Optimising Cardiometabolic Risk Factors in Pregnancy: A Review of Risk Prediction Models Targeting Gestational Diabetes and Hypertensive Disorders
Abstract
:1. Introduction
2. Methods
3. Gestational Diabetes Mellitus
3.1. Clinical Risk Factors
3.2. Biomarkers and Biophysical Variables
3.3. Modifiable Risk Factors
3.4. Machine Learning Approaches
3.5. Summary
4. Hypertensive Disorders in Pregnancy
4.1. Clinical Risk Factors for PE
4.2. Biomarkers and Biophysical Factors in PE Development
4.3. Risk Prediction Models for HDP/PE
4.4. Machine Learning Approaches
4.5. Summary
5. Discussion
5.1. Implications for Clinical Practice and Future Research
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, G.A.; Mathers, C.D.; Beard, J.R. Global mortality trends and patterns in older women. Bull. World Health Organ. 2013, 91, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Adetokunboh, O.; Afshin, A.; Agrawal, A.; et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef] [Green Version]
- Parikh, N.I.; Gonzalez, J.M.; Anderson, C.A.M.; Judd, S.E.; Rexrode, K.M.; Hlatky, M.A.; Gunderson, E.P.; Stuart, J.J.; Vaidya, D. Adverse Pregnancy Outcomes and Cardiovascular Disease Risk: Unique Opportunities for Cardiovascular Disease Prevention in Women: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e902–e916. [Google Scholar] [CrossRef]
- Rich-Edwards, J.W.; Fraser, A.; Lawlor, D.A.; Catov, J.M. Pregnancy characteristics and women’s future cardiovascular health: An underused opportunity to improve women’s health? Epidemiol. Rev. 2014, 36, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Kennelly, M.A.; McAuliffe, F.M. Prediction and prevention of Gestational Diabetes: An update of recent literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 202, 92–98. [Google Scholar] [CrossRef]
- Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; McIntyre, H.D.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar]
- Farrar, D.; Simmonds, M.; Bryant, M.; Sheldon, T.A.; Tuffnell, D.; Golder, S.; Dunne, F.; Lawlor, D.A. Hyperglycaemia and risk of adverse perinatal outcomes: Systematic review and meta-analysis. BMJ 2016, 354, i4694. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhang, C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: A Global Perspective. Curr. Diab. Rep. 2016, 16, 7. [Google Scholar] [CrossRef]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Umesawa, M.; Kobashi, G. Epidemiology of hypertensive disorders in pregnancy: Prevalence, risk factors, predictors and prognosis. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2017, 40, 213–220. [Google Scholar] [CrossRef]
- Nilsson, P.M.; Viigimaa, M.; Giwercman, A.; Cifkova, R. Hypertension and Reproduction. Curr. Hypertens. Rep. 2020, 22, 29. [Google Scholar] [CrossRef] [Green Version]
- Enkhmaa, D.; Wall, D.; Mehta, P.K.; Stuart, J.J.; Rich-Edwards, J.W.; Merz, C.N.; Shufelt, C. Preeclampsia and Vascular Function: A Window to Future Cardiovascular Disease Risk. J. Women’s Health 2016, 25, 284–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benschop, L.; Duvekot, J.J.; Roeters van Lennep, J.E. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart 2019, 105, 1273–1278. [Google Scholar] [CrossRef]
- Mastrogiannis, D.S.; Spiliopoulos, M.; Mulla, W.; Homko, C.J. Insulin resistance: The possible link between gestational diabetes mellitus and hypertensive disorders of pregnancy. Curr. Diab. Rep. 2009, 9, 296–302. [Google Scholar] [CrossRef]
- Chu, S.Y.; Callaghan, W.M.; Kim, S.Y.; Schmid, C.H.; Lau, J.; England, L.J.; Dietz, P.M. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007, 30, 2070–2076. [Google Scholar] [CrossRef] [Green Version]
- Catalano, P.M. Obesity, insulin resistance, and pregnancy outcome. Reproduction 2010, 140, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.S.; Moons, K.G. Comparing risk prediction models. BMJ 2012, 344, e3186. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Janssen, K.J.; Kalkman, C.J.; Grobbee, D.E.; Bonsel, G.J.; Moons, K.G.; Vergouwe, Y. The risk of severe postoperative pain: Modification and validation of a clinical prediction rule. Anesth. Analg. 2008, 107, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Sundström, J.; Schön, T.B. Machine Learning in Risk Prediction. Hypertension 2020, 75, 1165–1166. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Dong, B.; Zou, Q. Revisiting genome-wide association studies from statistical modelling to machine learning. Brief. Bioinform. 2021, 22, bbaa263. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sovio, U.; Murphy, H.R.; Smith, G.C. Accelerated Fetal Growth Prior to Diagnosis of Gestational Diabetes Mellitus: A Prospective Cohort Study of Nulliparous Women. Diabetes Care 2016, 39, 982–987. [Google Scholar] [CrossRef] [Green Version]
- Immanuel, J.; Simmons, D. Screening and Treatment for Early-Onset Gestational Diabetes Mellitus: A Systematic Review and Meta-analysis. Curr. Diab. Rep. 2017, 17, 115. [Google Scholar] [CrossRef]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.; Hod, M.; Kitzmiler, J.L.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, P. Gestational diabetes: Opportunities for improving maternal and child health. Lancet. Diabetes Endocrinol. 2020, 8, 793–800. [Google Scholar] [CrossRef]
- Van Hoorn, F.; Koster, M.P.H.; Kwee, A.; Groenendaal, F.; Franx, A.; Bekker, M.N. Implementation of a first-trimester prognostic model to improve screening for gestational diabetes mellitus. BMC Pregnancy Childbirth 2021, 21, 298. [Google Scholar] [CrossRef]
- Meertens, L.J.E.; Scheepers, H.C.J.; van Kuijk, S.M.J.; Roeleveld, N.; Aardenburg, R.; van Dooren, I.M.A.; Langenveld, J.; Zwaan, I.M.; Spaanderman, M.E.A.; van Gelder, M.; et al. External validation and clinical utility of prognostic prediction models for gestational diabetes mellitus: A prospective cohort study. Acta Obstet. Gynecol. Scand. 2020, 99, 891–900. [Google Scholar] [CrossRef]
- Schaefer, K.K.; Xiao, W.; Chen, Q.; He, J.; Lu, J.; Chan, F.; Chen, N.; Yuan, M.; Xia, H.; Lam, K.B.H.; et al. Prediction of gestational diabetes mellitus in the Born in Guangzhou Cohort Study, China. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2018, 143, 164–171. [Google Scholar] [CrossRef]
- White, S.L.; Lawlor, D.A.; Briley, A.L.; Godfrey, K.M.; Nelson, S.M.; Oteng-Ntim, E.; Robson, S.C.; Sattar, N.; Seed, P.T.; Vieira, M.C.; et al. Early Antenatal Prediction of Gestational Diabetes in Obese Women: Development of Prediction Tools for Targeted Intervention. PLoS ONE 2016, 11, e0167846. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.L.; Edwards, S.E.; Myers, E.R. Adverse birth outcomes among nulliparous vs. multiparous women. Public Health Rep. 2011, 126, 797–805. [Google Scholar] [CrossRef]
- Donovan, B.M.; Breheny, P.J.; Robinson, J.G.; Baer, R.J.; Saftlas, A.F.; Bao, W.; Greiner, A.L.; Carter, K.D.; Oltman, S.P.; Rand, L.; et al. Development and validation of a clinical model for preconception and early pregnancy risk prediction of gestational diabetes mellitus in nulliparous women. PLoS ONE 2019, 14, e0215173. [Google Scholar] [CrossRef] [PubMed]
- Snyder, B.M.; Baer, R.J.; Oltman, S.P.; Robinson, J.G.; Breheny, P.J.; Saftlas, A.F.; Bao, W.; Greiner, A.L.; Carter, K.D.; Rand, L.; et al. Early pregnancy prediction of gestational diabetes mellitus risk using prenatal screening biomarkers in nulliparous women. Diabetes Res. Clin. Pract. 2020, 163, 108139. [Google Scholar] [CrossRef]
- Sweeting, A.N.; Wong, J.; Appelblom, H.; Ross, G.P.; Kouru, H.; Williams, P.F.; Sairanen, M.; Hyett, J.A. A Novel Early Pregnancy Risk Prediction Model for Gestational Diabetes Mellitus. Fetal Diagn. Ther. 2019, 45, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Sweeting, A.N.; Wong, J.; Appelblom, H.; Ross, G.P.; Kouru, H.; Williams, P.F.; Sairanen, M.; Hyett, J.A. A first trimester prediction model for gestational diabetes utilizing aneuploidy and pre-eclampsia screening markers. J. Matern. -Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obs. 2018, 31, 2122–2130. [Google Scholar] [CrossRef]
- Abell, S.K.; Shorakae, S.; Boyle, J.A.; De Courten, B.; Stepto, N.K.; Teede, H.J.; Harrison, C.L. Role of serum biomarkers to optimise a validated clinical risk prediction tool for gestational diabetes. Aust. N. Z. J. Obstet. Gynaecol. 2019, 59, 251–257. [Google Scholar] [CrossRef]
- Harrison, C.L.; Lombard, C.B.; East, C.; Boyle, J.; Teede, H.J. Risk stratification in early pregnancy for women at increased risk of gestational diabetes. Diabetes Res. Clin. Pract. 2015, 107, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Benhalima, K.; Van Crombrugge, P.; Moyson, C.; Verhaeghe, J.; Vandeginste, S.; Verlaenen, H.; Vercammen, C.; Maes, T.; Dufraimont, E.; De Block, C.; et al. Estimating the risk of gestational diabetes mellitus based on the 2013 WHO criteria: A prediction model based on clinical and biochemical variables in early pregnancy. Acta Diabetol. 2020, 57, 661–671. [Google Scholar] [CrossRef]
- Thériault, S.; Giguère, Y.; Massé, J.; Girouard, J.; Forest, J.C. Early prediction of gestational diabetes: A practical model combining clinical and biochemical markers. Clin. Chem. Lab. Med. 2016, 54, 509–518. [Google Scholar] [CrossRef]
- Dias, S.; Pheiffer, C.; Abrahams, Y.; Rheeder, P.; Adam, S. Molecular Biomarkers for Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamri, A.; Mao, S.; Desai, D.; Gupta, M.; Paré, G.; Anand, S.S. Fine-tuning of Genome-Wide Polygenic Risk Scores and Prediction of Gestational Diabetes in South Asian Women. Sci. Rep. 2020, 10, 8941. [Google Scholar] [CrossRef] [PubMed]
- Neumeyer, S.; Hemani, G.; Zeggini, E. Strengthening Causal Inference for Complex Disease Using Molecular Quantitative Trait Loci. Trends Mol. Med. 2020, 26, 232–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijatovic-Vukas, J.; Capling, L.; Cheng, S.; Stamatakis, E.; Louie, J.; Cheung, N.W.; Markovic, T.; Ross, G.; Senior, A.; Brand-Miller, J.C.; et al. Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moholdt, T.; Hayman, M.; Shorakae, S.; Brown, W.J.; Harrison, C.L. The Role of Lifestyle Intervention in the Prevention and Treatment of Gestational Diabetes. Semin. Reprod. Med. 2020, 38, 398–406. [Google Scholar] [CrossRef]
- Gao, S.; Leng, J.; Liu, H.; Wang, S.; Li, W.; Wang, Y.; Hu, G.; Chan, J.C.N.; Yu, Z.; Zhu, H.; et al. Development and validation of an early pregnancy risk score for the prediction of gestational diabetes mellitus in Chinese pregnant women. BMJ Open Diabetes Res. Care 2020, 8, e000909. [Google Scholar] [CrossRef] [Green Version]
- Schoenaker, D.; Vergouwe, Y.; Soedamah-Muthu, S.S.; Callaway, L.K.; Mishra, G.D. Preconception risk of gestational diabetes: Development of a prediction model in nulliparous Australian women. Diabetes Res. Clin. Pract. 2018, 146, 48–57. [Google Scholar] [CrossRef]
- Ye, Y.; Xiong, Y.; Zhou, Q.; Wu, J.; Li, X.; Xiao, X. Comparison of Machine Learning Methods and Conventional Logistic Regressions for Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective Cohort Study. J. Diabetes Res. 2020, 2020, 4168340. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Zhang, C.-J.; Mol, B.W.; Kawai, A.; Li, C.; Chen, L.; Wang, Y.; Sheng, J.-Z.; Fan, J.-X.; Shi, Y.; et al. Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning. J. Clin. Endocrinol. Metab. 2021, 106, e1191–e1205. [Google Scholar] [CrossRef]
- Angeli, F.; Angeli, E.; Reboldi, G.; Verdecchia, P. Hypertensive disorders during pregnancy: Clinical applicability of risk prediction models. J. Hypertens. 2011, 29, 2320–2323. [Google Scholar] [CrossRef]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef] [Green Version]
- Roth, H.; LeMarquand, G.; Henry, A.; Homer, C. Assessing Knowledge Gaps of Women and Healthcare Providers Concerning Cardiovascular Risk After Hypertensive Disorders of Pregnancy-A Scoping Review. Front. Cardiovasc. Med. 2019, 6, 178. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.; O’Brien, P.; Khalil, A. Current best practice in the management of hypertensive disorders in pregnancy. Integr. Blood Press. Control. 2016, 9, 79–94. [Google Scholar] [PubMed] [Green Version]
- Hauspurg, A.; Countouris, M.E.; Catov, J.M. Hypertensive Disorders of Pregnancy and Future Maternal Health: How Can the Evidence Guide Postpartum Management? Curr. Hypertens. Rep. 2019, 21, 96. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. New Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Roberge, S.; Bujold, E.; Nicolaides, K.H. Aspirin for the prevention of preterm and term preeclampsia: Systematic review and metaanalysis. Am. J. Obstet. Gynecol. 2018, 218, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef] [Green Version]
- Chaemsaithong, P.; Sahota, D.S.; Poon, L.C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 2022; in press. [Google Scholar] [CrossRef]
- Pillay, P.; Moodley, K.; Moodley, J.; Mackraj, I. Placenta-derived exosomes: Potential biomarkers of preeclampsia. Int. J. Nanomed. 2017, 12, 8009–8023. [Google Scholar] [CrossRef] [Green Version]
- Stepan, H.; Hund, M.; Andraczek, T. Combining Biomarkers to Predict Pregnancy Complications and Redefine Preeclampsia: The Angiogenic-Placental Syndrome. Hypertension 2020, 75, 918–926. [Google Scholar] [CrossRef]
- De Kat, A.C.; Hirst, J.; Woodward, M.; Kennedy, S.; Peters, S.A. Prediction models for preeclampsia: A systematic review. Pregnancy Hypertens. 2019, 16, 48–66. [Google Scholar] [CrossRef]
- Agrawal, S.; Shinar, S.; Cerdeira, A.S.; Redman, C.; Vatish, M. Predictive Performance of PlGF (Placental Growth Factor) for Screening Preeclampsia in Asymptomatic Women: A Systematic Review and Meta-Analysis. Hypertension 2019, 74, 1124–1135. [Google Scholar] [CrossRef]
- Pihl, K.; Sørensen, S.; Stener Jørgensen, F. Prediction of Preeclampsia in Nulliparous Women according to First Trimester Maternal Factors and Serum Markers. Fetal Diagn. Ther. 2020, 47, 277–283. [Google Scholar] [CrossRef]
- Guizani, M.; Valsamis, J.; Dutemeyer, V.; Kang, X.; Ceccotti, V.; Khalife, J.; Duiella, S.F.; Blavier, F.; Faraca, A.; Cos, T.; et al. First-Trimester Combined Multimarker Prospective Study for the Detection of Pregnancies at a High Risk of Developing Preeclampsia Using the Fetal Medicine Foundation-Algorithm. Fetal Diagn. Ther. 2018, 43, 266–273. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, R.; Baviera, G.; Giordano, D.; Todarello, G.; Corrado, F.; Buemi, M. Second trimester neutrophil gelatinase-associated lipocalin as a potential prediagnostic marker of preeclampsia. Acta Obstet. Gynecol. Scand. 2008, 87, 1370–1373. [Google Scholar] [CrossRef]
- Sepúlveda-Martínez, A.; Rencoret, G.; Silva, M.C.; Ahumada, P.; Pedraza, D.; Muñoz, H.; Valdés, E.; Parra-Cordero, M. First trimester screening for preterm and term pre-eclampsia by maternal characteristics and biophysical markers in a low-risk population. J. Obstet. Gynaecol. Res. 2019, 45, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antwi, E.; Klipstein-Grobusch, K.; Browne, J.L.; Schielen, P.C.; Koram, K.A.; Agyepong, I.A.; Grobbee, D.E. Improved prediction of gestational hypertension by inclusion of placental growth factor and pregnancy associated plasma protein-a in a sample of Ghanaian women. Reprod. Health 2018, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Pooh, R.K.; Zheng, M.; Ma, R.; Chaiyasit, N.; Tokunaka, M.; Shaw, S.W.; Seshadri, S.; Choolani, M.; Wataganara, T.; et al. Prospective evaluation of screening performance of first-trimester prediction models for preterm preeclampsia in an Asian population. Am. J. Obstet. Gynecol. 2019, 221, 650.e1–650.e16. [Google Scholar] [CrossRef]
- O’Gorman, N.; Wright, D.; Syngelaki, A.; Akolekar, R.; Wright, A.; Poon, L.C.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 2016, 214, 103.e1–103.e12. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.; Syngelaki, A.; Akolekar, R.; Poon, L.C.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am. J. Obstet. Gynecol. 2015, 213, 62.e1–62.e10. [Google Scholar] [CrossRef]
- Wright, D.; Akolekar, R.; Syngelaki, A.; Poon, L.C.; Nicolaides, K.H. A competing risks model in early screening for preeclampsia. Fetal Diagn. Ther. 2012, 32, 171–178. [Google Scholar] [CrossRef]
- Wright, D.; Wright, A.; Nicolaides, K.H. The competing risk approach for prediction of preeclampsia. Am. J. Obstet. Gynecol. 2020, 223, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Rezende, K.B.C.; Cunha, A.; Amim Junior, J.; Bornia, R.G. External validation of the Fetal Medicine Foundation algorithm for the prediction of preeclampsia in a Brazilian population. Pregnancy Hypertens 2019, 17, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Rezende, K.B.C.; Cunha, A.; Amim, J., Jr.; Oliveira, W.M.; Leão, M.E.B.; Menezes, M.O.A.; Jardim, A.; Bornia, R.G. Performance of Fetal Medicine Foundation Software for Pre-Eclampsia Prediction Upon Marker Customization: Cross-Sectional Study. J. Med. Internet. Res. 2019, 21, e14738. [Google Scholar] [CrossRef]
- Rezende, K.B.d.C.; Cunha, A.J.L.A.d.; Pritsivelis, C.; Faleiro, E.C.; Amim Junior, J.; Bornia, R.G. How do maternal factors impact preeclampsia prediction in Brazilian population? J. Matern.-Fetal Neonatal Med. 2019, 32, 1051–1056. [Google Scholar] [CrossRef]
- Tan, M.Y.; Syngelaki, A.; Poon, L.C.; Rolnik, D.L.; O’Gorman, N.; Delgado, J.L.; Akolekar, R.; Konstantinidou, L.; Tsavdaridou, M.; Galeva, S.; et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2018, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Sovio, U.; Smith, G. Evaluation of a simple risk score to predict preterm pre-eclampsia using maternal characteristics: A prospective cohort study. BJOG 2019, 126, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Jhee, J.H.; Lee, S.; Park, Y.; Lee, S.E.; Kim, Y.A.; Kang, S.W.; Kwon, J.Y.; Park, J.T. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS ONE 2019, 14, e0221202. [Google Scholar] [CrossRef]
- Sufriyana, H.; Wu, Y.W.; Su, E.C. Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia. EBioMedicine 2020, 54, 102710. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Sun, G.; Wang, A.; Jiang, H.; Zhang, S.; Yang, Y.; Li, X.; Hao, D.; Xu, M.; Shao, J. Predictive models of hypertensive disorders in pregnancy based on support vector machine algorithm. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2020, 28, 181–186. [Google Scholar] [CrossRef]
- Antwi, E.; Amoakoh-Coleman, M.; Vieira, D.L.; Madhavaram, S.; Koram, K.A.; Grobbee, D.E.; Agyepong, I.A.; Klipstein-Grobusch, K. Systematic review of prediction models for gestational hypertension and preeclampsia. PLoS ONE 2020, 15, e0230955. [Google Scholar] [CrossRef] [PubMed]
- Mosimann, B.; Amylidi-Mohr, S.K.; Surbek, D.; Raio, L. First Trimester Screening for Preeclampsia—A Systematic Review. Hypertens. Pregnancy 2020, 39, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Huo, L.; Yuan, N.; Sun, J.; Du, J.; Nan, M.; Ji, L. Risk prediction model of gestational diabetes mellitus based on nomogram in a Chinese population cohort study. Sci. Rep. 2020, 10, 21223. [Google Scholar] [CrossRef]
- Wright, D.; Tan, M.Y.; O’Gorman, N.; Poon, L.C.; Syngelaki, A.; Wright, A.; Nicolaides, K.H. Predictive performance of the competing risk model in screening for preeclampsia. Am. J. Obstet. Gynecol. 2019, 220, 199.e1–199.e13. [Google Scholar] [CrossRef] [Green Version]
- Teede, H.J.; Bailey, C.; Moran, L.J.; Khomami, M.B.; Enticott, J.; Ranasinha, S.; Rogozinska, E.; Skouteris, H.; Boyle, J.A.; Thangaratinam, S.; et al. Association of Antenatal Diet and Physical Activity-Based Interventions with Gestational Weight Gain and Pregnancy Outcomes: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2022, 182, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Cooray, S.D.; Sukumar, N.; Huda, M.S.B.; Devlieger, R.; Benhalima, K.; McAuliffe, F.; Saravanan, P.; Teede, H.J. Endocrinology in the time of COVID-19: Diagnosis and management of gestational diabetes mellitus. Eur. J. Endocrinol. 2020, 183, G49–G56. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2019, 145, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nerenberg, K.; Daskalopoulou, S.S.; Dasgupta, K. Gestational diabetes and hypertensive disorders of pregnancy as vascular risk signals: An overview and grading of the evidence. Can. J. Cardiol. 2014, 30, 765–773. [Google Scholar] [CrossRef]
- Nagraj, S.; Kennedy, S.H.; Norton, R.; Jha, V.; Praveen, D.; Hinton, L.; Hirst, J.E. Cardiometabolic Risk Factors in Pregnancy and Implications for Long-Term Health: Identifying the Research Priorities for Low-Resource Settings. Front. Cardiovasc. Med. 2020, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Cearns, M.; Hahn, T.; Baune, B.T. Recommendations and future directions for supervised machine learning in psychiatry. Transl. Psychiatry 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Guy, G.P.; Leslie, K.; Diaz Gomez, D.; Forenc, K.; Buck, E.; Khalil, A.; Thilaganathan, B. Implementation of routine first trimester combined screening for pre-eclampsia: A clinical effectiveness study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 149–156. [Google Scholar] [CrossRef] [PubMed]
GDM | HDP/PE | |
---|---|---|
Clinical risk factors | Maternal age Ethnicity BMI or weight/height Smoking, alcohol and/or drug use Medical history (Pre-existing HTN, PCOS) Parity/Gravidity Obstetric history (including prior GDM, SGA baby and/or macrosomia) Family history of T2DM Systolic BP | Maternal age Ethnicity BMI or weight/height Smoking, alcohol and/or drug use Medical history (pre-existing HTN, SLE, APS) Parity/Gravidity Obstetric history (including prior HDP or SGA) Current/prior GDM Family history of HDP Method of conception Education Social class/income MAP Systolic BP |
Biomarkers | Fasting plasma glucose HbA1c Triglycerides Adiponectin SHBG PAPP-A bHCG uE3 INH Urinary albumin Leptin Lipocalin-2 PAI-2 | Blood glucose Triglycerides, TC, HDL-C, LDL-C ADAM12 PAPP-A sFlt-1 PIGF bHCG AFP VEGF |
Radiological characteristics | N/A | Ultrasound Placental volume UtA Doppler UtA-PI Foetal biometry |
First Author, Year of Study | Country of Study | Model | AUC | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|
Benhalima, 2020 [39] | Belgium | Model 1: clinical variables (cut-off ≥4%) | 0.68 (0.64–0.72) | 99.1 (96.9–99.9) | 4.4 (3.4–5.5) | 12.9 (11.4–14.6) | 97.2 (90.3–99.7) |
Model 2: clinical + biochemical variables (cut-off ≥4%) | 0.72 (0.66–0.78) | 94.2 (90.4–96.9) | 13.7 (12.1–15.5) | 13.5 (11.8–15.3) | 94.3 (90.5–97.0) | ||
Donovan, 2019 [33] | USA | California cohort | 0.732 (0.728–0.735) | 70.8 (70.2,71.4) | 63.9 (63.7,64.0) | 11.6 (11.4–11.8) | 97 (97–97.1) |
California cohort (Black) | 0.719 (0.700, 0.738) | 49.3 (45.7, 53.0) | 80.2 (79.6, 80.8) | 9.0 (8.1, 9.9) | 97.6 (97.3, 97.8) | ||
California cohort (Hispanic) | 0.739 (0.733, 0.745) | 65.0 (64.0, 66.1) | 70.6 (70.3, 70.8) | 11.3 (11.0, 11.6) | 97.2 (97.1, 97.3) | ||
Gao, 2020 [46] | China | Model 1: First antenatal visit screening at suggested risk score cut-off of 2.80 | 0.710 (0.680–0.741) | 82.1 | 44.8 | 11.2 | 96.7 |
China | Model 2: Other risk factors during pregnancy at suggested risk score cut-off of 5.10 | 0.712 (0.682–0.743) | 81.8 | 44.4 | 11.1 | 96.6 | |
Snyder, 2020 [34] | USA | Model 1: maternal characteristics only at 6% predicted risk threshold | 0.714 (0.703–0.724) | 76.2 | 55.2 | - | - |
Model 2: maternal characteristics + first trimester PAPP-A at 6% predicted risk threshold | 0.718 (0.707–0.728) | 75.7 | 55.5 | - | - | ||
Model 3: maternal characteristics + PAPP-A, uE3, and INH | 0.722 (0.712–0.733) | 76.1 | 55 | - | |||
Sweeting, 2018 [36] | Australia | Model 1: Clinical parameters + First trimester markers | 0.90 (0.87–0.92) | - | - | - | - |
Model 2 Early GDM: clinical parameters + First trimester markers | 0.96 (0.94–0.98) | - | - | - | - | ||
Sweeting, 2019 [35] | Australia | Sweeting 2018 model + adipogenic and metabolic syndrome markers (early GDM) | 0.93 (0.89–0.96) | - | - | - | - |
Sweeting 2018 model + adipogenic and metabolic syndrome markers (overall GDM) | 0.91 (0.89–0.94) | - | - | - | - | ||
Theriault, 2016 [40] | Canada | Model 1: GDM (biomarkers and clinical variables) at 10% false positive rate | 0.791 (0.750–0.831) | 50 | - | 20.6 | 97.1 |
Zhang, 2020 [83] | China | Nomogram of GDM risk first trimester | 0.728 (0.683–0.772) | 71.6 | 65.2 | 50.2 | 89.5 |
First Author, Year of Study | Country of Study | Outcome | Model | AUC | Detection Rate/Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|---|
Guizani, 2018 [64] | Belgium | PE at < 37 weeks | FMF algorithm | 0.932 (0.923–0.940) | 80.6 (64.0–91.8) | - | 8 | 0.2 |
PE at ≥ 37 weeks | FMF algorithm | 0.741 (0.726–0.756) | 31.8 (18.6–47.6) | - | 3.2 | 0.8 | ||
Chaemsai-thong, 2019 [68] | Hong Kong, Japan, China, Thailand, Taiwan, India, Singapore | Preterm PE (FMF previous risk) at 20% FPR | FMF algorithm | 0.758 (0.749–0.766) | 57.52 | - | - | - |
Preterm PE (FMF triple test) at 20% FPR | FMF algorithm | 0.857 (0.851–0.864) | 75.8 | - | - | - | ||
All PE (FMF previous risk) at 20% FPR | FMF algorithm | 0.711 (0.703–0.720) | 52.38 | - | - | - | ||
All PE (FMF triple risks) at 20% FPR | FMF algorithm | 0.769 (0.761–0.777) | 65.57 | - | - | - | ||
Wright, 2019 [84] | England, Spain, Belgium, Italy, and Greece | Early PE at 10% FPR | FMF algorithm | 0.95 (0.93, 0.97) | 87 (80, 92) | - | - | - |
Early PE at 10% FPR (SQS) | 0.97 (0.95, 0.99) | 93 (76, 99) | - | - | - | |||
Early PE at 10% FPR (SPREE) | 0.96 (0.93, 0.98) | 90 (78, 96) | - | - | - | |||
Preterm PE at 10% FPR | FMF algorithm | 0.91 (0.89, 0.93) | 75 (70, 80) | - | - | - | ||
Preterm PE at 10% FPR (SQS) | 0.93 (0.89, 0.96) | 75 (62, 85) | - | - | - | |||
Preterm PE at 10% FPR (SPREE) | 0.93 (0.92, 0.95) | 83 (76, 89) | - | - | - | |||
All PE at 10% FPR | FMF algorithm | 0.83 (0.81, 0.84) | 52 (49, 55) | - | - | - | ||
All PE at 10% FPR (SQS) | 0.82 (0.80, 0.85) | 49 (43, 56) | - | - | - | |||
All PE at 10% FPR (SPREE) | 0.85 (0.83, 0.87) | 53 (49, 58) | - | - | - | |||
Sovio, 2019 [77] | UK | Preterm PE (NICE guidelines) | Logistic regression | 53.6 (34.3–71.8) | 89.4 (88.4–90.3) | 3.3 (2.0–5.4) | 99.7 (99.4–99.8) | |
Preterm (PE) Derived Risk score from PGAPE | Logistic regression | 0.846 (0.787–0.906) | 57.1 (37.5–74.8) | 91.2 (90.3–92.0) | 4.2 (2.6–6.7) | 99.7 (99.4–99.8) | ||
Preterm (PE) original ASPRE algorithm/ PGAPE | Logistic regression | 0.854 (0.795–0.914) | 60.7 (40.8–77.6) | 90.4 (89.5–91.3) | 4.1 (2.6–6.5) | 99.7 (99.5–99.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thong, E.P.; Ghelani, D.P.; Manoleehakul, P.; Yesmin, A.; Slater, K.; Taylor, R.; Collins, C.; Hutchesson, M.; Lim, S.S.; Teede, H.J.; et al. Optimising Cardiometabolic Risk Factors in Pregnancy: A Review of Risk Prediction Models Targeting Gestational Diabetes and Hypertensive Disorders. J. Cardiovasc. Dev. Dis. 2022, 9, 55. https://doi.org/10.3390/jcdd9020055
Thong EP, Ghelani DP, Manoleehakul P, Yesmin A, Slater K, Taylor R, Collins C, Hutchesson M, Lim SS, Teede HJ, et al. Optimising Cardiometabolic Risk Factors in Pregnancy: A Review of Risk Prediction Models Targeting Gestational Diabetes and Hypertensive Disorders. Journal of Cardiovascular Development and Disease. 2022; 9(2):55. https://doi.org/10.3390/jcdd9020055
Chicago/Turabian StyleThong, Eleanor P., Drishti P. Ghelani, Pamada Manoleehakul, Anika Yesmin, Kaylee Slater, Rachael Taylor, Clare Collins, Melinda Hutchesson, Siew S. Lim, Helena J. Teede, and et al. 2022. "Optimising Cardiometabolic Risk Factors in Pregnancy: A Review of Risk Prediction Models Targeting Gestational Diabetes and Hypertensive Disorders" Journal of Cardiovascular Development and Disease 9, no. 2: 55. https://doi.org/10.3390/jcdd9020055
APA StyleThong, E. P., Ghelani, D. P., Manoleehakul, P., Yesmin, A., Slater, K., Taylor, R., Collins, C., Hutchesson, M., Lim, S. S., Teede, H. J., Harrison, C. L., Moran, L., & Enticott, J. (2022). Optimising Cardiometabolic Risk Factors in Pregnancy: A Review of Risk Prediction Models Targeting Gestational Diabetes and Hypertensive Disorders. Journal of Cardiovascular Development and Disease, 9(2), 55. https://doi.org/10.3390/jcdd9020055