Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Characteristics of the Stationary Trial Plots
2.2. Molecular Genetic Identification of Fungi
2.2.1. Sampling and Molecular Analysis
2.2.2. Bioinformatics
2.2.3. Assessment of Biodiversity Indices
2.2.4. Statistics
3. Results
3.1. Analysis of Fungal Sequences
3.2. Taxonomic Composition of Fungal Phyla and Classes in Soil Samples from the River Valley, Subalpine Meadow, and Forest
3.3. Identification of AMF Species in the River Valley, Subalpine Meadow, and Forest Biotopes
- -
- Subalpine meadow (Acaulospora alpina, Ac. nivalis, Ac. nivalis, Ac. paulinae, Ac. punctata, Ac. viridis, Ambispora gerdemannii, Am. leptoticha, Archaeospora europaea, Ar. trappei, Claroideoglomus claroideum, Cl. walkeri, Diversispora insculpta, Dominikia bernensis, Do. disticha, Glomus indicum, G. macrocarpum, G. tetrastratosum, Otospora bareae, Paraglomus brasilianum, Paraglomus laccatum, Rhizophagus intraradices, Rhizophagus irregularis, Septoglomus constrictum, S. nigrum), or 24 species from 12 genera, as well as 19 virtual taxa at the species level;
- -
- Forest (Acaulospora nivalis, Ac. paulinae, Ac. punctata, Ambispora fennica, Am. gerdemannii, Am. leptoticha, Claroideoglomus claroideum, Diversispora insculpta, Di. slowinskiensis, Di. sporocarpia, Di. spurca, Dominikia bernensis, Glomus indicum, G. macrocarpum, G. tetrastratosum, Otospora bareae, Paraglomus laccatum, Rhizoglomus invermaium, Rhizophagus intraradices, Rhizophagus irregularis, Septoglomus constrictum, S. nigrum), or 22 species from 11 genera, as well as 12 virtual taxa at the species level;
- -
- River valley (Acaulospora delicata, Ac. paulinae, Ambispora fennica, Am. gerdemannii, Archaeospora europaea, Ar. trappei, Claroideoglomus claroideum, Cl. lamellosum, Cl. walkeri, Diversispora celata, Di. varaderana, Dominikia achra, Do. bernensis, Do. disticha, Funneliformis mosseae, Glomus indicum, G. macrocarpum, G. tetrastratosum, Halonatospora pansihalos, Otospora bareae, Palaeospora spainii, Paraglomus laccatum, Rhizoglomus invermaium, Rhizophagus intraradices, Rhizophagus irregularis, Septoglomus constrictum, S. nigrum, S. viscosum), or 28 species from 15 genera, as well as 24 virtual taxa at the species level.
- -
- Subalpine meadow (Acaulospora alpina, Ac. brasiliensis, Ac. paulinae, Ambispora gerdemannii, Am. leptoticha, Archaeospora trappei, Claroideoglomus claroideum, C. lamellosum, Diversispora varaderana, Dominikia bernensis, Entrophospora infrequens, Glomus bareae, G. indicum, G. macrocarpum, Paraglomus laccatum, Rhizoglomus melanus, Rhizophagus intraradices, Rhizophagus invermaius, Rhizophagus irregularis), or 19 species from 11 genera, as well as 15 virtual taxa at the species level;
- -
- Forest (Acaulospora paulinae, Ambispora gerdemannii, Am. leptoticha, Claroideoglomus claroideum, C. lamellosum, Diversispora slowinskensis, Entrophospora infrequens, Glomus hoi, G. indicum, Paraglomus laccatum, Rhizophagus intraradices, Rhizophagus irregularis, Scutellospora alterata), or 13 species from 9 genera, as well as 7 virtual taxa at the species level;
- -
- River valley (Acaulospora paulinae, Ac. punctata, Ambispora fennica, Am. gerdemannii, Archaeospora spainiae, Ar. trappei, Cetraspora gilmorei, Claroideoglomus claroideum, Cl. hanlinii, Cl. lamellosum, Dominikia bernensis, Do. difficilevidera, Entrophospora infrequens, Funneliformis mosseae, Glomus hoi, G. indicum, G. macrocarpum, Halonatospora pansihalos, Paraglomus laccatum, Rhizophagus aggregatus, Rhizophagus intraradices, Rhizophagus invermaius, Rhizophagus irregularis, Scutellospora pellucida), or 24 species from 13 genera, as well as 20 virtual taxa at the species level.
3.4. Correlation Analysis of the Interlinks between AMF Species Richness with STP Height and Agrochemical Parameters of Sampled Rhizosphere Soils
4. Discussion
4.1. Applicability of Molecular Genetic Identification of AMF in the Study of Their Biodiversity
4.2. Comparative Analysis of AMF Diversity in different biotopes
4.3. Reasons for Higher AMF Diversity in River Valley Biotopes
- Livestock grazing and other human activities are more prevalent in river valleys compared to mountain forests and subalpine meadows [14]. Due to this, it is common to see the transfer of spores of AM fungi through human shoes and livestock hooves (such as cows and horses) [49,107]. However, some evidence indicates that ungulate grazing may be associated with decreased AM fungal abundance in soil [23]. Additionally, AMF spores can migrate with water flows from the mountains to the river valley during erosions [107,108,109], and they actively enter into nonspecific symbiotic relationships after sedimentation. Despite the fact that the organic reserves in these ecosystems are much higher because of livestock grazing, the ecosystems themselves may have signs of soil degradation and are considered disturbed. Nevertheless, AM fungi spores, as a rule, are significantly larger (>40 microns) than the spores of many other fungi, so their distribution distance is relatively short [110]. According to Guo et al. [111], terrain slope can also affect AMF diversity. The biotopes of the river valley analyzed in our study were characterized by a much gentler slope than the biotopes of subalpine meadows and forests (Table S2). Therefore, it can be assumed that a flat slope will positively correlate with AMF biodiversity.
- In conditions of intensive percolation water regime and good drainage, there is no stagnation of water and oxygen deficiency in the soil, negatively affecting the development of AM fungi [112,113]. The percolation water regime can reduce the content of available phosphate (Pi) in the soil, which makes root mycorrhization an important adaptation for P uptake. Such a water regime is typical for river valleys in the North Caucasus. The correlation between the seven parameters of AMF biodiversity and “Pi, mg/kg” (inorganic P available for plant nutrition) in many cases was significantly (p < 0.05) positive (Table 3). Our data are consistent with the results of Guo et al. who found that the diversity of AMF had a positive correlation with available P content [111]. Nevertheless, large-scale studies have shown that AMF diversity and abundance decrease with the phosphorus available in the soil [114]. This issue requires further consideration.
- STP altitude may be a factor that influences AM development. A reduced number of identified AMF at the species level (Figure 2 and Figure 3) characterized the analyzed biotopes of the forest and subalpine meadow located above the biotopes of the river valley. However, linear reliable correlations for the North Caucasus STPs were not found (Table 3). Our results are consistent with the available data [12,115,116,117,118]. AMF biodiversity was largely unaffected by altitude [51,55,56,57,58], with some negative correlations found [12,115,116,117,118]. However, this rule is not applicable for the Zackenberg Valley in the High Arctic [44]—with an increase in altitude from 33 to 479 m (a small altitude above sea level), an increase in AM fungi occurrence was observed. Perhaps the reason for the lack of correlation between altitude and AMF biodiversity in the North Caucasus is that there are no biotopes of alpine meadows in the analyzed STPs, which are characterized by lower temperatures. However, temperature is considered an important factor for the development of AM [113,119,120]. The optimal average air temperature of the warmest month is +19 °C, but mycorrhizal colonization can be intensively increased with the frosty period not less than 2 months [121].
- The biodiversity of AMF and the development of AM are affected by such factors as pollution, salinity, drought, extreme temperatures, CO2, liming, acidity, etc. [122], as well as soil composition, altitude, species composition of plant communities, and climatic factors [47,48,50]. However, pH and temperature are the main factors determining AMF biodiversity [60]. pH can have an important direct effect on the growth and productivity of the AM fungus [123,124]. The positive correlation between AMF diversity and pH is mentioned in [111,125]. This is consistent with our data on a significant positive correlation of the pHKCl with a number of biodiversity indicators (“Glomeromycota total reads”, “OTUs number for total species”, “total species number”, both for ITS1 and ITS2; Table 3; Figures S10 and S11).
- The phenotypic diversity of OTU AMF is supposed to be under the effect of the phenotypic diversity of plants, which decreases with altitude in the mountains [126]. The colonization of roots by AM fungi is not species–specific. Several AM fungi species can colonize one plant’s root, and one AM fungus can colonize different plant species [127]. However, despite the absence of direct correlations between the diversity of AMF and the total number of herbaceous plants (Table 3), a decrease in the spectrum of potential partners in the mutualistic symbiotic system might be expected, which affects the AMF species diversity [128]. At the same time, annual plant species have a higher diversity of AMF than perennial species, and a half of the currently identified AMF species may be more specific to one plant species [54]. Moreover, S. Horn et al. [51] demonstrated that the influence of the biotic factors (interaction of AMF with plants) is more significant in comparison with the effect of abiotic factors on the AMF genera composition. It is known that in the process of succession with an increase in the proportion of woody plants, the density of AM fungi spores decreased [52,53]. Thus, higher abundance of annual plants (see “Percentage of annual plants” in Table S2) in river valleys in comparison with the biotopes of the subalpine meadow may be a key factor positively affecting AMF taxonomic diversity. Meanwhile, our studies confirm the relationship between the proportion of annual plant forms and the diversity of AMF. For instance, it was shown that the linear correlation coefficients were reliable (p < 0.05; Table 3). The correlation coefficient between “Percentage of annual plants” and “Glomeromycota total reads” r = 0.76 and 0.81 (for ITS1 and ITS2, respectively), and the correlation coefficient between “Percentage of annual plants” and “OTUs number (for total species)” r = 0.67 and 0.77 (for ITS1 and ITS2, respectively). A weak correlation between the proportion of annual plants and the AMF species diversity was also shown (r = 0.40 and 0.56 for ITS1 and ITS2, respectively; see Table 3). Similar results were obtained in [43]; the “natural grassland” ecosystem had the highest AMF species diversity among 20 ecosystems of interest. The opposite is also possible to occur. It is shown that in the Teberdinsky National Park, experimental suppression of AM symbiosis is always followed by a decrease in the species richness and number of plants [129]. The species composition and numerical relative abundances of different OTUs may vary due to seasonal changes, so observing OTU diversity in different seasons can provide new information [130,131]. Changes in the mycorrhization of plants by AM fungi throughout a year in the Teberdinsky National Park were already studied earlier [85], but their biodiversity has not been assessed.
4.4. Practical Application of the Results of AMF Biodiversity Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.G.; da Fonseca, A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Marchese, C. Biodiversity hotspots: A shortcut for a more complicated concept. Glob. Ecol. Conserv. 2015, 3, 297–309. [Google Scholar] [CrossRef]
- Myers, N. Threatened biotas: “Hot spots” in tropical forests. Environmentalist 1988, 83, 187–208. [Google Scholar] [CrossRef] [PubMed]
- CEPF (Critical Ecosystem Parthnership Fund). Explore the Biodiversity Hotspots. 2023. Available online: https://www.cepf.net/our-work/biodiversity-hotspots (accessed on 30 October 2023).
- Stork, N.E.; Habel, J.C. Can biodiversity hotspots protect more than tropical forest plants and vertebrates? J. Biogeogr. 2014, 41, 421–428. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Newshan, K.K.; Fitter, A.H.; Watkinson, A.R. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 1995, 10, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Edlinger, A.; Garland, G.; Hartman, K.; Banerjee, S.; Degrune, F.; García-Palacios, P.; Hallin, S.; Valzano-Held, A.; Herzog, C.; Jansa, J.; et al. Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts. Nat. Ecol. Evol. 2022, 6, 1145–1154. [Google Scholar] [CrossRef]
- Kakouridis, A.; Hagen, J.A.; Kan, M.P.; Mambelli, S.; Feldman, L.J.; Herman, D.J.; Weber, P.K.; Pett-Ridge, J.; Firestone, M.K. Routes to roots: Direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytol. 2022, 236, 210–221. [Google Scholar] [CrossRef]
- De Carvalho, F.; de Souza, F.A.; Carrenho, R.; Escobar, I.E.C.; Oehl, F.; da Silva, G.A. The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2012, 52, 9–19. [Google Scholar] [CrossRef]
- Bonfim, J.A.; Vasconcellos, R.L.F.; Gumiere, T.; Mescolotti, D.L.C.; Oehl, F.; Cardoso, E.J.B.N. Diversity of arbuscular mycorrhizal fungi in a brazilian atlantic forest toposequence. Microb. Ecol. 2016, 71, 164–177. [Google Scholar] [CrossRef]
- Vieira, L.C.; da Silva, D.K.A.; de Melo, M.A.C.; Escobar, I.E.C.; Oehl, F.; da Silva, G.A. Edaphic factors influence the distribution of arbuscular mycorrhizal fungi along an altitudinal gradient of a Tropical Mountain. Microb. Ecol. 2019, 78, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Zazanashvili, N. The Caucasus hotspot. In Status and Protection of Globally Threatened Species in the Caucasus; Zazanashvili, N., Mallon, D., Eds.; Contour Ltd.: Tbilisi, GA, USA, 2004; pp. 15–25. [Google Scholar]
- Zernov, A.S.; Alekseev, Y.E.; Onipchenko, V.G. The Determinant of Vascular Plants of the Karachay-Cherkessia Republic; Association of Scientific Publications “KMK”: Moscow, Russia, 2015. [Google Scholar]
- Vasar, M.; Davison, J.; Sepp, S.-K.; Oja, J.; Al-Quraishy, S.; Bueno, C.G.; Cantero, J.J.; Fabiano, E.C.; Decocq, G.; Fraser, L.; et al. Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza 2022, 32, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Mikryukov, V.; Anslan, S.; Bahram, M.; Khalid, A.N.; Corrales, A.; Agan, A.; Vasco-Palacios, A.-M.; Saitta, A.; Antonelli, A.; et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 2021, 111, 573–588. [Google Scholar] [CrossRef]
- Rożek, K.; Błaszkowski, J.; Nowak, A.; Zalewska-Gałosz, J.; Nobis, M.; Mleczko, P.; Zubek, S. Arbuscular mycorrhizal fungi in Georgia, the Caucasus region: The first report of species diversity and root colonization. Nov. Hedwig. 2018, 106, 473–483. [Google Scholar] [CrossRef]
- Bidondo, L.F.; Colombo, R.P.; Recchi, R.; Silvani, V.A.; Pérgola, M.; Martínez, A.; Godeas, A.M. Detection of arbuscular mycorrhizal fungi associated with pecan (Carya illinoinensis) trees by molecular and morphological approaches. MycoKeys 2018, 42, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Lara-Pérez, L.A.; Oros-Ortega, I.; Córdova-Lara, I.; Estrada-Medina, H.; O’Connor-Sánchez, A.; Góngora-Castillo, E.; Sáenz-Carbonell, L. Seasonal shifts of arbuscular mycorrhizal fungi in Cocos nucifera roots in Yucatan, Mexico. Mycorrhiza 2020, 30, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.J.; Kim, H.; Lee, J.H.; Yoon, H.; Kim, J.-G. Metagenomic analysis of soil fungal communities on Ulleungdo and Dokdo Islands. J. Gen. Appl. Microbiol. 2015, 61, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Botnen, S.; Kauserud, H.; Carlsen, T.; Blaalid, R.; Høiland, K. Mycorrhizal fungal communities in coastal sand dunes and heaths investigated by pyrosequencing analyses. Mycorrhiza 2015, 25, 447–456. [Google Scholar] [CrossRef]
- Peña-Venegas, C.P.; Kuyper, T.W.; Davison, J.; Jairus, T.; Vasar, M.; Stomph, T.J.; Struik, P.C.; Öpik, M. Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. Mycorrhiza 2019, 29, 263–275. [Google Scholar] [CrossRef]
- Stevens, B.M.; Propster, J.R.; Öpik, O.; Wilson, G.W.T.; Alloway, S.L.; Mayemba, E.; Johnson, N.C. Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. Mycorrhiza 2020, 30, 79–95. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, Y.; Yang, Y.; Yang, L.; Yang, N.; Zhang, D. Long-term effects of mixed planting on arbuscular mycorrhizal fungal communities in the roots and soils of Juglans mandshurica plantations. BMC Microbiol. 2020, 20, 304. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Lv, Y.; Fang, M.; Lui, J.; Zeng, H.; Ban, Y. Diverse and abundant arbuscular mycorrhizal fungi in ecological floating beds used to treat eutrophic water. Appl. Microbiol. Biotechnol. 2021, 105, 6959–6975. [Google Scholar] [CrossRef] [PubMed]
- Kolaříková, Z.; Slavíková, R.; Krüger, C.; Krüger, M.; Kohout, P. PacBio sequencing of Glomeromycota rDNA: A novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi. New Phytol. 2021, 231, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Větrovský, T.; Lepinay, C.; Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2022, 114, 539–547. [Google Scholar] [CrossRef]
- Alaux, P.-L.; Mison, C.; Senés-Guerrero, C.; Moreau, V.; Manssens, G.; Foucart, G.; Cranenbrouck, S.; Declerck, S. Diversity and species composition of arbuscular mycorrhizal fungi across maize fields in the southern part of Belgium. Mycorrhiza 2021, 31, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.K.; Marascalchi, M.N.; Rodrigues, A.V.; de Armas, R.D.; Stürmer, S.L. Morphological and molecular diversity of arbuscular mycorrhizal fungi in revegetated iron-mining site has the same magnitude of adjacent pristine ecosystems. J. Environ. Sci. 2018, 67, 330–343. [Google Scholar] [CrossRef]
- Morgan, B.S.T.; Egerton-Warburton, L.M. Barcoded NS31/AML2 primers for sequencing of arbuscular mycorrhizal communities in environmental samples. Appl. Plant Sci. 2017, 5, 1700017. [Google Scholar] [CrossRef] [PubMed]
- Magurno, F.; Malicka, M.; Posta, K.; Wozniak, G.; Lumini, E.; Piotrowska-Seget, Z. Glomalin gene as molecular marker for functional diversity of arbuscular mycorrhizal fungi in soil. Biol. Fertil. Soils 2019, 554, 411–417. [Google Scholar] [CrossRef]
- Schüßler, A. Glomeromycota Species List. Available online: http://www.amf-phylogeny.com (accessed on 30 October 2023).
- GenBank NCBI. 2023. Available online: https://www.ncbi.nlm.nih.gov/genbank (accessed on 30 October 2023).
- Stockinger, H.; Krüger, M.; Schüssler, A. DNA barcoding of arbuscular mycorrhizal fungi. New Phytol. 2010, 187, 461–474. [Google Scholar] [CrossRef]
- Borriello, R.; Bianciotto, V.; Orgiazzi, A.; Lumini, E.; Bergero, R. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Mol. Phylogenet. Evol. 2014, 75, 1–10. [Google Scholar] [CrossRef]
- Börstler, B.; Thiéry, O.; Sýkorová, Z.; Berner, A.; Redecker, D. Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol. Ecol. 2010, 19, 1497–1511. [Google Scholar] [CrossRef] [PubMed]
- James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 2006, 443, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Sokolski, S.; Dalpé, Y.; Séguin, S.; Khasa, D.; Lévesque, C.A.; Piché, Y. Conspecificity of DAOM 197198, the model arbuscular mycorrhizal fungus, with Glomus irregulare: Molecular evidence with three protein-encoding genes. Botany 2010, 88, 829–838. [Google Scholar] [CrossRef]
- Msiska, Z.; Morton, J. Phylogenetic analysis of the Glomeromycota by a partial beta-tubulin gene. Mycorrhiza 2009, 19, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Öpik, M.; Davison, J.; Moora, M.; Zobel, M. DNA-based detection and identification of Glomeromycota: The virtual taxonomy of environmental sequences. Botany 2014, 92, 135–147. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Sánchez-García, M.; Niezgoda, P.; Zubek, S.; Fernández, F.; Vila, A.; Al-Yahya’ei, M.N.; Symanczik, S.; Milczarski, P.; Malinowski, R.; et al. A new order, Entrophosporales, and three new Entrophospora species in Glomeromycota. Front. Microbiol. 2022, 13, 962856. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Jobim, K.; Niezgoda, P.; Meller, E.; Malinowski, R.; Milczarski, P.; Zubek, S.; Magurno, F.; Casieri, L.; Bierza, W.; et al. New glomeromycotan taxa, Dominikia glomerocarpica sp. nov. and Epigeocarpum crypticum gen. nov. et sp. nov. from Brazil, and Silvaspora gen. nov. from New Caledonia. Front. Microbiol. 2021, 12, 655–910. [Google Scholar] [CrossRef]
- Castillo, C.G.; Borie, F.; Oehl, F.; Sieverding, E. Arbuscular mycorrhizal fungi biodiversity: Prospecting in Southern-Central zone of Chile. A review. J. Soil Sci. Plant Nutr. 2016, 16, 400–422. [Google Scholar] [CrossRef]
- Rasmussen, P.U.; Abrego, N.; Roslin, T.; Opik, M.; Sepp, S.-K.; Blanchet, F.G.; Huotari, T.; Hugerth, L.W.; Tack, A.J.M. Elevation and plant species identity jointly shape a diverse arbuscular mycorrhizal fungal community in the High Arctic. New Phytol. 2022, 236, 671–683. [Google Scholar] [CrossRef]
- Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, U.; Zobel, M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241. [Google Scholar] [CrossRef]
- MaarjAM Database. 2023. Available online: http://maarjam.botany.ut.ee (accessed on 30 October 2023).
- Kruger, C.; Kohout, P.; Janouskova, M.; Puschel, D.; Frouz, J.; Rydlova, J. Plant communities rather than soil properties structure arbuscular mycorrhizal fungal communities along primary succession on a mine spoil. Front. Microbiol. 2017, 8, 719. [Google Scholar] [CrossRef] [PubMed]
- Ezeokoli, O.T.; Nwangburuka, C.C.; Adeleke, R.A.; Roopnarain, A.; Paterson, D.G.; Maboeta, M.S.; Bezuidenhout, C.C. Assessment of arbuscular mycorrhizal fungal spore density and viability in soil stockpiles of south African opencast coal mines. S. Afr. J. Plant Soil 2019, 36, 91–99. [Google Scholar] [CrossRef]
- Clavel, J.; Lembrechts, J.; Alexander, J.; Haider, S.; Lenoir, J.; Milbau, A.; Nuñez, M.A.; Pauchard, A.; Nijs, I.; Verbruggen, E. The role of arbuscular mycorrhizal fungi in nonnative plant invasion along mountain roads. New Phytol. 2021, 230, 1156–1168. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Hou, H.; Lv, Y.; Zhang, H.; Li, J.; Shao, L.; Xie, Q.; Liang, Y.; Li, J.; Ni, X. Diversity characteristics of arbuscular mycorrhizal fungi communities in the soil along successional altitudes of Helan Mountain, arid, and semi-arid regions of China. Front. Microbiol. 2023, 14, 1099131. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.; Caruso, T.; Verbruggen, E.; Rillig, M.C.; Hempel, S. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. ISME J. 2014, 8, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Zangaro, W.; Assis, R.; Rostirola, L.; Souza, P.; Gonçalves, M.; Andrade, G.; Nogueira, M. Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 2008, 19, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Zangaro, W.; Rostirola, L.; Souza, P.; Almeida Alves, R.; Lescano, L.; Rondina, A.; Nogueira, M.; Carrenho, R. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 2013, 23, 221–233. [Google Scholar] [CrossRef]
- Torrecillas, E.; Alguacil, M.M.; Roldan, A. Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co-occurring in a Mediterranean, semiarid degraded area. Plant Soil 2012, 354, 97–106. [Google Scholar] [CrossRef]
- Gai, J.P.; Tian, H.; Yang, F.Y.; Christie, P.; Li, X.L.; Klironomos, J.N. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia 2012, 55, 145–151. [Google Scholar] [CrossRef]
- Coutinho, E.S.; Fernandes, G.W.; Berbara, R.L.L.; Valerio, H.M.; Goto, B.T. Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 2015, 25, 627–638. [Google Scholar] [CrossRef]
- Shen, C.C.; Ni, Y.Y.; Liang, W.J.; Wang, J.J.; Chu, H.Y. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 2015, 6, 582. [Google Scholar] [CrossRef] [PubMed]
- Senés-Guerrero, C.; Schüßler, A. A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers. 2015, 77, 317–333. [Google Scholar] [CrossRef]
- Zernov, A.S. Flora of the North-West Caucasus; Association of Scientific Publications “KMK”: Moscow, Russia, 2006. [Google Scholar]
- Davison, J.; Moora, M.; Semchenko, M.; Adenan, S.B.; Ahmed, T.; Akhmetzhanova, A.A.; Alatalo, J.M.; Al-Quraishy, S.; Andriyanova, E.; Anslan, S.; et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 2021, 231, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.V. Agrochemical Methods of Soil Studies; Nauka: Moscow, Russia, 1975. [Google Scholar]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning, A Laboratory Manual; Cold Spring Harbor Laboratory: Laurel Hollow, NY, USA, 1982. [Google Scholar]
- Kryukov, A.A.; Gorbunova, A.O.; Machs, E.M.; Mikhaylova, Y.V.; Rodionov, A.V.; Zhurbenko, P.M.; Yurkov, A.P. Perspectives of using Illumina MiSeq for identification of arbuscular mycorrhizal fungi. Vavilovskii Zhurnal Genet. Selektsii 2020, 24, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Bioproject PRJNA646244 in GenBank NCBI. 2023. Available online: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA646244 (accessed on 30 October 2023).
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Meth. 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Thiéry, O.; Moora, M.; Vasar, M.; Zobel, M.; Öpik, M. Inter- and intrasporal nuclear ribosomal gene sequence variation within one isolate of arbuscular mycorrhizal fungus, Diversispora sp. Symbiosis 2012, 58, 135–147. [Google Scholar] [CrossRef]
- Bogusz, M.; Whelan, S. Phylogenetic tree estimation with and without alignment: New distance methods and benchmarking. Syst. Biol. 2017, 66, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Tedersoo, L.; Ryberg, M.; Kristiansson, E.; Hartmann, M.; Unterseher, M.; Porter, T.M.; Bengtsson-Palme, J.; Walker, D.M.; de Sousa, F.; et al. A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes Environ. 2015, 30, 140–150. [Google Scholar] [CrossRef]
- MEGA, Molecular Evolutionary Genetics Analysis. 2023. Available online: https://www.megasoftware.net (accessed on 30 October 2023).
- Yan, L.; Kenchanmane Raju, S.K.; Lai, X.; Zhang, Y.; Dai, X.; Rodriguez, O.; Mahboub, S.; Roston, R.L.; Schnable, J.C. Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize. Plant J. 2019, 99, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org (accessed on 30 October 2023).
- Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J. pca Methods—A Bioconductor package providing PCA methods for incomplete data. Bioinformatics 2007, 23, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Warton, D.I.; Wright, T.W.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package_. R Package Version 2.6-4. Available online: https://CRAN.R-project.org/package=vegan (accessed on 30 November 2023).
- Galili, T. dendextend: An R package for visualizing, adjusting, and comparing trees of ierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef]
- Delavaux, C.S.; Ramos, R.J.; Sturmer, S.L.; Bever, J.D. Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: An expanded database and improved pipeline. Mycorrhiza 2022, 32, 145–153. [Google Scholar] [CrossRef]
- Krüger, M.; Stockinger, H.; Krüger, C.; Schüßler, A. DNA-based species level detection of Glomeromycota: One PCR primer set for all arbuscular mycorrhizal fungi. New Phytol. 2009, 183, 212–223. [Google Scholar] [CrossRef]
- Bruns, T.D.; Taylor, J.W. Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 2016, 351, 826. [Google Scholar] [CrossRef]
- Schlaeppi, K.; Bender, S.F.; Mascher, F.; Russo, G.; Patrignani, A.; Camenzind, T.; Hempel, S.; Rillig, M.C.; Heijden, M.G. High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol. 2016, 212, 780–791. [Google Scholar] [CrossRef]
- Baikalova, A.S.; Onipchenko, V.G. Mycosymbiotrophism of alpine plants in the Teberda Nature Reserve. In Opyt Issledovaniya Rastitel’nykh Soobshchestv v Zapovednikakh [Study of Communities in Nature Reserves], Proceedings of the Central Scientific Research Laboratory of Hunting and Nature Reserves of the Main Directorate of Hunting and Nature Reserves under the Council of Ministers of the RSFSR; Tr. Tsentr. Nauchno-Issled. Lab. Okhotn. Khoz. Zapoved.: Moscow, Russia, 1988; pp. 93–107. [Google Scholar]
- Onipchenko, V.G.; Guzhova, G.A.; Semenova, G.V.; Rabotnova, M.V. Population strategy of Alpine plants of the northwestern Caucasus. In Ekologiya Populyatsii [Ecology of Populations]; Nauka: Moscow, Russia, 1991; pp. 165–180. [Google Scholar]
- Onipchenko, V.G.; Zobel, M. Mycorrhiza, vegetative mobility and responses to disturbance of alpine plants in the Northwestern Caucasus. Folia Geobot. 2000, 35, 1–11. [Google Scholar] [CrossRef]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P.E. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, S. Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol. 2008, 178, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, S.; Cusant, L.; Roux, C.; Corradi, N. Arbuscular mycorrhizal fungi: Intraspecific diversity and pangenomes. New Phytol. 2018, 220, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Schoen, C.; Montibeler, M.; Costa, M.D.; Antunes, P.M.; Stürmer, S.L. Inter and intra-specific variability in arbuscular mycorrhizal fungi affects hosts and soil health. Symbiosis 2021, 85, 273–289. [Google Scholar] [CrossRef]
- Daubois, L.; Beaudet, D.; Hijri, M.; de la Providencia, I. Independent mitochondrial and nuclear exchanges arising in Rhizophagus irregularis crossed-isolates support the presence of a mitochondrial segregation mechanism. BMC Microbiol. 2016, 16, 1–12. [Google Scholar] [CrossRef]
- Yurkov, A.P.; Kryukov, A.A.; Gorbunova, A.O.; Kojemyakov, A.P.; Stepanova, G.V.; Machs, E.M.; Rodionov, A.V.; Shishova, M.F. Molecular genetic identification of arbuscular mycorrhizal fungi. Ecol. Genet. 2018, 16, 11–23. [Google Scholar] [CrossRef]
- Stockinger, H.; Walker, C.; Schüßler, A. ‘Glomus intraradices DAOM197198′, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol. 2009, 183, 1176–1187. [Google Scholar] [CrossRef]
- Hosny, M.; Gianinazzi-Pearson, V.; Dulieu, H. Nuclear DNA content of 11 fungal species in Glomales. Genome 1998, 41, 422–428. [Google Scholar] [CrossRef]
- Marleau, J.; Dalpé, Y.; St-Arnaud, M.; Hijri, M. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol. Biol. 2011, 11, 51. [Google Scholar] [CrossRef]
- Rodionov, A.V.; Amosova, A.V.; Krainova, L.M.; Machs, E.M.; Mikhailova, Y.V.; Gnutikov, A.A.; Muravenko, O.V.; Loskutov, I.G. Phenomenon of multiple mutations in the 35S rRNA genes of the C subgenome of polyploid Avena L. species. Russ. J. Genet. 2020, 56, 674–683. [Google Scholar] [CrossRef]
- Borowska-Zuchowska, N.; Kovarik, A.; Robaszkiewicz, E.; Tuna, M.; Tuna, G.S.; Gordon, S.; Vogel, J.P.; Hasterok, R. The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum. Plant J. 2020, 103, 1810–1825. [Google Scholar] [CrossRef] [PubMed]
- Lunerova, J.; Renny-Byfield, S.; Matyášek, R.; Leitch, A.; Kovařík, A. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Syst. Evol. 2017, 303, 1043–1060. [Google Scholar] [CrossRef]
- Robbins, C.; Corella, J.C.; Aletti, C.; Seiler, R.; Mateus, I.D.; Lee, S.J.; Masclaux, F.G.; Sanders, I.R. Generation of unequal nuclear genotype proportions in Rhizophagus irregularis progeny causes allelic imbalance in gene transcription. New Phytol. 2021, 231, 1984. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.C.H.; Mathieu, S.; Hoffrichter, A.; Sedzielewska-Toro, K.; Peart, M.; Pelin, A.; Ndikumana, S.; Ropars, J.; Dreissig, S.; Fuchs, J.; et al. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. eLife 2018, 7, e39813. [Google Scholar] [CrossRef] [PubMed]
- Tisserant, E.; Kohler, A.; Dozolme-Seddas, P.; Balestrini, R.; Benabdellah, K.; Colard, A.; Croll, D.; Da Silva, C.; Gomez, S.K.; Koul, R.; et al. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol. 2012, 193, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Corradi, N.; Brachmann, A. Fungal mating in the most widespread plant symbionts? Trends Plant Sci. 2017, 22, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Formey, D.; Molès, M.; Haouy, A.; Savelli, B.; Bouchez, O.; Bécard, G.; Roux, C. Comparative analysis of mitochondrial genomes of Rhizophagus irregularis–syn. Glomus irregulare–reveals a polymorphism induced by variability generating elements. New Phytol. 2012, 196, 1217–1227. [Google Scholar] [CrossRef]
- Sieverding, E.; Oehl, F. Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J. Appl. Bot. Food Qual. 2006, 80, 69–81. [Google Scholar]
- Zhang, M.; Shi, Z.; Yang, M.; Lu, S.; Cao, L.; Wang, X. Molecular diversity and distribution of arbuscular mycorrhizal fungi at different elevations in Mt. Taibai of Qinling mountain. Front. Microbiol. 2021, 12, 609386. [Google Scholar] [CrossRef]
- Anderson, R.S.; Homola, R.L.; Davis, R.B.; Jacobson, G.L., Jr. Fossil remains of the mycorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine. Rev. Can. Bot. 1984, 62, 2325–2328. [Google Scholar] [CrossRef]
- Miehe, G.; Miehe, S.; Kaiser, K.; Reudenbach, C.; Behrendes, L.; La, D.; Schlütz, F. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 276, 130–147. [Google Scholar] [CrossRef]
- Ghosh, R.; Paruya, D.K.; Acharya, K.; Ghorai, N.; Bera, S. How reliable are non-pollen palynomorphs in tracing vegetation changes and grazing activities? Study from the Darjeeling Himalaya, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 475, 23–40. [Google Scholar] [CrossRef]
- Gou, H.; Wei, H.; Duan, R.; Tianyuan, C. Spatial distribution of modern pollen and fungal spores and their ecological indication in Qinghai Lake on northeastern Tibetan Plateau, China. Ecol. Indic. 2022, 144, 109474. [Google Scholar] [CrossRef]
- Guo, Y.N.; Zhang, H.D.; Bao, Y.Y.; Tan, H.Z.; Liu, X.H.; Rahman, Z.U. Distribution characteristics of soil AM fungi community in soft sandstone area. J. Environ. Manag. 2022, 316, 115193. [Google Scholar] [CrossRef] [PubMed]
- Selivanov, I.A. Mikosimbiotrofizm kak Forma Konsortivnykh Svyazei v Rastitel’nom Pokrove Sovetskogo Soyuza (Mycosymbiotrophism as a Form of Consortive Relations in Vegetation Cover of Soviet Union); Nauka: Moscow, Russia, 1981. [Google Scholar]
- Lavrenov, N.G.; Zernov, A.S.; Kipkeev, A.M.; Tekeev, D.K.; Semenova, R.B.; Akhmetzhanova, A.A.; Perevedentseva, L.G.; Sudzilovskaya, N.A.; Korneecheva, M.Y.; Onipchenko, V.G. Plant mycorrhiza under extreme conditions of snow beds Alpine communities in Armenia. Biol. Bull. Rev. 2018, 8, 401–405. [Google Scholar] [CrossRef]
- Ma, X.; Xu, X.; Geng, Q.; Luo, Y.; Ju, C.; Li, Q.; Zhou, Y. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Glob. Ecol. Biogeogr. 2023, 32, 1423–1434. [Google Scholar] [CrossRef]
- Lugo, M.A.; Ferrero, M.; Menoyo, E.; Estévez, M.C.; Siñeriz, F.; Anton, A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb. Ecol. 2008, 55, 705–713. [Google Scholar] [CrossRef]
- Lugo, M.A.; Negritto, M.A.; Jofré, M.; Anton, A.; Galetto, L. Colonization of native Andean grasses by arbuscular mycorrhizal fungi in puna: A matter of altitude, host photosynthetic pathway and host life cycles. FEMS Microbiol. Ecol. 2012, 81, 455–466. [Google Scholar] [CrossRef]
- Kernaghan, G.; Harper, K.A. Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography 2001, 24, 181–188. [Google Scholar] [CrossRef]
- De Mesquita, C.P.B.; Sartwell, S.A.; Ordemann, E.V.; Porazinska, D.L.; Farrer, E.C.; King, A.J.; Spasojevic, M.J.; Smith, J.G.; Suding, K.N.; Schmidt, S.K. Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol. 2018, 36, 63–74. [Google Scholar] [CrossRef]
- Nozadze, L.M. Mycosymbiotrophism of herbaceous plants in some plant communities of the Inguri River basin related to vertical zonality. In Mikoriza i Drugie Formy Konsortativnykh Otnoshenii v Prirode (Mycorrhiza and Other Forms of Consortive Relations in Nature); Perm State Pedagogical Institute: Perm, Russia, 1981; pp. 50–52. [Google Scholar]
- Hempel, S.; Gotzenberger, L.; Kuhn, I.; Michalski, S.G.; Rillig, M.C.; Zobel, M.; Moora, M. Mycorrhizas in the Central European flora: Relationships with plant life history traits and ecology. Ecology 2013, 94, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.C.; Moens, E.; Treseder, K.; Tibbett, M.; Wang, Y.; Cornelissen, J. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 2015, 24, 371–382. [Google Scholar] [CrossRef]
- Lenoir, I.; Fontaine, J.; Sahraoui, A.L. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 2016, 1, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.M.; Stribley, D.P.; Tinker, P.B.; Walker, C. Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol. 1993, 124, 465–472. [Google Scholar] [CrossRef]
- Coughlan, A.P.; Dalpé, Y.; Lapointe, L.; Piché, Y. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can. J. For. Res. 2000, 30, 1543–1554. [Google Scholar] [CrossRef]
- Dumbrell, A.J.; Nelson, M.; Helgason, T.; Dytham, C.; Fitter, A.H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 2010, 4, 337–345. [Google Scholar] [CrossRef] [PubMed]
- López-Angulo, J.; Pescador, D.S.; Sánchez, A.M.; Luzuriaga, A.L.; Cavieres, L.A.; Escudero, A. Impacts of climate, soil and biotic interactions on the interplay of the different facets of alpine plant diversity. Sci. Total Environ. 2020, 698, 133960. [Google Scholar] [CrossRef]
- Makarov, M.I. The role of mycorrhiza in transformation of nitrogene compounds in soil and nitrogene nutrition of plant: A review. Eurasian Soil Sci. 2019, 52, 193–205. [Google Scholar] [CrossRef]
- Soteras, F.; Menoyo, E.; Grilli, G.; Becerra, A.G. Arbuscular mycorrhizal fungal communities of high mountain ecosystems of South America: Relationship with microscale and macroscale factors. In Mycorrhizal Fungi in South America; Springer: Cham, Switzerland, 2019; pp. 257–275. [Google Scholar]
- Farish, N.R.; Lavrenov, N.G. Statistical analysis of the mycorrhizae impact on communities of alpine maedows. In Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, Pushchino, Russia, 14–19 October 2018; Lahno, V.D., Ed.; IMPB RAN: Puschino, Russia, 2018; Volume 7, p. e102. [Google Scholar] [CrossRef]
- Sigüenza, C.; Espejel, I.; Allen, E. Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza 1996, 6, 151–157. [Google Scholar] [CrossRef]
- Liu, M.; Yue, Y.J.; Wang, Z.H.; Li, L.; Duan, G.Z.; Bai, S.L.; Li, T. Composition of the arbuscular mycorrhizal fungal community and changes in diversity of the rhizosphere of Clematis fruticosa over three seasons across different elevations. Eur. J. Soil Sci. 2020, 71, 511–523. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, E.; Piazza, G.; Arduini, I.; Ercoli, L. Field inoculation of bread wheat with Rhizophagus irregularis under organic farming: Variability in growth response and nutritional uptake of eleven old genotypes and a modern variety. Agronomy 2020, 10, 333. [Google Scholar] [CrossRef]
- Wang, J.; Fu, W.; Sun, C.; Cai, S.; Tang, C. Funneliformis mosseae inoculation enhances Cucurbita pepo L. plant growth and fruit yield by reshaping rhizosphere microbial community structure. Diversity 2022, 14, 932. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Shaw, L.J.; Sen, R. Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 2011, 340, 481–490. [Google Scholar] [CrossRef]
- Kaur, S.; Campbell, B.J.; Suseela, V. Root metabolome of plant-arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytol. 2022, 234, 672–687. [Google Scholar] [CrossRef]
STP Number | Stationary Trial Plot | Coordinates | Altitude, m | Type of Soil | Soil Profile |
---|---|---|---|---|---|
1 | Subalpine Meadow-4, Malaya Hatipara ridge | 43°25′50.0″ N 41°42′20.0″ E | 2437 | ID 199 Mountain-meadow sod-peaty WRB, 2006. Umbric Leptosols FAO, 1988. Umbric Leptosols | O1/A1v-A1Bp-BCp-Cp |
3 | Subalpine Meadow-3, Malaya Hatipara ridge | 43°25′48.0″ N 41°42′31.0″ E | 2401 | ID 200 Mountain-meadow soddy WRB, 2006. Umbric Leptosols FAO, 1988. Umbric Leptosols | A1-A2-B |
4 | Subalpine Meadow-2, Malaya Hatipara ridge | 43°25′51.0″ N 41°42′55.0″ E | 2186 | –//– | –//– |
7 | Fir Forest-3, Malaya Hatipara mountain | 43°26′07.3″ N 41°43′14.1″ E | 1900 | ID 68 Brownzems raw-humic illuvial-humic WRB, 2006. Haplic Cambisols FAO, 1988. Dystric Cambisols | O(AO)-A1-A1A2-Bm,f,h(Bh,m)-C |
8 | Pine Forest-3, Malaya Hatipara mountain | 43°26′07.3″ N 41°43′14.1″ E | 1890 | –//– | –//– |
9 | Mixed forest near the Bolshaya Hatipara river, Bolshaya Hatipara mountain | 43°24′56.0″ N 41°42′49.0″ E | 1507 | –//– | –//– |
11 | Grassland in the valley of the Teberda river, Teberda town | 43°25′12.0″ N 41°43′45.0″ E | 1342 | ID 191 Alluvials compact WRB, 2006. Gleyic Vertisols FAO, 1988. Eutric Vertisols | A1v-A1-Bve-BC-C |
12 | Grassland in the valley of the Teberda river, the border of the New Teberda village | 43°39′37.0″ N 41°53′12.0″ E | 1026 | ID 188 Alluvials saturated WRB, 2006. Haplic Fluvisols FAO, 1988. Eutric Fluvisols | A1-AB-B-BC-D |
13 | Grassland in the valley of the Kuban river, Ordzhonikidzevsky village | 43°51′38.0″ N 41°54′22.0″ E | 795 | –//– | –//– |
Analyzed | Subalpine Meadow | Forest | River Valley | Total for 9 STPs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | STP 1 | STP 3 | STP 4 | STP 7 | STP 8 | STP 9 | STP 11 | STP 12 | STP 13 | |
Total reads | 1,494,700 | 619,855 | 1,648,642 | 652,998 | 1,469,158 | 970,340 | 1,108,444 | 1,271,980 | 862,545 | 10,098,662 |
Merged reads after length trim | 401,850 | 255,057 | 626,988 | 102,472 | 586,935 | 539,334 | 363,547 | 160,449 | 347,435 | 3,384,067 |
Glomeromycota ITS1 total reads | 1243 | 1011 | 1116 | 183 | 76 | 697 | 6670 | 335 | 4638 | 15,969 |
Glomeromycota ITS1 OTU number | 100 | 59 | 86 | 29 | 26 | 80 | 197 | 66 | 109 | 414 |
171 | 117 | 296 | ||||||||
Glomeromycota ITS2 total reads | 546 | 493 | 580 | 7 | 24 | 583 | 1624 | 885 | 1758 | 6500 |
Glomeromycota ITS2 OTU number | 72 | 49 | 74 | 3 | 10 | 58 | 128 | 93 | 76 | 305 |
131 | 60 | 221 |
Analyzed Parameter | Parameter Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The number of herbaceous plant species | 1 | 1 | ||||||||||||||
Percent of annual plants | 2 | −0.20 | 1 | |||||||||||||
Total reads | 3 | 0.08 | −0.09 | 1 | ||||||||||||
Merged reads after length trim | 4 | −0.10 | −0.30 | 0.64 | 1 | |||||||||||
Altitude, m | 5 | 0.17 | −0.76 * | 0.18 | 0.21 | 1 | ||||||||||
pHKCl | 6 | 0.49 | 0.68 * | 0.09 | −0.17 | −0.41 | 1 | |||||||||
Pi, mg/kg | 7 | −0.31 | 0.61 | −0.04 | 0.05 | −0.40 | 0.38 | 1 | ||||||||
Ntotal, % | 8 | 0.21 | −0.67 * | 0.11 | 0.46 | 0.78 * | −0.31 | −0.13 | 1 | |||||||
Ptotal, % | 9 | 0.23 | −0.14 | −0.19 | 0.37 | 0.29 | 0.18 | 0.36 | 0.72 * | 1 | ||||||
Sum of fractions < 0.01 mm | 10 | 0.53 | −0.31 | 0.40 | −0.04 | 0.53 | 0.00 | −0.53 | 0.31 | −0.13 | 1 | |||||
Soil type by mechanical composition | 11 | −0.09 | 0.56 | 0.14 | 0.07 | −0.88 * | 0.31 | 0.47 | −0.61 | −0.25 | −0.43 | 1 | ||||
Glomeromycota ITS1 total reads | 12 | −0.15 | 0.76 * | −0.13 | −0.01 | −0.47 | 0.69 * | 0.72 * | −0.34 | 0.31 | −0.57 | 0.31 | ||||
Glomeromycota ITS1 total OTU number | 13 | −0.01 | 0.64 | 0.10 | 0.10 | −0.32 | 0.74 * | 0.80 * | −0.11 | 0.42 | −0.44 | 0.29 | ||||
OTUs number for ITS1 (for total species) | 14 | −0.10 | 0.67 * | 0.09 | 0.13 | −0.33 | 0.71 * | 0.81 * | −0.12 | 0.42 | −0.47 | 0.29 | ||||
OTUs number for ITS1 (species level without VT) | 15 | −0.17 | 0.68 * | 0.02 | 0.11 | −0.36 | 0.65 | 0.87 * | −0.11 | 0.45 | −0.52 | 0.32 | ||||
OTUs number for ITS1 (only VT species level) | 16 | 0.18 | 0.50 | 0.34 | 0.20 | −0.17 | 0.80 * | 0.47 | −0.15 | 0.25 | −0.21 | 0.16 | ||||
Species number for ITS1 (total) | 17 | 0.07 | 0.40 | 0.41 | 0.38 | −0.06 | 0.67 * | 0.64 | 0.10 | 0.45 | −0.23 | 0.15 | ||||
Species number for ITS1 (without VT) | 18 | −0.03 | 0.40 | 0.31 | 0.42 | −0.12 | 0.60 | 0.68 * | 0.15 | 0.54 | −0.37 | 0.18 | ||||
Species number for ITS1 (only VT) | 19 | 0.18 | 0.38 | 0.50 | 0.32 | 0.01 | 0.69 * | 0.57 | 0.04 | 0.33 | −0.06 | 0.11 | ||||
Glomeromycota ITS2 total reads | 20 | 0.13 | 0.81 * | −0.09 | −0.07 | −0.68 * | 0.87 * | 0.57 | −0.44 | 0.22 | −0.45 | 0.52 | ||||
Glomeromycota ITS2 total OTU number | 21 | 0.34 | 0.62 | 0.23 | 0.03 | −0.40 | 0.89 * | 0.67 * | −0.17 | 0.30 | −0.15 | 0.46 | ||||
OTUs number for ITS2 (for total species) | 22 | 0.20 | 0.77 * | 0.04 | −0.02 | −0.60 | 0.92 * | 0.53 | −0.37 | 0.22 | −0.34 | 0.47 | ||||
OTUs number for ITS2 (species level without VT) | 23 | 0.05 | 0.78 * | −0.10 | −0.00 | −0.64 | 0.82 * | 0.54 | −0.39 | 0.26 | −0.49 | 0.45 | ||||
OTUs number for ITS2 (only VT species level) | 24 | 0.57 | 0.45 | 0.44 | −0.06 | −0.26 | 0.85 * | 0.30 | −0.19 | 0.02 | 0.24 | 0.35 | ||||
Species number for ITS2 (total) | 25 | 0.54 | 0.51 | 0.26 | 0.02 | −0.36 | 0.91 * | 0.40 | −0.10 | 0.27 | 0.03 | 0.39 | ||||
Species number for ITS2 (without VT) | 26 | 0.41 | 0.56 | 0.08 | 0.04 | −0.41 | 0.87 * | 0.45 | −0.02 | 0.44 | −0.11 | 0.36 | ||||
Species number for ITS2 (only VT) | 27 | 0.62 | 0.37 | 0.46 | −0.02 | −0.24 | 0.82 * | 0.26 | −0.19 | 0.01 | 0.21 | 0.37 | ||||
Analyzed Parameter | Parameter Number | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
The number of herbaceous plant species | 1 | |||||||||||||||
Percent of annual plants | 2 | |||||||||||||||
Total reads | 3 | |||||||||||||||
Merged reads after length trim | 4 | |||||||||||||||
Altitude, m | 5 | |||||||||||||||
pHKCl | 6 | |||||||||||||||
Pi, mg/kg | 7 | |||||||||||||||
Ntotal, % | 8 | |||||||||||||||
Ptotal, % | 9 | |||||||||||||||
Sum of fractions < 0.01 mm | 10 | |||||||||||||||
Soil type by mechanical composition | 11 | |||||||||||||||
Glomeromycota ITS1 total reads | 12 | 1 | ||||||||||||||
Glomeromycota ITS1 total OTU number | 13 | 0.90 * | 1 | |||||||||||||
OTUs number for ITS1 (for total species) | 14 | 0.93 * | 0.99 * | 1 | ||||||||||||
OTUs number for ITS1 (species level without VT) | 15 | 0.92 * | 0.98 * | 0.99 * | 1 | |||||||||||
OTUs number for ITS1 (only VT species level) | 16 | 0.80 * | 0.88 * | 0.87 * | 0.79 * | 1 | ||||||||||
Species number for ITS1 (total) | 17 | 0.75 * | 0.92 * | 0.91 * | 0.87 * | 0.93 * | 1 | |||||||||
Species number for ITS1 (without VT) | 18 | 0.77 * | 0.93 * | 0.93 * | 0.90 * | 0.87 * | 0.98 * | 1 | ||||||||
Species number for ITS1 (only VT) | 19 | 0.68 * | 0.86 * | 0.84 * | 0.78 * | 0.93 * | 0.97 * | 0.89 * | 1 | |||||||
Glomeromycota ITS2 total reads | 20 | 0.88 * | 0.82 * | 0.82 * | 0.80 * | 0.77 * | 0.65 | 0.67 * | 0.59 | 1 | ||||||
Glomeromycota ITS2 total OTU number | 21 | 0.70 * | 0.88 * | 0.84 * | 0.81 * | 0.82 * | 0.82 * | 0.79 * | 0.82 * | 0.82 * | 1 | |||||
OTUs number for ITS2 (for total species) | 22 | 0.85 * | 0.85 * | 0.84 * | 0.80 * | 0.84 * | 0.73 * | 0.74 * | 0.68 * | 0.98 * | 0.88 * | 1 | ||||
OTUs number for ITS2 (species level without VT) | 23 | 0.90 * | 0.82 * | 0.83 * | 0.81 * | 0.78 * | 0.67 * | 0.71 * | 0.58 | 0.99 * | 0.76 * | 0.97 * | 1 | |||
OTUs number for ITS2 (only VT species level) | 24 | 0.36 | 0.60 | 0.53 | 0.47 | 0.69 * | 0.63 | 0.53 | 0.71 * | 0.59 | 0.88 * | 0.70 * | 0.51 | 1 | ||
Species number for ITS2 (total) | 25 | 0.53 | 0.72 * | 0.67 * | 0.62 | 0.75 * | 0.71 * | 0.67 * | 0.71 * | 0.77 * | 0.94 * | 0.85 * | 0.71 * | 0.93 * | 1 | |
Species number for ITS2 (without VT) | 26 | 0.61 | 0.76 * | 0.72 * | 0.69 * | 0.70 * | 0.69 * | 0.71 * | 0.62 | 0.83 * | 0.89 * | 0.89 * | 0.81 * | 0.78 * | 0.95 * | 1 |
Species number for ITS2 (only VT) | 27 | 0.34 | 0.57 | 0.50 | 0.42 | 0.69 * | 0.62 | 0.51 | 0.71 * | 0.57 | 0.86 * | 0.67 * | 0.48 | 0.99 * | 0.91 * | 0.73 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurkov, A.P.; Kryukov, A.A.; Gorbunova, A.O.; Kudriashova, T.R.; Kovalchuk, A.I.; Gorenkova, A.I.; Bogdanova, E.M.; Laktionov, Y.V.; Zhurbenko, P.M.; Mikhaylova, Y.V.; et al. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. J. Fungi 2024, 10, 11. https://doi.org/10.3390/jof10010011
Yurkov AP, Kryukov AA, Gorbunova AO, Kudriashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Laktionov YV, Zhurbenko PM, Mikhaylova YV, et al. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. Journal of Fungi. 2024; 10(1):11. https://doi.org/10.3390/jof10010011
Chicago/Turabian StyleYurkov, Andrey P., Alexey A. Kryukov, Anastasiia O. Gorbunova, Tatyana R. Kudriashova, Anastasia I. Kovalchuk, Anastasia I. Gorenkova, Ekaterina M. Bogdanova, Yuri V. Laktionov, Peter M. Zhurbenko, Yulia V. Mikhaylova, and et al. 2024. "Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot" Journal of Fungi 10, no. 1: 11. https://doi.org/10.3390/jof10010011
APA StyleYurkov, A. P., Kryukov, A. A., Gorbunova, A. O., Kudriashova, T. R., Kovalchuk, A. I., Gorenkova, A. I., Bogdanova, E. M., Laktionov, Y. V., Zhurbenko, P. M., Mikhaylova, Y. V., Puzanskiy, R. K., Bagrova, T. N., Yakhin, O. I., Rodionov, A. V., & Shishova, M. F. (2024). Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. Journal of Fungi, 10(1), 11. https://doi.org/10.3390/jof10010011