Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy—Identification of Differences and Predicting Demise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Selection
2.2. miRNA Extraction
2.3. miRNA Array
2.4. Array Analysis
2.5. Degradation Experiment
2.6. miRNA RT-PCR and Analysis
2.7. Association between Clinical Characteristics and miRNA Levels
2.8. Pathway Analysis
3. Results
3.1. Subject Characteristics
3.2. Array Results: miRNAs Differentiate TTTS and Singleton Controls
3.3. Degradation Results
3.4. RT-PCR Results
3.5. Clinical Association with Specific miRNAs
3.6. Network Analysis
3.7. Pathway Analysis
4. Discussion
4.1. Principal Results
4.2. Clinical Implications
4.3. Research Implications
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewi, L.; Jani, J.; Blickstein, I.; Huber, A.; Gucciardo, L.; Van Mieghem, T.; Done, E.; Boes, A.S.; Hecher, K.; Gratacos, E.; et al. The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: A prospective cohort study. Am. J. Obstet. Gynecol. 2008, 199, 514.e1–514.e8. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, N.; Galan, H.L. Twin-twin transfusion and laser therapy. Curr. Opin. Obstet. Gynecol. 2016, 28, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Bamberg, C.; Hecher, K. Update on twin-to-twin transfusion syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 58, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Wohlmuth, C.; Gardiner, H.M.; Diehl, W.; Hecher, K. Fetal cardiovascular hemodynamics in twin-twin transfusion syndrome. Acta Obstet. Gynecol. Scand. 2016, 95, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Harkness, U.F.; Crombleholme, T.M. Twin-twin transfusion syndrome: Where do we go from here? Semin. Perinatol. 2005, 29, 296–304. [Google Scholar] [CrossRef]
- Michelfelder, E.; Gottliebson, W.; Border, W.; Kinsel, M.; Polzin, W.; Livingston, J.; Khoury, P.; Crombleholme, T. Early manifestations and spectrum of recipient twin cardiomyopathy in twin-twin transfusion syndrome: Relation to Quintero stage. Ultrasound Obstet. Gynecol. 2007, 30, 965–971. [Google Scholar] [CrossRef]
- Habli, M.; Cnota, J.; Michelfelder, E.; Salisbury, S.; Schnell, B.; Polzin, W.; Lim, F.Y.; Crombleholme, T.M. The relationship between amniotic fluid levels of brain-type natriuretic peptide and recipient cardiomyopathy in twin-twin transfusion syndrome. Am. J. Obstet. Gynecol. 2010, 203, 404.e1–404.e7. [Google Scholar] [CrossRef]
- Van Mieghem, T.; Done, E.; Gucciardo, L.; Klaritsch, P.; Allegaert, K.; Van Bree, R.; Lewi, L.; Deprest, J. Amniotic fluid markers of fetal cardiac dysfunction in twin-to-twin transfusion syndrome. Am. J. Obstet. Gynecol. 2010, 202, 48.e1–48.e7. [Google Scholar] [CrossRef]
- Hui, L.; Wick, H.C.; Moise, K.J., Jr.; Johnson, A.; Luks, F.; Haeri, S.; Johnson, K.L.; Bianchi, D.W. Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome. Prenat. Diagn. 2013, 33, 873–883. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Higashijima, A.; Murakami, Y.; Fuchi, N.; Tsukamoto, O.; Abe, S.; Hasegawa, Y.; Miura, S.; Masuzaki, H. Circulating Levels of Pregnancy-Associated, Placenta-Specific microRNAs in Pregnant Women With Placental Abruption. Reprod. Sci. 2017, 24, 148–155. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.D.; Karimpour-Fard, A.; Peterson, V.; Auerbach, S.R.; Stenmark, K.R.; Stauffer, B.L.; Sucharov, C.C. Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. J. Heart Lung Transplant. 2015, 34, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, J. Circulating MicroRNAs: Potential and Emerging Biomarkers for Diagnosis of Cardiovascular and Cerebrovascular Diseases. BioMed Res. Int. 2015, 2015, 730535. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, B.L.; Russell, G.; Nunley, K.; Miyamoto, S.D.; Sucharov, C.C. miRNA expression in pediatric failing human heart. J. Mol. Cell. Cardiol. 2013, 57, 43–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Li, J.; Liu, H.; Yin, J.; Zhang, M.; Yu, Z.; Miao, H. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children. J. Clin. Lab. Anal. 2019, 33, e22998. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Higgins, H.; Guo, J.; Harrison, K.; Schultz, E.N.; Hales, B.J.; Moses, E.K.; Goldblatt, J.; Pachter, N.; Zhang, G. Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. J. Transl. Med. 2018, 16, 42. [Google Scholar] [CrossRef]
- Jiao, M.; You, H.Z.; Yang, X.Y.; Yuan, H.; Li, Y.L.; Liu, W.X.; Jin, M.; Du, J. Circulating microRNA signature for the diagnosis of childhood dilated cardiomyopathy. Sci. Rep. 2018, 8, 724. [Google Scholar] [CrossRef] [Green Version]
- Port, J.D.; Sucharov, C. Role of microRNAs in cardiovascular disease: Therapeutic challenges and potentials. J. Cardiovasc. Pharmacol. 2010, 56, 444–453. [Google Scholar] [CrossRef]
- Gao, F.; Jiang, X.; Li, Q.; Fan, K. Association of miR-182 expression in amniotic fluid with intrauterine infection and brain injury in premature infants. Exp. Ther. Med. 2018, 16, 1905–1909. [Google Scholar] [CrossRef]
- Mariner, P.D.; Korst, A.; Karimpour-Fard, A.; Stauffer, B.L.; Miyamoto, S.D.; Sucharov, C.C. Improved Detection of Circulating miRNAs in Serum and Plasma Following Rapid Heat/Freeze Cycling. Microrna 2018, 7, 138–147. [Google Scholar] [CrossRef]
- Willner, E.C.; Galan, H.L.; Cuneo, B.F.; Hoffman, H.A.; Neltner, B.; Schuchardt, E.L.; Karimpour-Fard, A.; Miyamoto, S.D.; Sucharov, C.C. Amniotic fluid microRNA profiles in twin-twin transfusion syndrome with and without severe recipient cardiomyopathy. Am. J. Obstet. Gynecol. 2021, 225, 439.e1–439.e10. [Google Scholar] [CrossRef] [PubMed]
- Jone, P.N.; Korst, A.; Karimpour-Fard, A.; Thomas, T.; Dominguez, S.R.; Heizer, H.; Anderson, M.S.; Glode, M.P.; Sucharov, C.C.; Miyamoto, S.D. Circulating microRNAs differentiate Kawasaki Disease from infectious febrile illnesses in childhood. J. Mol. Cell. Cardiol. 2020, 146, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kane, N.M.; Howard, L.; Descamps, B.; Meloni, M.; McClure, J.; Lu, R.; McCahill, A.; Breen, C.; Mackenzie, R.M.; Delles, C.; et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem. Cells 2012, 30, 643–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodosthenous, R.S.; Burris, H.H.; Sanders, A.P.; Just, A.C.; Dereix, A.E.; Svensson, K.; Solano, M.; Téllez-Rojo, M.M.; Wright, R.O.; Baccarelli, A.A. Second trimester extracellular microRNAs in maternal blood and fetal growth: An exploratory study. Epigenetics 2017, 12, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, M.; Cheng, Y.K.Y.; Wu, L.L.; Chaemsaithong, P.; Leung, M.B.W.; Chim, S.S.C.; Sahota, D.S.; Li, W.; Poon, L.C.Y.; Wang, C.C.; et al. Placental microRNA dataset of monochorionic twin pregnancies with and without selective fetal growth restriction. Data Brief 2020, 30, 105403. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, L.; Han, N.; Yin, G. miR-375-3p contributes to hypoxia-induced apoptosis by targeting forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) in rat cardiomyocyte h9c2 cells. Biotechnol. Lett. 2021, 43, 353–367. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Gu, Y.; Becker, V.; Zhao, Y.; Menger, M.D.; Laschke, M.W. miR-370 inhibits the angiogenic activity of endothelial cells by targeting smoothened (SMO) and bone morphogenetic protein (BMP)-2. FASEB J. 2019, 33, 7213–7224. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, L.; Mao, H.; Xu, F.; Sun, B.; Lian, X.; Wang, J.; Kong, F.; Wang, L.; Chen, Y. miR-370 inhibits the oxidative stress and apoptosis of cardiac myocytes induced by hydrogen peroxide by targeting FOXO1. Exp. Ther. Med. 2019, 18, 3025–3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, D.; Sha, Y.; Lu, J.M.; Du, X.J. MiR-370 inhibits vascular inflammation and oxidative stress triggered by oxidized low-density lipoprotein through targeting TLR4. J. Cell. Biochem. 2018, 119, 6231–6237. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wu, J.; Chen, P.; Wang, J.; Deng, Y.; Zhu, G.; Xian, J.; Huang, L.; Ouyang, W. MicroRNA-375-3p inhibitor suppresses angiotensin II-induced cardiomyocyte hypertrophy by promoting lactate dehydrogenase B expression. J. Cell. Physiol. 2019, 234, 14198–14209. [Google Scholar] [CrossRef]
- Cui, X.S.; Zhang, D.X.; Ko, Y.G.; Kim, N.H. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos. Biochem. Biophys. Res. Commun. 2009, 379, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Sekita, Y.; Wagatsuma, H.; Nakamura, K.; Ono, R.; Kagami, M.; Wakisaka, N.; Hino, T.; Suzuki-Migishima, R.; Kohda, T.; Ogura, A.; et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat. Genet. 2008, 40, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; You, S.; Cao, Y.; Li, C.; Wei, J.; Wang, D.; Qiao, J.; Zhao, X.; Hu, S.; Quan, R. Aberrant expression of miR-127, miR-21 and miR-16 in placentas of deceased cloned sheep. Res. Vet. Sci. 2016, 105, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K.; Nishida, K.; Ashina, M.; Abe, S.; Fukushima, S.; Ikuta, T.; Ohyama, S.; Morioka, I.; Iijima, K. DNA methylation of the Rtl1 promoter in the placentas with fetal growth restriction. Pediatr. Neonatol. 2019, 60, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Yentrapalli, R.; Azimzadeh, O.; Kraemer, A.; Malinowsky, K.; Sarioglu, H.; Becker, K.F.; Atkinson, M.J.; Moertl, S.; Tapio, S. Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence. J. Proteomics 2015, 126, 12–23. [Google Scholar] [CrossRef]
- You, Y.A.; Kwon, E.J.; Hwang, H.S.; Choi, S.J.; Choi, S.K.; Kim, Y.J. Elevated methylation of the vault RNA2-1 promoter in maternal blood is associated with preterm birth. BMC Genomics 2021, 22, 528. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Jiang, W.; Li, Y. MiR-484 Protects Rat Myocardial Cells from Ischemia-Reperfusion Injury by Inhibiting Caspase-3 and Caspase-9 during Apoptosis. Korean Circ. J. 2020, 50, 250–263. [Google Scholar] [CrossRef]
- Cheng, H.; Yan, W. MiR-433 Regulates Myocardial Ischemia Reperfusion Injury by Targeting NDRG4 Via the PI3K/Akt Pathway. Shock 2020, 54, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.-Q.; Jiang, H.; Lu, Z.-B. MiR-320 regulates cardiomyocyte apoptosis induced by ischemia–reperfusion injury by targeting AKIP1. Cell. Mol. Biol. Lett. 2018, 23, 41. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wu, J.; Li, D.; Zhou, J.; Yu, H.; Ma, L. Knockdown of lncRNA MALAT1 attenuates acute myocardial infarction through miR-320-Pten axis. Biomed. Pharmacother. 2018, 106, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, J.; Du, A.; Li, Y. MiR-483-3p inhibition ameliorates myocardial ischemia/reperfusion injury by targeting the MDM4/p53 pathway. Mol. Immunol. 2020, 125, 9–14. [Google Scholar] [CrossRef]
- Hao, Y.; Yuan, H.; Yu, H. Downregulation of miR-483-5p decreases hypoxia-induced injury in human cardiomyocytes by targeting MAPK3. Cell. Mol. Biol. Lett. 2020, 25, 20. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, S.; Wang, H.; Liu, Y.; Liu, Y. miR-134-5p inhibition reduces infarct-induced cardiomyocyte apoptosis via Creb1 upregulation. J. Stroke Cerebrovasc. Dis. 2020, 29, 104850. [Google Scholar] [CrossRef]
- Li, X.; Wei, C.; Zhang, Z.; Jin, Q.; Xiao, X. MiR-134-5p Regulates Myocardial Apoptosis and Angiogenesis by Directly Targeting KDM2A After Myocardial Infarction. Int. Heart J. 2020, 61, 815–821. [Google Scholar] [CrossRef]
- Guo, L.L.; Chen, H.H.; Qu, F.C.; Lu, Q.H. Clinical significance of miR-492 in peripheral blood of acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9041–9045. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Sun, X.; Shen, X.; Wang, H.; Dong, C.; Lu, B.; Yan, Y.; Lu, Y.; Fasae, M.B.; et al. Downregulation of miR-200a protects cardiomyocyte against apoptosis. Biomed. Pharmacother. 2020, 123, 109303. [Google Scholar] [CrossRef]
- Hu, X.; Liu, H.; Wang, Z.; Hu, Z.; Li, L. miR-200a Attenuated Doxorubicin-Induced Cardiotoxicity through Upregulation of Nrf2 in Mice. Oxid. Med. Cell. Longev. 2019, 2019, 1512326. [Google Scholar] [CrossRef]
- Li, J.-W.; He, S.-Y.; Feng, Z.-Z.; Zhao, L.; Jia, W.-K.; Liu, P.; Zhu, Y.; Jian, Z.; Xiao, Y.-B. MicroRNA-146b inhibition augments hypoxia-induced cardiomyocyte apoptosis. Mol. Med. Rep. 2015, 12, 6903–6910. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, Y. MiR-146b protect against sepsis induced mice myocardial injury through inhibition of Notch1. J. Mol. Histol. 2018, 49, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Bei, Y.; Chen, P.; Lei, Z.; Fu, S.; Zhang, H.; Xu, J.; Che, L.; Chen, X.; Sluijter, J.P.; et al. Crucial Role of miR-433 in Regulating Cardiac Fibrosis. Theranostics 2016, 6, 2068–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Xiao, J.; Zhu, H.; Wei, X.; Platt, C.; Damilano, F.; Xiao, C.; Bezzerides, V.; Boström, P.; Che, L.; et al. miR-222 Is Necessary for Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling. Cell Metabolism. 2015, 21, 584–595. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Huang, H.; Xu, Y.; Zhu, H.; Zhong, C. MiR-222 in Cardiovascular Diseases: Physiology and Pathology. Biomed. Res. Int. 2017, 2017, 4962426. [Google Scholar] [CrossRef]
- Sucharov, C.; Bristow, M.R.; Port, J.D. miRNA expression in the failing human heart: Functional correlates. J. Mol. Cell. Cardiol. 2008, 45, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Marques, F.Z.; Vizi, D.; Khammy, O.; Mariani, J.A.; Kaye, D.M. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur. J. Heart Fail. 2016, 18, 1000–1008. [Google Scholar] [CrossRef] [Green Version]
- Patella, F.; Leucci, E.; Evangelista, M.; Parker, B.; Wen, J.; Mercatanti, A.; Rizzo, M.; Chiavacci, E.; Lund, A.H.; Rainaldi, G. MiR-492 impairs the angiogenic potential of endothelial cells. J. Cell. Mol. Med. 2013, 17, 1006–1015. [Google Scholar] [CrossRef]
- Gu, Y.; Ampofo, E.; Menger, M.D.; Laschke, M.W. miR-191 suppresses angiogenesis by activation of NF-kappaB signaling. FASEB J. 2017, 31, 3321–3333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ge, Y.W.; Wang, Z.X.; Xu, Q.L.; Guo, R.; Xu, H.Y. MiR-200c regulates apoptosis of placental trophoblasts in preeclampsia rats through Wnt/beta-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7209–7216. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, J.; Han, J.; Han, X.J.; Zhao, C.M.; Zou, A.X.; Qi, H.G. MiR-222-5p promotes the growth and migration of trophoblasts by targeting AHNAK. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10954–10959. [Google Scholar] [CrossRef] [PubMed]
- Sandrim, V.C.; Luizon, M.R.; Palei, A.C.; Tanus-Santos, J.E.; Cavalli, R.C. Circulating microRNA expression profiles in pre-eclampsia: Evidence of increased miR-885-5p levels. BJOG 2016, 123, 2120–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackie, F.L.; Baker, B.C.; Beggs, A.D.; Stodolna, A.; Morris, R.K.; Kilby, M.D. MicroRNA changes in maternal serum from pregnancies complicated by twin-twin transfusion syndrome: A discovery study. Prenat. Diagn. 2019, 39, 616–634. [Google Scholar] [CrossRef]
- Lee, K.; Kunkeaw, N.; Jeon, S.H.; Lee, I.; Johnson, B.H.; Kang, G.Y.; Bang, J.Y.; Park, H.S.; Leelayuwat, C.; Lee, Y.S. Precursor miR-886, a novel noncoding RNA repressed in cancer, associates with PKR and modulates its activity. RNA 2011, 17, 1076–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, B.; Yu, J.; Liu, X. Upregulation of miR-886 indicates poor prognosis and promotes tumour progression of prostate cancer. Andrologia 2021, 54, e14296. [Google Scholar] [CrossRef]
- Xu, S.B.; Fan, R.H.; Qin, X.; Han, R.M. microRNA Prognostic Signature for Postoperative Success of Metastatic Orthopedic Cancers: Implications for Precision Microsurgery. Front. Cell Dev. Biol. 2021, 9, 704505. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Han, S.; Wang, Y.; Liu, R.; Meng, F.; Su, Z.; Huo, F. Suppression of miR-886-3p mediated by arecoline (ARE) contributes to the progression of oral squamous cell carcinoma. J. Investig. Med. 2021, 69, 377–381. [Google Scholar] [CrossRef]
- Shen, J.; Zhou, W.; Bi, N.; Song, Y.M.; Zhang, F.Q.; Zhan, Q.M.; Wang, L.H. MicroRNA-886-3P functions as a tumor suppressor in small cell lung cancer. Cancer Biol. Ther. 2018, 19, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
Subject No. | Diagnosis | Sex | GA (Weeks) | Donor Growth Restriction | Donor Demise | Recipient RV Tei Index | Recipient LV Tei Index |
---|---|---|---|---|---|---|---|
TTTS Discovery Cohort | |||||||
1 | TTTS | M | 23.71 | Y, severe | N | 1.36 | 0.70 |
2 | TTTS | M | 18.71 | Y, severe | N | 1.28 | 0.85 |
3 | TTTS | M | 20.71 | Y, severe | Y | 0.91 | 0.54 |
4 | TTTS | F | 22.71 | Y, severe | N | 0.87 | 0.63 |
5 | TTTS | F | 23.71 | Y, severe | N | 0.83 | 0.57 |
6 | TTTS | M | 17.29 | N | Y | 0.77 | 0.62 |
7 | TTTS | M | 17.43 | N | Y | 0.75 | 0.67 |
8 | TTTS | F | 21.43 | Y, severe | N | 0.70 | 0.43 |
9 | TTTS | F | 18.29 | N | N | 0.69 | 0.67 |
10 | TTTS | M | 17.43 | N | N | 0.68 | 0.66 |
Singleton Control Subjects | |||||||
11 † | AMA | F | 18.29 | NA | NA | NA | NA |
12 | Incompetent cervix | M | 22.86 | NA | NA | NA | NA |
13 † | Incompetent cervix | M | 23.00 | NA | NA | NA | NA |
14 | Unreportable NIPT | M | 18.86 | NA | NA | NA | NA |
15 † | AMA | F | 16.86 | NA | NA | NA | NA |
16 | Borderline NIPT | F | 16.57 | NA | NA | NA | NA |
17 † | AMA | M | 16.29 | NA | NA | NA | NA |
18 † | positive NIPT | M | 20.57 | NA | NA | NA | NA |
19 † | AMA, Thalassemia carrier | F | 22.71 | NA | NA | NA | NA |
20 † | inconclusive NIPT | M | 20.00 | NA | NA | NA | NA |
TTTS validation cohort | |||||||
21 | TTTS | UK | 18.57 | Y, severe | Y | 0.59 | 0.64 |
22 | TTTS | UK | 17.29 | N | N | 0.69 | 0.58 |
23 | TTTS | F | 20.57 | Y, severe | Y | 0.61 | 0.74 |
24 | TTTS | M | 22.71 | N | N | 0.65 | 0.53 |
25 | TTTS | F | 17.43 | Y | N | 0.56 | 0.53 |
26 | TTTS | M | 17.29 | N | N | 0.62 | 0.47 |
27 | TTTS | M | 18.71 | N | N | 0.57 | 0.66 |
28 | TTTS | M | 18.57 | N | N | 1.10 | 0.89 |
29 | TTTS | M | 21.00 | Y | N | 0.78 | 0.68 |
30 | TTTS | M | 19.43 | Y, severe | N | 0.58 | 0.52 |
31 | TTTS | F | 20.43 | Y, severe | N | 0.72 | 0.81 |
32 | TTTS | F | 23.14 | N | N | 0.66 | 0.73 |
33 | TTTS | F | 16.43 | N | N | 0.73 | 0.69 |
34 | TTTS | M | 21.00 | Y, severe | Y | 0.65 | 0.68 |
35 | TTTS | M | 18.57 | Y, severe | N | 0.66 | 0.79 |
36 | TTTS | M | 21.29 | Y, severe | Y | 0.63 | 0.64 |
37 | TTTS | F | 25.43 | N | N | 0.78 | 0.53 |
38 | TTTS | M | 17.14 | Y | N | 0.75 | 0.47 |
39 | TTTS | F | 21.14 | Y, severe | N | 0.64 | 0.62 |
40 | TTTS | F | 18.71 | Y, severe | N | 0.68 | 0.47 |
41 | TTTS | M | 24.86 | Y, severe | N | 0.66 | 0.58 |
42 | TTTS | F | 16.86 | Y, severe | N | 0.55 | 0.56 |
43 | TTTS | F | 20.71 | Y | N | 0.59 | 0.60 |
44 | TTTS | M | 18.14 | Y | Y | 0.51 | 0.65 |
45 | TTTS | F | 18.29 | N | N | 0.55 | 0.60 |
46 | TTTS | M | 20.71 | Y, severe | N | 0.64 | 0.54 |
47 | TTTS | M | 16.71 | Y, severe | N | 0.57 | 0.62 |
48 | TTTS | F | 22.29 | Y, severe | N | 0.65 | 0.64 |
49 | TTTS | M | 25.14 | Y, severe | Y | 0.67 | 0.56 |
50 | TTTS | F | 20.00 | Y, severe | Y | 0.63 | 0.68 |
51 | TTTS | F | 17.57 | Y, severe | N | 0.63 | 0.49 |
52 | TTTS | F | 25.86 | N | N | 1.31 | 0.64 |
53 | TTTS | F | 17.57 | Y | N | 0.69 | 0.40 |
54 | TTTS | M | 19.14 | Y, severe | N | 0.67 | 0.55 |
55 | TTTS | M | 16.86 | N | N | 0.56 | 0.51 |
56 | TTTS | M | 20.43 | N | N | 0.61 | 0.58 |
57 | TTTS | M | 20.14 | Y, severe | N | 0.64 | 0.60 |
58 | TTTS | M | 21.43 | Y, severe | N | 0.82 | 0.69 |
59 | TTTS, double demise | F | 18.86 | Y, severe | Y | 1.90 | 1.50 |
60 | TTTS, isolated recipient demise | F | 23.14 | Y, severe | N | 0.57 | 0.53 |
miRNA | Fold Change | Q Value (by Wilcox t-test) | Control Sample Mean | Control Sample Standard Deviation | TTTS Sample Mean | TTTS Standard Deviation |
---|---|---|---|---|---|---|
hsa-miR-99b-5p | −1.8113 | 0.00059 | 2.2353 | 1.0434 | 0.4240 | 0.3162 |
hsa-miR-127-3p | −1.9207 | 0.00059 | 2.3263 | 1.1693 | 0.4056 | 0.2850 |
hsa-miR-375-3p | −1.8611 | 0.00059 | 2.2378 | 0.7424 | 0.3767 | 0.2982 |
hsa-miR-484 | −1.7135 | 0.00059 | 2.1603 | 1.0494 | 0.4468 | 0.3206 |
hsa-miR-886-5p | −2.0864 | 0.00059 | 2.4716 | 1.0864 | 0.3852 | 0.2902 |
hsa-miR-370-3p | −2.4452 | 0.00059 | 2.7575 | 1.0742 | 0.3123 | 0.2730 |
hsa-miR-99a-5p | −1.8466 | 0.00078 | 2.3329 | 1.1180 | 0.4863 | 0.4627 |
hsa-miR-574-3p | −1.5480 | 0.00078 | 1.9632 | 1.0388 | 0.4151 | 0.2695 |
hsa-miR-532-3p | −1.8939 | 0.00078 | 2.3093 | 1.1001 | 0.4154 | 0.3966 |
hsa-miR-92a-3p | −1.5980 | 0.00083 | 2.0174 | 0.8811 | 0.4194 | 0.3155 |
hsa-miR-100-5p | −1.5639 | 0.00083 | 2.0255 | 1.0740 | 0.4616 | 0.3513 |
hsa-miR-197-3p | −1.4270 | 0.00083 | 1.9019 | 0.8623 | 0.4749 | 0.3085 |
hsa-miR-331-3p | −1.6085 | 0.00083 | 2.0384 | 1.0950 | 0.4299 | 0.2792 |
hsa-miR-425-5p | −1.1909 | 0.00083 | 1.7537 | 0.7842 | 0.5628 | 0.2567 |
hsa-miR-886-3p | −1.6453 | 0.00083 | 2.1731 | 1.0641 | 0.5278 | 0.3521 |
hsa-miR-122-5p | −2.3081 | 0.00083 | 2.6098 | 1.5017 | 0.3017 | 0.3264 |
hsa-miR-320a-3p | −1.6845 | 0.00083 | 2.1511 | 1.1301 | 0.4666 | 0.3506 |
hsa-miR-433-3p | −1.8726 | 0.00117 | 2.3578 | 1.1409 | 0.4852 | 0.4784 |
hsa-miR-191-5p | −1.5862 | 0.00117 | 1.9796 | 1.2070 | 0.3934 | 0.2882 |
hsa-miR-200c-3p | −1.4516 | 0.00117 | 1.8773 | 1.0379 | 0.4257 | 0.3064 |
hsa-miR-483-5p | −1.1983 | 0.00117 | 1.7824 | 0.7386 | 0.5842 | 0.3740 |
hsa-miR-200a-3p | −0.9514 | 0.00162 | 1.5064 | 0.4623 | 0.5550 | 0.2976 |
hsa-miR-146b3p | −1.3653 | 0.00162 | 1.7593 | 0.8855 | 0.3940 | 0.3724 |
hsa-miR-134-5p | −1.3302 | 0.00162 | 1.3617 | 0.8735 | 0.0315 | 0.0673 |
hsa-miR-193b-5p | −1.6562 | 0.00162 | 2.1416 | 1.2328 | 0.4854 | 0.3894 |
hsa-miR-28-3p | −1.6422 | 0.00162 | 2.0473 | 1.0659 | 0.4051 | 0.3930 |
hsa-miR-492 | −1.5150 | 0.00180 | 1.5784 | 0.6285 | 0.0634 | 0.1017 |
hsa-miR-339-3p | −1.3255 | 0.00189 | 1.4845 | 0.9884 | 0.1590 | 0.1812 |
hsa-miR-328-3p | −1.4769 | 0.00216 | 2.0236 | 1.0648 | 0.5467 | 0.4001 |
hsa-miR-222-3p | −1.6972 | 0.00216 | 2.0848 | 1.4409 | 0.3876 | 0.3224 |
hsa-miR-885-5p | −1.3903 | 0.00216 | 1.8579 | 0.7969 | 0.4676 | 0.3943 |
hsa-miR-539-5p | −1.5847 | 0.00249 | 1.8534 | 1.2129 | 0.2686 | 0.2365 |
p-Value | Q-Value | Category |
---|---|---|
0.000114 | 0.0052579 | VEGF signaling pathway, possibly involved in angiogenesis |
0.000179 | 0.0071438 | Fluid shear stress, atherosclerosis, possibly related to vascular dysfunction. |
0.000265 | 0.0085739 | Fatty acid biosynthesis |
0.000398 | 0.011679 | Phospholipase D signaling pathway, likely involved in cell division |
0.000503 | 0.0125707 | Longevity regulated pathway in multiple species, likely involving the proteasome through PI2k/AKT/TOR |
0.000521 | 0.0125707 | Peroxisome |
0.000615 | 0.0125707 | Proteosome |
0.000684 | 0.0125707 | Thyroid hormone signaling pathway |
0.000704 | 0.0125707 | Neurotrophin signaling pathway |
0.000719 | 0.0125707 | Toll-like receptor signaling pathway, possibly involved in inflammation |
0.000967 | 0.0125953 | Aminoacyl-tRNA biosynthesis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuchardt, E.L.; Miyamoto, S.D.; Crombleholme, T.; Karimpour-Fard, A.; Korst, A.; Neltner, B.; Howley, L.W.; Cuneo, B.; Sucharov, C.C. Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy—Identification of Differences and Predicting Demise. J. Cardiovasc. Dev. Dis. 2022, 9, 37. https://doi.org/10.3390/jcdd9020037
Schuchardt EL, Miyamoto SD, Crombleholme T, Karimpour-Fard A, Korst A, Neltner B, Howley LW, Cuneo B, Sucharov CC. Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy—Identification of Differences and Predicting Demise. Journal of Cardiovascular Development and Disease. 2022; 9(2):37. https://doi.org/10.3390/jcdd9020037
Chicago/Turabian StyleSchuchardt, Eleanor L., Shelley D. Miyamoto, Timothy Crombleholme, Anis Karimpour-Fard, Armin Korst, Bonnie Neltner, Lisa W. Howley, Bettina Cuneo, and Carmen C. Sucharov. 2022. "Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy—Identification of Differences and Predicting Demise" Journal of Cardiovascular Development and Disease 9, no. 2: 37. https://doi.org/10.3390/jcdd9020037
APA StyleSchuchardt, E. L., Miyamoto, S. D., Crombleholme, T., Karimpour-Fard, A., Korst, A., Neltner, B., Howley, L. W., Cuneo, B., & Sucharov, C. C. (2022). Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy—Identification of Differences and Predicting Demise. Journal of Cardiovascular Development and Disease, 9(2), 37. https://doi.org/10.3390/jcdd9020037