LaCreta, F.P.; Ma, X.; et al. First-in-human study to assess the safety, pharmacokinetics and pharmacodynamics of BMS-962212, a direct, reversible, smallmolecule factor XIa inhibitor in non-Japaneseand Japanese healthy subjects. Br. J. Clin. Pharmacol. 2018, 84, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Beale, D.; Dennison, J.; Boyce, M.; Mazzo, F.; Honda, N.; Smith, P.; Bruce, M. ONO-7684 a novel oral FXIa inhibitor: Safety, tolerability, pharmacokinetics and pharmacodynamics in a first-in-human study. Br. J. Clin. Pharmacol. 2021, 87, 3177–3189. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.C.; Quan, M.L.; Watson, C.A.; Crain, E.J.; Harpel, M.R.; Rendina, A.R.; Luettgen, J.M.; Wexler, R.R.; Schumacher, W.A.; Seiffert, D.A. In vitro, antithrombotic and bleeding time studies of BMS-654457, a small-molecule, reversible and direct inhibitor of factor XIa. J. Thromb. Thrombolysis 2015, 40, 416–423. [Google Scholar] [CrossRef]
- Kouyama, S.; Ono, T.; Hagio, T.; Sakimoto, S.; Miyata, H.; Tanaka, M.; Koda, T.; Tanaka, K.; Yanagida, D.; Sakai, M.; et al. Discovery of ONO-5450598, a highly orally bioavailable small molecule factor XIa inhibitor: The pharmacokinetic and pharmacological profiles. Res. Pract. Thromb. Haemost. 2017, 1, 99. [Google Scholar]
- Wong, P.C.; Crain, E.J.; Watson, C.A.; Schumacher, W.A. A small-molecule factor XIa inhibitor produces antithrombotic efficacy with minimal bleeding time prolongation in rabbits. J. Thromb. Thrombolysis 2011, 32, 129–137. [Google Scholar] [CrossRef]
- Büller, H.R.; Bethune, C.; Bhanot, S.; Gailani, D.; Monia, B.P.; Raskob, G.E.; Segers, A.; Verhamme, P.; Weitz, J.I. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 2015, 372, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Smiley, D.A.; Becker, R.C. Factor IXa as a target for anticoagulation in thrombotic disorders and conditions. Drug Discov. Today 2014, 19, 1445–1453. [Google Scholar] [CrossRef]
- Vavalle, J.P.; Cohen, M.G. The REG1 anticoagulation system: A novel actively controlled factor IX inhibitor using RNA aptamer technology for treatment of acute coronary syndrome. Future Cardiol. 2012, 8, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Afosah, D.K.; Ofori, E.; Mottamal, M.; Al-Horani, R.A. Factor IX(a) inhibitors: An updated patent review (2003–present). Expert Opin. Ther. Pat. 2022, 32, 381–400. [Google Scholar] [CrossRef]
- Povsic, T.J.; Vavalle, J.P.; Aberle, L.H.; Kasprzak, J.D.; Cohen, M.G.; Mehran, R.; Bode, C.; Buller, C.E.; Montalescot, G.; Cornel, J.H.; et al. A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: Results of the RADAR trial. Eur. Heart J. 2013, 34, 2481–2489. [Google Scholar] [CrossRef] [Green Version]
- Lincoff, A.M.; Mehran, R.; Povsic, T.J.; Zelenkofske, S.L.; Huang, Z.; Armstrong, P.W.; Steg, P.G.; Bode, C.; Cohen, M.G.; Buller, C.; et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): A randomised clinical trial. Lancet 2016, 387, 349–356. [Google Scholar] [CrossRef]
- Staudacher, D.L.; Putz, V.; Heger, L.; Reinöhl, J.; Hortmann, M.; Zelenkofske, S.L.; Becker, R.C.; Rusconi, C.P.; Bode, C.; Ahrens, I. Direct factor IXa inhibition with the RNA-aptamer pegnivacogin reduces platelet reactivity in vitro and residual platelet aggregation in patients with acute coronary syndromes. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 520–526. [Google Scholar] [CrossRef]
- Chow, F.; Benincosa, L.J.; Sheth, S.B.; Wilson, D.; Davis, C.; Minthorn, E.A.; Jusko, W.J. Pharmacokinetic and pharmacodynamic modeling of humanized anti-factor IX antibody (SB 249417) in humans. Clin. Pharmacol. Ther. 2002, 71, 235–245. [Google Scholar] [CrossRef]
- Eriksson, B.I.; Dahl, O.E.; Lassen, M.R.; Ward, D.P.; Rothlein, R.; Davis, G.; Turpie, A.G.G.; Fixit Study Group. Partial factor IXa inhibition with TTP889 for prevention of venous thromboembolism: An exploratory study. J. Thromb. Haemost. 2008, 6, 457–463. [Google Scholar] [CrossRef]
- Badimon, L.; Vilahur, G.; Rocca, B.; Patrono, C. The Key Contribution of Platelet and Vascular Arachidonic Acid Metabolism to the Pathophysiology of Atherothrombosis. Cardiovasc. Res. 2021, 117, 2001–2015. Available online: https://pubmed.ncbi.nlm.nih.gov/33484117/ (accessed on 15 September 2022). [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevationThe Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar]
- Walker, J.; Cattaneo, M.; Badimon, L.; Agnelli, G.; Chan, A.T.; Lanas, A.; Rocca, B.; Rothwell, P.; Patrignani, P.; Langley, R.; et al. Highlights from the 2019 International Aspirin Foundation Scientific Conference, Rome, 28 June 2019: Benefits and risks of antithrombotic therapy for cardiovascular disease prevention. Ecancermedicalscience 2020, 14, 998. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.R.; Yusuf, S.; Peters, R.J.; Bertrand, M.E.; Lewis, B.S.; Natarajan, M.K.; Malmberg, K.; Rupprecht, H.; Zhao, F.; Chrolavicius, S.; et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: The PCI-CURE study. Lancet 2001, 358, 527–533. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 2009, 361, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Schrör, K.; Siller-Matula, J.M.; Huber, K. Pharmacokinetic basis of the antiplatelet action of prasugrel. Fundam. Clin. Pharmacol. 2012, 26, 39–46. [Google Scholar] [CrossRef]
- Li, J.; Vootukuri, S.; Shang, Y.; Negri, A.; Jiang, J.-K.; Nedelman, M.; Diacovo, T.G.; Filizola, M.; Thomas, C.J.; Coller, B.S. A novel αiIbβ3 antagonist for prehospital therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2321–2329. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Yin, J.; Si, L.Y. Efficacy and safety of early versus late glycoprotein IIb/IIIa inhibitors for PCI. Int. J. Cardiol. 2013, 162, 210–219. [Google Scholar] [CrossRef]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, E364–E467. [Google Scholar] [CrossRef]
- Amarenco, P.; Denison, H.; Evans, S.R.; Himmelmann, A.; James, S.; Knutsson, M.; Ladenvall, P.; Molina, C.A.; Wang, Y.; Johnston, S.C.; et al. Ticagrelor Added to Aspirin in Acute Ischemic Stroke or Transient Ischemic Attack in Prevention of Disabling Stroke: A Randomized Clinical Trial. JAMA Neurol. 2021, 78, 177–185. [Google Scholar] [CrossRef]
- Sahara, N.; Kuwashiro, T.; Okada, Y. Cerebral infarction and transient ischemic attack. Nihon Rinsho 2016, 74, 666–670. [Google Scholar]
- Cave, B.; Rawal, A.; Ardeshna, D.; Ibebuogu, U.N.; Sai-Sudhakar, C.B.; Khouzam, R.N. Targeting ticagrelor: A novel therapy for emergency reversal. Ann. Transl. Med. 2019, 7, 410. [Google Scholar] [CrossRef]
- Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2021, 46, 100733. [Google Scholar] [CrossRef]
- Zheng, B.; Li, J.; Jiang, J.; Xiang, D.; Chen, Y.; Yu, Z.; Zeng, H.; Ge, J.; Dai, X.; Liu, J.; et al. Safety and efficacy of a platelet glycoprotein Ib inhibitor for patients with non-ST segment elevation myocardial infarction: A phase Ib/IIa study. Pharmacotherapy 2021, 41, 828–836. [Google Scholar] [CrossRef]
- Li, T.-T.; Fan, M.-L.; Hou, S.-X.; Li, X.-Y.; Barry, D.M.; Jin, H.; Luo, S.-Y.; Kong, F.; Lau, L.-F.; Dai, X.-R.; et al. A novel snake venom-derived GPIb antagonist, anfibatide, protects mice from acute experimental ischaemic stroke and reperfusion injury. Br. J. Pharmacol. 2015, 172, 3904–3916. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Li, R.; Jia, H.-Y.; Ma, Z.; Li, X.Y.; Dai, X.-R.; Luo, S.-Y. Anfibatide Preserves Blood-Brain Barrier Integrity by Inhibiting TLR4/RhoA/ROCK Pathway After Cerebral Ischemia/Reperfusion Injury in Rat. J. Mol. Neurosci. 2020, 70, 71–83. [Google Scholar] [CrossRef]
- Sun, Y.; Langer, H.F. Platelets, Thromboinflammation and Neurovascular Disease. Front. Immunol. 2022, 13, 843404. [Google Scholar] [CrossRef]
- Bartunek, J.; Barbato, E.; Heyndrickx, G.; Vanderheyden, M.; Wijns, W.; Holz, J.B. Novel antiplatelet agents: ALX-0081, a Nanobody directed towards von Willebrand factor. J. Cardiovasc. Transl. Res. 2013, 6, 355–363. [Google Scholar] [CrossRef]
- Kovacevic, K.D.; Jilma, B.; Zhu, S.; Gilbert, J.C.; Winter, M.-P.; Toma, A.; Hengstenberg, C.; Lang, I.; Kubica, J.; Siller-Matula, J.M. von Willebrand Factor Predicts Mortality in ACS Patients Treated with Potent P2Y12 Antagonists and is Inhibited by Aptamer BT200 Ex Vivo. Thromb. Haemost. 2020, 120, 1282–1290. [Google Scholar] [CrossRef]
- Kovacevic, K.D.; Greisenegger, S.; Langer, A.; Gelbenegger, G.; Buchtele, N.; Pabinger, I.; Petroczi, K.; Zhu, S.; Gilbert, J.C.; Jilma, B. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci. Rep. 2021, 11, 3092. [Google Scholar] [CrossRef]
- Nayak, M.K.; Son, D.J.; Fuentes, E. Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int. J. Mol. Sci. 2022, 23, 9882. [Google Scholar]
- Vilahur, G.; Gutiérrez, M.; Arzanauskaite, M.; Mendieta, G.; Ben-Aicha, S.; Badimon, L. Intracellular platelet signalling as a target for drug development. Vasc. Pharmacol. 2018, 111, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Borst, O.; Gawaz, M. Glycoprotein VI—Novel target in antiplatelet medication. Pharmacol. Ther. 2021, 217, 107630. [Google Scholar] [CrossRef]
- Nurden, A.T. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev. 2019, 38, 100592. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.F.; Dunkley, S.; Andrews, R.K. Platelet glycoprotein VI-related clinical defects. Br. J. Haematol. 2007, 139, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Dalby, A.; Mezzano, D.; Rivera, J.; Watson, S.P.; Morgan, N.V. Introduction of an ancient founder glycoprotein VI (GP6) mutation into the Chilean population. Blood Adv. 2022, 6, 5866–5869. [Google Scholar] [CrossRef]
- Arai, M.; Yamamoto, N.; Moroi, M.; Akamatsu, N.; Fukutake, K.; Tanoue, K. Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br. J. Haematol. 1995, 89, 124–130. [Google Scholar] [CrossRef]
- Lockyer, S.; Okuyama, K.; Begum, S.; Le, S.; Sun, B.; Watanabe, T.; Matsumoto, Y.; Yoshitake, M.; Kambayashi, J.; Tandon, N.N. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary thromboembolism. Thromb. Res. 2006, 118, 371–380. [Google Scholar] [CrossRef]
- Ungerer, M.; Rosport, K.; Bültmann, A.; Piechatzek, R.; Uhland, K.; Schlieper, P.; Gawaz, M.; Münch, G. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation 2011, 123, 1891–1899. [Google Scholar] [CrossRef]
- Mayer, K.; Hein-Rothweiler, R.; Schüpke, S.; Janisch, M.; Bernlochner, I.; Ndrepepa, G.; Sibbing, D.; Gori, T.; Borst, O.; Holdenrieder, S.; et al. Efficacy and Safety of Revacept, a Novel Lesion-Directed Competitive Antagonist to Platelet Glycoprotein VI, in Patients Undergoing Elective Percutaneous Coronary Intervention for Stable Ischemic Heart Disease: The Randomized, Double-blind, Placebo-Controlled ISAR-PLASTER Phase 2 Trial. JAMA Cardiol. 2021, 6, 753–761. [Google Scholar]
- Lebozec, K.; Jandrot-Perrus, M.; Avenard, G.; Favre-Bulle, O.; Billiald, P. Design, development and characterization of ACT017, a humanized Fab that blocks platelet’s glycoprotein VI function without causing bleeding risks. MAbs 2017, 9, 945–958. [Google Scholar] [CrossRef] [Green Version]
- Renaud, L.; Lebozec, K.; Voors-Pette, C.; Dogterom, P.; Billiald, P.; Perrus, M.J.; Pletan, Y.; Machacek, M. Population Pharmacokinetic/Pharmacodynamic Modeling of Glenzocimab (ACT017) a Glycoprotein VI Inhibitor of Collagen-Induced Platelet Aggregation. Pharmacomet. J. Clin. Pharmacol. 2020, 2020, 1198–1208. [Google Scholar] [CrossRef]
- Voors-Pette, C.; Lebozec, K.; Dogterom, P.; Jullien, L.; Billiald, P.; Ferlan, P.; Renaud, L.; Favre-Bulle, O.; Avenard, G.; Machacek, M.; et al. Safety and Tolerability, Pharmacokinetics, and Pharmacodynamics of ACT017, an Antiplatelet GPVI (Glycoprotein VI) Fab. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 956–964. [Google Scholar] [CrossRef]
- Sakai, K.; Someya, T.; Harada, K.; Yagi, H.; Matsui, T.; Matsumoto, M. Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab. Haematologica 2020, 105, 2631–2638. [Google Scholar] [CrossRef] [Green Version]
- Markus, H.S.; McCollum, C.; Imray, C.; Goulder, M.A.; Gilbert, J.; King, A. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: A randomized trial. Stroke 2011, 42, 2149–2153. [Google Scholar] [CrossRef] [Green Version]
- Lapchak, P.A.; Doyan, S.; Fan, X.; Woods, C.M. Synergistic Effect of AJW200, a von Willebrand Factor Neutralizing Antibody with Low Dose (0.9 mg/mg) Thrombolytic Therapy Following Embolic Stroke in Rabbits. J. Neurol. Neurophysiol. 2013, 4, 10.4172/2155-9562.10001466. [Google Scholar] [CrossRef]
- Kageyama, S.; Yamamoto, H.; Nakazawa, H.; Matsushita, J.; Kouyama, T.; Gonsho, A.; Ikeda, Y.; Yoshimoto, R. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 187–192. [Google Scholar] [CrossRef]
- Wu, D.; Vanhoorelbeke, K.; Cauwenberghs, N.; Meiring, M.; Depraetere, H.; Kotze, H.F.; Deckmyn, H. Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood 2002, 99, 3623–3628. [Google Scholar] [CrossRef] [Green Version]
- Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knöbl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Callewaert, F.; et al. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2019, 380, 335–346. [Google Scholar] [CrossRef]
- Fontayne, A.; Meiring, M.; Lamprecht, S.; Roodt, J.; Demarsin, E.; Barbeaux, P.; Deckmyn, H. The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb. Haemost. 2008, 100, 670–677. [Google Scholar] [CrossRef]
- Yang, J.; Ji, S.; Dong, N.; Zhao, Y.; Ruan, C. Engineering and characterization of a chimeric anti-platelet glycoprotein Iba monoclonal antibody and preparation of its Fab fragment. Hybridoma 2010, 29, 125–132. [Google Scholar] [CrossRef]
- Schulte, V.; Reusch, H.P.; Pozgajová, M.; Varga-Szabó, D.; Gachet, C.; Nieswandt, B. Two-phase antithrombotic protection after anti-glycoprotein VI treatment in mice. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1640–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieswandt, B.; Schulte, V.; Bergmeier, W.; Mokhtari-Nejad, R.; Rackebrandt, K.; Cazenave, J.-P.; Ohlmann, P.; Gachet, C.; Zirngibl, H. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J. Exp. Med. 2001, 193, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Ko, Y.-C.; Hung, S.-C.; Lin, Y.-T.; Lee, J.-H.; Tsai, J.-Y.; Kung, P.-H.; Tsai, M.-C.; Chen, Y.-F.; Wu, C.-C. Selective Inhibition of PAR4 (Protease-Activated Receptor 4)-Mediated Platelet Activation by a Synthetic Nonanticoagulant Heparin Analog. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 694–703. [Google Scholar] [CrossRef] [Green Version]
- Kung, P.H.; Hsieh, P.W.; Lin, Y.T.; Lee, J.H.; Chen, I.H.; Wu, C.C. HPW-RX40 prevents human platelet activation by attenuating cell surface protein disulfide isomerases. Redox Biol. 2017, 13, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Khodier, C.; VerPlank, L.; Nag, P.P.; Pu, J.; Wurst, J.; Pilyugina, T.; Dockendorff, C.; Galinski, C.N.; Scalise, A.A.; Passam, F.; et al. Identification of ML359 as a small molecule inhibitor of protein disulfide isomerase. In Probe Reports from the NIH Molecular Libraries Program; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2010. [Google Scholar]
- Adili, R.; Tourdot, B.E.; Mast, K.; Yeung, J.; Freedman, J.C.; Green, A.; Luci, D.K.; Jadhav, A.; Simeonov, A.; Maloney, D.J.; et al. First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects on Hemostasis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1828–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Pinson, J.-A.; Mountford, S.J.; Orive, S.; Schoenwaelder, S.M.; Shackleford, D.; Powell, A.; Nelson, E.M.; Hamilton, J.R.; Jackson, S.P.; et al. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922). Eur. J. Med. Chem. 2016, 122, 339–351. [Google Scholar] [CrossRef]
- Schwarz, M.; Meade, G.; Stoll, P.; Ylanne, J.; Bassler, N.; Chen, Y.C.; Hagemeyer, C.E.; Ahrens, I.; Moran, N.; Kenny, D.; et al. Conformation-specific blockade of the integrin GPIIb/IIIa: A novel antiplatelet strategy that selectively targets activated platelets. Circ. Res. 2006, 99, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Pang, A.; Cheng, N.; Cui, Y.; Bai, Y.; Hong, Z.; Delaney, M.K.; Zhang, Y.; Chang, C.; Wang, C.; Liu, C.; et al. High-loading Gα 13-binding EXE peptide nanoparticles prevent thrombosis and protect mice from cardiac ischemia/reperfusion injury. Sci. Transl. Med. 2020, 12, eaaz7287. [Google Scholar] [CrossRef]
- Boldron, C.; Besse, A.; Bordes, M.F.; Tissandié, S.; Yvon, X.; Gau, B.; Badorc, A.; Rousseaux, T.; Barré, G.; Meneyrol, J.; et al. N-[6-(4-butanoyl-5-methyl-1H-pyrazol-1-yl)pyridazin-3-yl]-5-chloro-1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-1H -indole-3-carboxamide (SAR216471), a novel intravenous and oral, reversible, and directly acting P2Y12 antagonist. J. Med. Chem. 2014, 57, 7293–7316. [Google Scholar] [CrossRef]
- Kong, D.; Xue, T.; Guo, B.; Cheng, J.; Liu, S.; Wei, J.; Lu, Z.; Liu, H.; Gong, G.; Lan, T.; et al. Optimization of P2Y 12 Antagonist Ethyl 6-(4-((Benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283) Led to the Discovery of an Oral Antiplatelet Agent with Improved Druglike Properties. J. Med. Chem. 2019, 62, 3088–3106. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Lai, A.; Qiao, J.X.; Wang, T.C.; Hua, J.; Price, L.A.; Shen, H.; Chen, X.-Q.; Wong, P.; et al. Discovery of 4-aryl-7-hydroxyindoline based P2Y1 antagonists as novel antiplatelet agents. J. Med. Chem. 2014, 57, 6150–6164. [Google Scholar] [CrossRef]
- Wong, P.C.; Watson, C.; Crain, E.J. The P2Y1 receptor antagonist MRS2500 prevents carotid artery thrombosis in cynomolgus monkeys. J. Thromb. Thrombolysis 2016, 41, 514–521. [Google Scholar] [CrossRef]
- Gremmel, T.; Yanachkov, I.B.; Yanachkova, M.I.; Wright, G.E.; Wider, J.; Undyala, V.V.; Michelson, A.D.; Frelinger, A.L., III; Przyklenk, K. Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-H.; Chung, C.-H.; Tu, Y.-S.; Tsai, C.-C.; Hsu, C.-C.; Peng, H.-C.; Tseng, Y.J.; Huang, T.-F. Trowaglerix Venom Polypeptides as a Novel Antithrombotic Agent by Targeting Immunoglobulin-Like Domains of Glycoprotein VI in Platelet. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1307–1314. [Google Scholar] [CrossRef] [Green Version]
- van Eeuwijk, J.M.; Stegner, D.; Lamb, D.J.; Kraft, P.; Beck, S.; Thielmann, I.; Kiefer, F.; Walzog, B.; Stoll, G.; Nieswandt, B. The Novel Oral Syk Inhibitor, Bl1002494, Protects Mice from Arterial Thrombosis and Thromboinflammatory Brain Infarction. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Tullemans, B.M.E.; Nagy, M.; Sabrkhany, S.; Griffioen, A.W.; Oude Egbrink, M.G.A.; Aarts, M.; Heemskerk, J.W.M.; Kuijpers, M.J.E. Tyrosine Kinase Inhibitor Pazopanib Inhibits Platelet Procoagulant Activity in Renal Cell Carcinoma Patients. Front. Cardiovasc. Med. 2018, 5, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigg, R.A.; Aslan, J.E.; Healy, L.D.; Wallisch, M.; Thierheimer, M.L.; Loren, C.P.; Pang, J.; Hinds, M.T.; Gruber, A.; McCarty, O.J. Oral administration of Bruton’s tyrosine kinase inhibitors impairs GPVI-mediated platelet function. Am. J. Physiol. Cell Physiol. 2016, 310, C373–C380. [Google Scholar] [CrossRef] [Green Version]
- Perrella, G.; Montague, S.J.; Brown, H.C.; Garcia Quintanilla, L.; Slater, A.; Stegner, D.; Thomas, M.; Heemskerk, J.W.M.; Watson, S.P. Role of Tyrosine Kinase Syk in Thrombus Stabilisation at High Shear. Int. J. Mol. Sci. 2022, 23, 493. [Google Scholar] [CrossRef]
- Harbi, M.H.; Smith, C.W.; Nicolson, P.L.R.; Watson, S.P.; Thomas, M.R. Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases. Platelets 2021, 32, 29–41. [Google Scholar] [CrossRef]
- Nicolson, P.L.R.; Nock, S.H.; Hinds, J.; Garcia-Quintanilla, L.; Smith, C.W.; Campos, J.; Brill, A.; Pike, J.A.; Khan, A.O.; Poulter, N.S.; et al. Low-dose Btk inhibitors selectively block platelet activation by CLEC-2. Haematologica 2021, 106, 208–219. [Google Scholar] [CrossRef] [Green Version]
- De Candia, E. Mechanisms of platelet activation by thrombin: A short history. Thromb. Res. 2012, 129, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Bohula, E.A.; Aylward, P.E.; Bonaca, M.P.; Corbalan, R.L.; Kiss, R.G.; Murphy, S.A.; Scirica, B.M.; White, H.; Braunwald, E.; Morrow, D.A. Efficacy and Safety of Vorapaxar with and without a Thienopyridine for Secondary Prevention in Patients with Previous Myocardial Infarction and No History of Stroke or Transient Ischemic Attack: Results from TRA 2°P-TIMI 50. Circulation 2015, 132, 1871–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, W.S.; Tricoci, P.; Huang, Z.; Moliterno, D.J.; Harrington, R.A.; Sinnaeve, P.R.; Strony, J.; Van de Werf, F.; White, H.D.; Held, C.; et al. Vorapaxar in patients with peripheral artery disease and acute coronary syndrome: Insights from Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER). Am. Heart J. 2014, 168, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Kosova, E.C.; Bonaca, M.P.; Dellborg, M.; He, P.; Morais, J.; Ophuis, T.O.; Scirica, B.M.; Tendera, M.; Theroux, P.; Braunwald, E.; et al. Vorapaxar in patients with coronary artery bypass grafting: Findings from the TRA 2°P-TIMI 50 trial. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Cavender, M.A.; Scirica, B.M.; Bonaca, M.P.; Angiolillo, D.J.; Dalby, A.J.; Dellborg, M.; Morais, J.; Murphy, S.A.; Ophuis, T.O.; Tendera, M.; et al. Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: Findings from the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-TIMI 50 trial. Circulation 2015, 131, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Franchi, F.; Rollini, F.; Faz, G.; Rivas, J.R.; Rivas, A.; Agarwal, M.; Briceno, M.; Wali, M.; Nawaz, A.; Silva, G.; et al. Pharmacodynamic Effects of Vorapaxar in Prior Myocardial Infarction Patients Treated with Potent Oral P2Y 12 Receptor Inhibitors with and Without Aspirin: Results of the VORA-PRATIC Study. J. Am. Heart Assoc. 2020, 9, e015865. [Google Scholar] [CrossRef]
- Gurbel, P.A.; Bliden, K.P.; Turner, S.E.; Tantry, U.S.; Gesheff, M.G.; Barr, T.P.; Covic, L.; Kuliopulos, A. Cell-Penetrating Pepducin Therapy Targeting PAR1 in Subjects with Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Kuliopulos, A.; Gurbel, P.A.; Rade, J.J.; Kimmelstiel, C.D.; Turner, S.E.; Bliden, K.P.; Fletcher, E.K.; Cox, D.H.; Covic, L.; TRIP-PCI Investigators. PAR1 (Protease-Activated Receptor 1) Pepducin Therapy Targeting Myocardial Necrosis in Coronary Artery Disease and Acute Coronary Syndrome Patients Undergoing Cardiac Catheterization: A Randomized, Placebo-Controlled, Phase 2 Study. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2990–3003. [Google Scholar] [CrossRef]
- Meah, M.N.; Raftis, J.; Wilson, S.J.; Perera, V.; Garonzik, S.M.; Murthy, B.; Everlof, J.G.; Aronson, R.; Luettgen, J.; Newby, D.E. Antithrombotic Effects of Combined PAR (Protease-Activated Receptor)-4 Antagonism and Factor Xa Inhibition. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2678–2685. [Google Scholar] [CrossRef]
- Merali, S.; Wang, Z.; Frost, C.; Callejo, M.; Hedrick, M.; Hui, L.; Shropshire, S.M.; Xu, K.; Bouvier, M.; DeSouza, M.M.; et al. New oral protease-activated receptor 4 antagonist BMS-986120: Tolerability, pharmacokinetics, pharmacodynamics, and gene variant effects in humans. Platelets 2022, 33, 969–978. [Google Scholar] [CrossRef]
- Wong, P.C.; Seiffert, D.; Bird, J.E.; Watson, C.A.; Bostwick, J.S.; Giancarli, M.; Allegretto, N.; Hua, J.; Harden, D.; Guay, J.; et al. Blockade of protease-activated receptor- 4(PAR4) provides robust antithrombotic activity with low bleeding. Sci. Transl. Med. 2017, 9, eaaf5294. [Google Scholar] [CrossRef]
- Wilson, S.J.; Ismat, F.A.; Wang, Z.; Cerra, M.; Narayan, H.; Raftis, J.; Gray, T.J.; Connell, S.; Garonzik, S.; Ma, X.; et al. PAR4 (Protease-Activated Receptor 4) Antagonism With BMS-986120 Inhibits Human Ex Vivo Thrombus Formation. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Nylander, S.; Kull, B.; Björkman, J.A.; Ulvinge, J.C.; Oakes, N.; Emanuelsson, B.M.; Andersson, M.; Skärby, T.; Inghardt, T.; Fjellström, O.; et al. Human target validation of phosphoinositide 3-kinase (PI3K)β: Effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J. Thromb. Haemost. 2012, 10, 2127–2136. [Google Scholar] [CrossRef]
- Nylander, S.; Wågberg, F.; Andersson, M.; Skärby, T.; Gustafsson, D. Exploration of efficacy and bleeding with combined phosphoinositide 3-kinase β inhibition and aspirin in man. J. Thromb. Haemost. 2015, 13, 1494–1502. [Google Scholar] [CrossRef]
- Milluzzo, R.P.; Franchina, G.A.; Capodanno, D.; Angiolillo, D.J. Selatogrel, a novel P2Y 12 inhibitor: A review of the pharmacology and clinical development. Expert Opin. Investig. Drugs 2020, 29, 537–546. [Google Scholar] [CrossRef]
- Crescence, L.; Darbousset, R.; Caroff, E.; Hubler, F.; Riederer, M.A.; Panicot-Dubois, L.; Dubois, C. Selatogrel, a reversible P2Y12 receptor antagonist, has reduced off-target interference with haemostatic factors in a mouse thrombosis model. Thromb. Res. 2021, 200, 133–140. [Google Scholar] [CrossRef]
- Hardy, A.R.; Jones, M.L.; Mundell, S.J.; Poole, A.W. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 2004, 104, 1745–1752. [Google Scholar] [CrossRef]
- Tscharre, M.; Michelson, A.D.; Gremmel, T. Novel Antiplatelet Agents in Cardiovascular Disease. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 191–200. [Google Scholar] [CrossRef]
- Kereiakes, D.J.; Henry, T.D.; DeMaria, A.N.; Bentur, O.; Carlson, M.; Seng Yue, C.; Martin, L.H.; Midkiff, J.; Mueller, M.; Meek, T.; et al. First Human Use of RUC-4: A Nonactivating Second-Generation Small-Molecule Platelet Glycoprotein IIb/IIIa (Integrin αIIbβ3) Inhibitor Designed for Subcutaneous Point-of-Care Treatment of ST-Segment-Elevation Myocardial Infarction. J. Am. Heart Assoc. 2020, 9, e016552. [Google Scholar] [CrossRef]
- Bor, W.L.; Zheng, K.L.; Tavenier, A.H.; Gibson, C.M.; Granger, C.B.; Bentur, O.; Lobatto, R.; Postma, S.; Coller, B.S.; van‘t Hof, A.W.J.; et al. Pharmacokinetics, pharmacodynamics, and tolerability of subcutaneous administration of a novel glycoprotein IIb/IIIa inhibitor, RUC-4, in patients with ST-segment elevation myocardial infarction. EuroIntervention 2021, 17, 401–410. [Google Scholar] [CrossRef]
- Kim, K.; Hahm, E.; Li, J.; Holbrook, L.-M.; Sasikumar, P.; Stanley, R.G.; Ushio-Fukai, M.; Gibbins, J.; Cho, J. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood 2013, 122, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Flaumenhaft, R.; Furie, B.; Zwicker, J.I. Therapeutic implications of protein disulfide isomerase inhibition in thrombotic disease. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alenazy, F.O.; Thomas, M.R. Novel antiplatelet targets in the treatment of acute coronary syndromes. Platelets 2021, 32, 15–28. [Google Scholar] [CrossRef]
- Zwicker, J.I.; Schlechter, B.L.; Stopa, J.D.; Liebman, H.A.; Aggarwal, A.; Puligandla, M.; Caughey, T.; Bauer, K.A.; Kuemmerle, N.; Wong, E.; et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 2019, 4, e125851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopa, J.D.; Neuberg, D.; Puligandla, M.; Furie, B.; Flaumenhaft, R.; Zwicker, J.I. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI Insight 2017, 2, e89373. [Google Scholar] [CrossRef] [Green Version]
- Stainer, A.R.; Sasikumar, P.; Bye, A.P.; Unsworth, A.J.; Holbrook, L.M.; Tindall, M.; Lovegrove, J.A.; Gibbins, J.M. The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects. TH Open 2019, 3, e244–e258. [Google Scholar] [CrossRef]
- Ibanez, B.; Vilahur, G.; Badimon, J.J. Plaque progression and regression in atherothrombosis. J. Thromb. Haemost. 2007, 5, 292–299. [Google Scholar] [CrossRef]
- Badimon, L.; Bugiardini, R.; Cenko, E.; Cubedo, J.; Dorobantu, M.; Duncker, D.J.; Estruch, R.; Milicic, D.; Tousoulis, D.; Vasiljevic, Z.; et al. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: Obesity and heart disease. Eur. Heart J. 2017, 38, 1951–1958. [Google Scholar] [CrossRef]
- Choi, B.; Vilahur, G.; Yadegar, D.; Viles-Gonzalez, J.; Badimon, J. The role of high-density lipoprotein cholesterol in the prevention and possible treatment of cardiovascular diseases. Curr. Mol. Med. 2006, 6, 571–587. [Google Scholar] [CrossRef]
In Clinical Use [13,14,15] | |
---|---|
Agent | Target |
Vitamin K | Warfarin, acenocumarol |
Idarucimab | Dabigatran |
Andexanet alfa | Apixaban, rivaroxavan, edoxaban |
Protamine sulfate | Unfractionated heparin LMWH (partially) |
Prothrombin complex concentrate, fresh frozen plasma | Non-specific prohemostatic agents |
Preclinical/Clinical Development | |
Agent | Target |
Aripazine (ciraparantag/PER977) (NCT04593784) [16,17] | LMWH, fondaparinux, FXa inhibitors, dabigatran |
γ-thrombine S195A [18] | Dabigatran |
GDFXa-α2M complex [19] | Rivaroxaban, apixaban, dabigatran and heparins |
Factor XIIa Inhibitors | Type | Phase | Studies Conducted So Far |
---|---|---|---|
Garadacimab (subcutaneous) | Antibody | III | Tested in patients with C1-esterase inhibitor-deficient hereditary angioedema showing a significant reduction of angioedema attacks. A dose-dependent increase in aPTT with no change in prothrombin time was also observed without increasing of bleeding events [34,35]. Currently ongoing phase III trials (NCT04656418, NCT04739059). |
3F7 (intravenous) | Antibody | Preclinical | Thromboprotection in ECMO without impairing the hemostatic capacity or increasing bleeding [36,37]. |
9A2 and 15H8 (intravenous) | Antibody | I | Both antibodies have been shown to protect against ferric chloride-induced arterial thrombosis. 15H8 prolonged the aPTT time in non-human primates and humans and reduced fibrin formation in collagen-coated vascular grafts inserted into arteriovenous shunts in non-human primates [38]. |
5C12 (intravenous) | Antibody | Preclinical | Thromboprotection in ECMO in non-human primates [39]. |
Ir-CPI (intravenous) | Kunitz-type serine protease inhibitor | Preclinical | It has demonstrated antithrombotic activity in: (1) venous and arterial in vitro thrombosis models; (2) arteriovenous shunt rabbit models; and (3) extracorporeal circuit [40,41]. It can interact with factors XIIa, XIa, and Kallikrein [42]. |
FXII-ASO (subcutaneous) | Antisense oligonucleotide | Preclinical | Prolonged the time to catheter thrombotic occlusion (implanted in jugular vein) compared to control in a rabbit model of thrombosis [43]. |
ALN-F12 (subcutaneous) | Interfering RNA | Preclinical | Dose-dependently reduced platelet and fibrin deposition in mice models of venous and arterial thrombosis models [44]. |
rHA-Infestin-4 (intravenous) | Kazal-type serine protease inhibitor | Preclinical | Protects against arterial and venous thrombosis in mouse and rabbit models. Reduces infarct size and brain edema formation leading to better neurological scores and survival in a mouse model of stroke [45,46,47]. |
Factor XIa Inhibitors | Type | Phase | Studies Conducted So Far |
---|---|---|---|
Osocimab (subcutaneous) | Antibody | II | Effective in thromboprophylaxis in patients undergoing knee arthroplasty [54]. |
Abelacimab (intravenous) | Antibody | III | Effective in preventing venous thromboembolism and is associated with a low bleeding risk [55]. There are ongoing phase III trials in cancer patients to compare the effect of abelacimab relative to apixaban (NCT05171049) or dalteparin (NCT05171075) in VTE recurrence and bleeding. |
AB023 (Xisomab) (intravenous) | Antibody | II | Effective and secure in patients with end-stage renal disease [56]. Ongoing phase II trial to test xisomab for the prevention of catheter-associated thrombosis in patients with cancer receiving chemotherapy (NCT04465760). |
14E11 (subcutaneous) | Antibody | Preclinical | In mice, 14E11 has been shown to prevent arterial occlusion induced by ferric chloride to a similar degree as that accomplished by total FXI deficiency. In baboons, it has been shown to reduce platelet-rich thrombus growth in collagen-coated grafts inserted into arteriovenous shunts [57]. |
FXI-175, FXI-203 (intravenous) | Antibody | Preclinical | Ferric chloride-induced thrombosis was reduced in mice treated with FXI-175 and FX-203 compared to placebo-treated mice. Neither antibody caused severe blood loss assessed through the tail bleeding assay [58]. |
Frunexian EP-7041a (intravenous) | Small molecule C19H27ClN4O4 | II | EP-7041 was safe and well tolerated in healthy volunteers with rapid onset and offset of action and predictable dose-related increases of aPTT [59]. In addition, there is an ongoing trial in thromboprophylaxis in COVID-19 patients (NCT05040776). |
Milvexian (BMS-986177) (oral) | Small molecule C28H23Cl2F2N9O2 | II | Prevention of venous thromboembolism with low risk of bleeding (phase II) [60]. In rabbits, it has demonstrated effective antithrombotic potential with limited impact on hemostasis, even when combined with aspirin [61]. A recent phase II trial (AXIOMATIC-SSP) has shown it is safe in secondary stroke prevention [62]. |
Asundexian (oral) | Small molecule C26H21ClF4N6O4 | II b | In patients with AF, it has shown low rates of bleeding as compared with apixaban [63]. It has also shown no increase in bleeding events in MI [64] and stroke [65] patients. New phase III clinical trials have been announced to test its efficacy in patients with AF (OCEAN-AF) and in secondary prevention of stroke (OCEAN-STROKE). |
BMS-962212 (intravenous) | Small molecule C32H28ClFN8O5 | I | Tested in healthy subjects showing good tolerance, no signs of bleeding and significant changes in aPTT and FXI clotting activity [66]. |
ONO-7684 (oral) | Small molecule C23H16ClF2N9O | I | It strongly inhibited factor XI coagulation activity and increased activated partial thromboplastin time [67]. |
BMS-654457 (intravenous) | Small molecule C36H37N5O4) | Preclinical | It has been shown in vitro to increase aPTT without altering prothrombin time or ADP-, arachidonic acid-, or collagen-induced platelet aggregation. In rabbit models, it has shown equivalent antithrombotic effect to that achieved by standard doses of reference anticoagulants (warfarin and dabigatran) and antiplatelet agents (clopidogrel and prasugrel) in addition to reducing bleeding time [68]. |
ONO-5450598 (oral) | Small molecule | Preclinical | It provided a significant reduction of thrombus formation as compared to rivaroxaban in a non-human primate arteriovenous shunt model of thrombosis [69]. |
BMS-262084 (intravenous) | Small molecule C18H31N7O5 | Preclinical | Evaluated in rabbits, where it displayed antithrombotic potential in an arteriovenous-shunt model of thrombosis, and in an electrolytic-mediated carotid arterial thrombosis [70]. |
FXI-ASO (ISIS416858) (subcutaneous) | Antisense oligonucleotide | II | Effective in thromboprophylaxis in patients undergoing knee arthroplasty [71]. |
Factor IXa Inhibitors | Type | Phase | Studies Conducted So Far |
---|---|---|---|
Pegnivacogin (intravenous) | RNA aptamer | II |
|
SB249417 (intravenous) | Antibody | I | It has demonstrated prolongation of coagulation measures in humans [78]. |
TTP889 (oral) | Small molecule | II | It has not been shown to be effective for the extended prevention of venous thromboembolism [79]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barriuso, I.; Worner, F.; Vilahur, G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. J. Cardiovasc. Dev. Dis. 2022, 9, 397. https://doi.org/10.3390/jcdd9110397
Barriuso I, Worner F, Vilahur G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. Journal of Cardiovascular Development and Disease. 2022; 9(11):397. https://doi.org/10.3390/jcdd9110397
Chicago/Turabian StyleBarriuso, Ignacio, Fernando Worner, and Gemma Vilahur. 2022. "Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment" Journal of Cardiovascular Development and Disease 9, no. 11: 397. https://doi.org/10.3390/jcdd9110397
APA StyleBarriuso, I., Worner, F., & Vilahur, G. (2022). Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. Journal of Cardiovascular Development and Disease, 9(11), 397. https://doi.org/10.3390/jcdd9110397