Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Environmental Variables
2.3. Extraction and Purification of DNA for Molecular Analysis
2.4. Estimates of Fungal Abundance via Quantitative Real-Time PCR (qPCR)
2.5. Fungal Diversity and Assemblage Composition
2.6. Data Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamieson, A.J.; Fujii, T.; Mayor, D.J.; Solan, M.; Priede, I.G. Hadal Trenches: The Ecology of the Deepest Places on Earth. Trends Ecol. Evol. 2010, 25, 190–197. [Google Scholar] [CrossRef]
- Selley, R.C.; Plimer, I.R.; Cocks, L.R.M. Encyclopedia of Geology. Choice Rev. Online 2005, 43, 43-0035. [Google Scholar] [CrossRef]
- Jamieson, A.J. A Contemporary Perspective on Hadal Science. Deep Sea Res. 2 Top. Stud. Oceanogr. 2018, 155, 4–10. [Google Scholar] [CrossRef]
- Gardner, J.V.; Armstrong, A.A.; Calder, B.R.; Beaudoin, J. So, How Deep Is the Mariana Trench? Mar. Geod. 2014, 37, 1–13. [Google Scholar] [CrossRef]
- Nakanishi, M.; Hashimoto, J. A Precise Bathymetric Map of the World’s Deepest Seafloor, Challenger Deep in the Mariana Trench. Mar. Geophys. Res. 2011, 32, 455–463. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Wei, Y.; Fang, J. The Hadal Biosphere: Recent Insights and New Directions. Deep Sea Res. Part II: Top. Stud. Oceanogr. 2018, 155, 11–18. [Google Scholar] [CrossRef]
- Pathom-aree, W.; Stach, J.E.M.; Ward, A.C.; Horikoshi, K.; Bull, A.T.; Goodfellow, M. Diversity of Actinomycetes Isolated from Challenger Deep Sediment (10,898 m) from the Mariana Trench. Extremophiles 2006, 10, 181–189. [Google Scholar] [CrossRef]
- Akimoto, K.; Hattori, M.; Uematsu, K.; Kato, C. The Deepest Living Foraminifera, Challenger Deep, Mariana Trench. Mar. Micropaleontol. 2001, 42, 95–97. [Google Scholar] [CrossRef]
- Shimabukuro, M.; Zeppilli, D.; Leduc, D.; Wenzhöfer, F.; Berg, P.; Rowden, A.A.; Glud, R.N. Intra- and Inter-Spatial Variability of Meiofauna in Hadal Trenches Is Linked to Microbial Activity and Food Availability. Sci. Rep. 2022, 12, 4338. [Google Scholar] [CrossRef]
- Stewart, H.A.; Jamieson, A.J. Habitat Heterogeneity of Hadal Trenches: Considerations and Implications for Future Studies. Prog. Oceanogr. 2018, 161, 47–65. [Google Scholar] [CrossRef]
- van Haren, H. Challenger Deep Internal Wave Turbulence Events. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 165, 103400. [Google Scholar] [CrossRef]
- Turnewitsch, R.; Falahat, S.; Stehlikova, J.; Oguri, K.; Glud, R.N.; Middelboe, M.; Kitazato, H.; Wenzhöfer, F.; Ando, K.; Fujio, S.; et al. Recent Sediment Dynamics in Hadal Trenches: Evidence for the Influence of Higher-Frequency (Tidal, near-Inertial) Fluid Dynamics. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 90, 125–138. [Google Scholar] [CrossRef]
- Shan, S.; Qi, Y.; Tian, J.; Wang, X.; Luo, C.; Zhou, C.; Zhang, X.H.; Xin, Y.; Wang, Y. Carbon Cycling in the Deep Mariana Trench in the Western North Pacific Ocean: Insights from Radiocarbon Proxy Data. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 164, 103370. [Google Scholar] [CrossRef]
- Dunne, J.P.; Sarmiento, J.L.; Gnanadesikan, A. A Synthesis of Global Particle Export from the Surface Ocean and Cycling through the Ocean Interior and on the Seafloor. Glob. Biogeochem. Cycles 2007, 21, 1–16. [Google Scholar] [CrossRef]
- Giering, S.L.C.; Sanders, R.; Lampitt, R.S.; Anderson, T.R.; Tamburini, C.; Boutrif, M.; Zubkov, M.V.; Marsay, C.M.; Henson, S.A.; Saw, K.; et al. Reconciliation of the Carbon Budget in the Ocean’s Twilight Zone. Nature 2014, 507, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Ichino, M.C.; Clark, M.R.; Drazen, J.C.; Jamieson, A.; Jones, D.O.B.; Martin, A.P.; Rowden, A.A.; Shank, T.M.; Yancey, P.H.; Ruhl, H.A. The Distribution of Benthic Biomass in Hadal Trenches: A Modelling Approach to Investigate the Effect of Vertical and Lateral Organic Matter Transport to the Seafloor. Sea Res. Part I Oceanogr. Res. Pap. 2015, 100, 21–33. [Google Scholar] [CrossRef]
- Wenzhöfer, F.; Oguri, K.; Middelboe, M.; Turnewitsch, R.; Toyofuku, T.; Kitazato, H.; Glud, R.N. Benthic Carbon Mineralization in Hadal Trenches: Assessment by in Situ O2 Microprofile Measurements. Sea Res. Part I Oceanogr. Res. Pap. 2016, 116, 276–286. [Google Scholar] [CrossRef]
- Kioka, A.; Schwestermann, T.; Moernaut, J.; Ikehara, K.; Kanamatsu, T.; McHugh, C.M.; dos Santos Ferreira, C.; Wiemer, G.; Haghipour, N.; Kopf, A.J.; et al. Megathrust Earthquake Drives Drastic Organic Carbon Supply to the Hadal Trench. Sci. Rep. 2019, 9, 1553. [Google Scholar] [CrossRef]
- Danovaro, R.; Snelgrove, P.V.R.; Tyler, P. Challenging the Paradigms of Deep-Sea Ecology. Trends Ecol. Evol. 2014, 29, 465–475. [Google Scholar] [CrossRef]
- Glud, R.N.; Wenzhöfer, F.; Middelboe, M.; Oguri, K.; Turnewitsch, R.; Canfield, D.E.; Kitazato, H. High Rates of Microbial Carbon Turnover in Sediments in the Deepest Oceanic Trench on Earth. Nat. Geosci. 2013, 6, 284–288. [Google Scholar] [CrossRef]
- Nunoura, T.; Takaki, Y.; Hirai, M.; Shimamura, S.; Makabe, A.; Koide, O.; Kikuchi, T.; Miyazaki, J.; Koba, K.; Yoshida, N.; et al. Hadal Biosphere: Insight into the Microbial Ecosystem in the Deepest Ocean on Earth. Proc. Natl. Acad. Sci. USA 2015, 112, E1230–E1236. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Gieskes, J.; Chen, L.; Shi, X.; Chen, D. Provenances, Distribution, and Accumulation of Organic Matter in the Southern Mariana Trench Rim and Slope: Implication for Carbon Cycle and Burial in Hadal Trenches. Mar. Geol. 2017, 386, 98–106. [Google Scholar] [CrossRef]
- Danovaro, R.; Della Croce, N.; Dell’Anno, A.; Pusceddu, A. A Depocenter of Organic Matter at 7800m Depth in the SE Pacific Ocean. Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 1411–1420. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, W.; Liu, Y.; Cai, M.; Luo, Z.; Li, M. Metagenomics Reveals Microbial Diversity and Metabolic Potentials of Seawater and Surface Sediment from a Hadal Biosphere at the Yap Trench. Front. Microbiol. 2018, 9, 2402. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-F.; Li, W.-L.; Huang, J.-M.; Wang, Y. Metagenomic Studies of SAR202 Bacteria at the Full-Ocean Depth in the Mariana Trench. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 165, 103396. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, H.; Huang, Y.; Xie, Z.; Zhang, M.; Wei, Y.; Li, J.; Ma, Y.; Luo, M.; Ding, W.; et al. Revealing the Full Biosphere Structure and Versatile Metabolic Functions in the Deepest Ocean Sediment of the Challenger Deep. Genome Biol. 2021, 22, 207. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Xiao, X.; Zhang, Y.; Li, Z.; Jian, H.; Luo, Y.; Han, Z. Composition and Ecological Roles of the Core Microbiome along the Abyssal-Hadal Transition Zone Sediments of the Mariana Trench. Microbiol. Spectr. 2022, 10, e0198821. [Google Scholar] [CrossRef]
- Edgcomb, V.P.; Pachiadaki, M.G.; Mara, P.; Kormas, K.A.; Leadbetter, E.R.; Bernhard, J.M. Gene Expression Profiling of Microbial Activities and Interactions in Sediments under Haloclines of E. Mediterranean Deep Hypersaline Anoxic Basins. ISME J. 2016, 10, 2643–2657. [Google Scholar] [CrossRef]
- Barone, G.; Varrella, S.; Tangherlini, M.; Rastelli, E.; Dell’Anno, A.; Danovaro, R.; Corinaldesi, C. Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. Divers 2019, 11, 113. [Google Scholar] [CrossRef]
- Nagano, Y.; Miura, T.; Nishi, S.; Lima, A.O.; Nakayama, C.; Pellizari, V.H.; Fujikura, K. Fungal Diversity in Deep-Sea Sediments Associated with Asphalt Seeps at the Sao Paulo Plateau. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 146, 59–67. [Google Scholar] [CrossRef]
- Xu, W.; Guo, S.; Pang, K.-L.; Luo, Z.-H. Fungi Associated with Chimney and Sulfide Samples from a South Mid-Atlantic Ridge Hydrothermal Site: Distribution, Diversity and Abundance. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 123, 48–55. [Google Scholar] [CrossRef]
- Velez, P.; Salcedo, D.L.; Espinosa-Asuar, L.; Gasca-Pineda, J.; Hernandez-Monroy, A.; Soto, L.A. Fungal Diversity in Sediments from Deep-Sea Extreme Ecosystems: Insights into Low- and High-Temperature Hydrothermal Vents, and an Oxygen Minimum Zone in the Southern Gulf of California, Mexico. Front. Mar. Sci. 2022, 9, 149. [Google Scholar] [CrossRef]
- Edgcomb, V.P.; Beaudoin, D.; Gast, R.; Biddle, J.F.; Teske, A. Marine Subsurface Eukaryotes: The Fungal Majority. Env. Microbiol. 2011, 13, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; Rastelli, E.; Corinaldesi, C.; Tangherlini, M.; Danovaro, R.; Dell’Anno, A. Benthic Deep-Sea Fungi in Submarine Canyons of the Mediterranean Sea. Prog. Oceanogr. 2018, 168, 57–64. [Google Scholar] [CrossRef]
- Vargas-Gastélum, L.; Riquelme, M. The Mycobiota of the Deep Sea: What Omics Can Offer. Life 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Varrella, S.; Barone, G.; Tangherlini, M.; Rastelli, E.; Dell’Anno, A.; Corinaldesi, C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J. Fungi 2021, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Hassett, B.T.; Borrego, E.J.; Vonnahme, T.R.; Rämä, T.; Kolomiets, M.V.; Gradinger, R. Arctic Marine Fungi: Biomass, Functional Genes, and Putative Ecological Roles. ISME J. 2019, 13, 1484–1496. [Google Scholar] [CrossRef]
- Amend, A.; Burgaud, G.; Cunliffe, M.; Edgcomb, V.P.; Ettinger, C.L.; Gutiérrez, M.H.; Heitman, J.; Hom, E.F.Y.; Ianiri, G.; Jones, A.C.; et al. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019, 10, 2021. [Google Scholar] [CrossRef]
- Orsi, W.D.; Vuillemin, A.; Coskun, Ö.K.; Rodriguez, P.; Oertel, Y.; Niggemann, J.; Mohrholz, V.; Gomez-Saez, G.V. Carbon Assimilating Fungi from Surface Ocean to Subseafloor Revealed by Coupled Phylogenetic and Stable Isotope Analysis. ISME J. 2022, 16, 1245. [Google Scholar] [CrossRef]
- Gladfelter, A.S.; James, T.Y.; Amend, A.S. Marine Fungi. Curr. Biol. 2019, 29, R191–R195. [Google Scholar] [CrossRef]
- Grossart, H.P.; Van den Wyngaert, S.; Kagami, M.; Wurzbacher, C.; Cunliffe, M.; Rojas-Jimenez, K. Fungi in Aquatic Ecosystems. Nat. Rev. Microbiol. 2019, 17, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Chrismas, N.; Cunliffe, M. Depth-Dependent Mycoplankton Glycoside Hydrolase Gene Activity in the Open Ocean—Evidence from the Tara Oceans Eukaryote Metatranscriptomes. ISME J. 2020, 14, 2361–2365. [Google Scholar] [CrossRef] [PubMed]
- Baltar, F.; Zhao, Z.; Herndl, G.J. Potential and Expression of Carbohydrate Utilization by Marine Fungi in the Global Ocean. Microbiome 2021, 9, 106. [Google Scholar] [CrossRef]
- Gao, Y.; Du, X.; Xu, W.; Fan, R.; Zhang, X.; Yang, S.; Chen, X.; Lv, J.; Luo, Z. Fungal Diversity in Deep Sea Sediments from East Yap Trench and Their Denitrification Potential. Geomicrobiol. J. 2020, 37, 848–858. [Google Scholar] [CrossRef]
- Tisthammer, K.H.; Cobian, G.M.; Amend, A.S. Global Biogeography of Marine Fungi Is Shaped by the Environment. Fungal Ecol. 2016, 19, 39–46. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.M.; Wang, X.G.; Cheng, X.L.; Guo, J.J.; Bian, X.M.; Cai, L. Fungal Communities in Sediments of Subtropical Chinese Seas as Estimated by DNA Metabarcoding. Sci. Rep. 2016, 6, 26528. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Q.; Li, X.; Wang, M.; Liu, X.; Yang, J.; Xu, J.; Jiang, Y. Spatial Patterns and Co-Occurrence Networks of Microbial Communities Related to Environmental Heterogeneity in Deep-Sea Surface Sediments around Yap Trench, Western Pacific Ocean. Sci. Total Environ. 2021, 759, 143799. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Liu, Z.Z.; Wang, Y.L.; Bi, W.H.; Liu, L.; Wang, H.Y.; Zheng, Y.; Zhang, L.L.; Hu, S.G.; Xu, S.S.; et al. Fungal Community Analysis in Seawater of the Mariana Trench as Estimated by Illumina HiSeq. RSC Adv. 2019, 9, 6956–6964. [Google Scholar] [CrossRef]
- Xu, W.; Gao, Y.; Gong, L.; Li, M.; Pang, K.-L.L.; Luo, Z.-H.H. Fungal Diversity in the Deep-Sea Hadal Sediments of the Yap Trench by Cultivation and High Throughput Sequencing Methods Based on ITS RRNA Gene. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 145, 125–136. [Google Scholar] [CrossRef]
- Stewart, H.A.; Jamieson, A.J. The Five Deeps: The Location and Depth of the Deepest Place in Each of the World’s Oceans. Earth Sci. Rev. 2019, 197, 102896. [Google Scholar] [CrossRef]
- Hiraoka, S.; Hirai, M.; Matsui, Y.; Makabe, A.; Minegishi, H.; Tsuda, M.; Juliarni; Rastelli, E.; Danovaro, R.; Corinaldesi, C.; et al. Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments. ISME J. 2020, 14, 740–756. [Google Scholar] [CrossRef] [PubMed]
- Pusceddu, A.; Dell’Anno, A.; Fabiano, M.; Danovaro, R.; Dell’Anno, A.; Fabiano, M.; Danovaro, R. Quantity and Bioavailability of Sediment Organic Matter as Signatures of Benthic Trophic Status. Mar. Ecol. Prog. Ser. 2009, 375, 41–52. [Google Scholar] [CrossRef]
- Danovaro, R. (Ed.) Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781439811382. [Google Scholar]
- Taylor, J.D.; Cunliffe, M. Multi-Year Assessment of Coastal Planktonic Fungi Reveals Environmental Drivers of Diversity and Abundance. ISME J. 2016, 10, 2118–2128. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S RRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 2016, 1, e00009-15. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Rivers, A.R.; Weber, K.C.; Gardner, T.G.; Liu, S.; Armstrong, S.D. ITSxpress: Software to Rapidly Trim Internally Transcribed Spacer Sequences with Quality Scores for Marker Gene Analysis. F1000Res 2018, 7, 1418. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Hughes, J.B.; Hellmann, J.J. The Application of Rarefaction Techniques to Molecular Inventories of Microbial Diversity. Methods Enzym. 2005, 397, 292–308. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE Database for Molecular Identification of Fungi: Handling Dark Taxa and Parallel Taxonomic Classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Tedersoo, L.; Nilsson, R.H.; Vellak, K.; Saar, I.; Veldre, V.; Parmasto, E.; Prous, M.; Aan, A.; Ots, M.; et al. PlutoF—A Web Based Workbench for Ecological and Taxonomic Research, with an Online Implementation for Fungal ITS Sequences. Evol. Bioinform. 2010, 6, EBO.S6271. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Ryberg, M.; Hartmann, M.; Branco, S.; Wang, Z.; Godhe, A.; De Wit, P.; Sánchez-García, M.; Ebersberger, I.; de Sousa, F.; et al. Improved Software Detection and Extraction of ITS1 and ITS2 from Ribosomal ITS Sequences of Fungi and Other Eukaryotes for Analysis of Environmental Sequencing Data. Methods Ecol. Evol. 2013, 4, 914–919. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; Corinaldesi, C.; Rastelli, E.; Tangherlini, M.; Varrella, S.; Danovaro, R.; Dell’Anno, A. Local Environmental Conditions Promote High Turnover Diversity of Benthic Deep-Sea Fungi in the Ross Sea (Antarctica). J. Fungi 2022, 8, 65. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E. Vegan: Community Ecology Package (R Package Version 2.6-2); R Core Team: Vienna, Austria, 2022. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Monographs on Statistics and Applied Probability; Champman and Hall: London, UK; CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Rawlings, J.O.; Pantula, S.G.; Dickey, D.A. Applied Regression Analysis: A Research Tool; Springer New York: New York, NY, USA, 1998; pp. 269–323. ISBN 978-0-387-22753-5. [Google Scholar]
- Faraw, J.J. Practical Regression and ANOVA Using R; R Core Team: Vienna, Austria, 2015. [Google Scholar]
- Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage. IARJSET 2015, 2, 20–22. [Google Scholar] [CrossRef]
- Johnson, J.B.; Omland, K.S. Model Selection in Ecology and Evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R.; Huyvaert, K.P. AIC Model Selection and Multimodel Inference in Behavioral Ecology: Some Background, Observations, and Comparisons. Behav. Ecol. Sociobiol. 2011, 65, 415. [Google Scholar] [CrossRef]
- McKinney, W. Pandas: A Foundational Python Library for Data Analysis and Statistics. Python High Perform. Sci. Comput. 2011, 14, 1–9. [Google Scholar]
- McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012; ISBN 1449323618. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0444538690. [Google Scholar]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, 255. [Google Scholar] [CrossRef] [PubMed]
- Gregg, W.W.; Rousseaux, C.S. Decadal Trends in Global Pelagic Ocean Chlorophyll: A New Assessment Integrating Multiple Satellites, in Situ Data, and Models. J. Geophys. Res. Oceanogr. 2014, 119, 5921–5933. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anno, A.; Danovaro, R. Extracellular DNA Plays a Key Role in Deep-Sea Ecosystem Functioning. Science 2005, 309, 2179. [Google Scholar] [CrossRef]
- Nomaki, H.; Rastelli, E.; Ogawa, N.O.; Matsui, Y.; Tsuchiya, M.; Manea, E.; Corinaldesi, C.; Hirai, M.; Ohkouchi, N.; Danovaro, R.; et al. In Situ Experimental Evidences for Responses of Abyssal Benthic Biota to Shifts in Phytodetritus Compositions Linked to Global Climate Change. Glob. Chang. Biol. 2021, 27, 6139–6155. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Xu, J. Distribution Patterns of Meiofauna Assemblages and Their Relationship With Environmental Factors of Deep Sea Adjacent to the Yap Trench, Western Pacific Ocean. Front. Mar. Sci. 2019, 6, 489307. [Google Scholar] [CrossRef]
- Xu, W.; Pang, K.L.; Luo, Z.H. High Fungal Diversity and Abundance Recovered in the Deep-Sea Sediments of the Pacific Ocean. Microb. Ecol. 2014, 68, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Wang, G.H.; Xu, X.Y.; Nong, X.H.; Wang, J.; Amin, M.; Qi, S.H. Exploring Fungal Diversity in Deep-Sea Sediments from Okinawa Trough Using High-Throughput Illumina Sequencing. Deep Sea Res. Part I Oceanogr. Res. Pap. 2016, 116, 99–105. [Google Scholar] [CrossRef]
- Nagano, Y.; Nagahama, T.; Hatada, Y.; Nunoura, T.; Takami, H.; Miyazaki, J.; Takai, K.; Horikoshi, K. Fungal Diversity in Deep-Sea Sediments—The Presence of Novel Fungal Groups. Fungal Ecol. 2010, 3, 316–325. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Lv, Y.; Xiao, X. Isolation and Characterization of Piezotolerant Fungi from Mariana Trench Sediment. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 190, 103873. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, M.; Wu, W.; Li, Y.; Liu, Q.; Han, Y.; Jiang, Y.; Shao, H.; McMinn, A.; Liu, H. Vertical Distribution of Microbial Eukaryotes from Surface to the Hadal Zone of the Mariana Trench. Front. Microbiol. 2018, 9, 327310. [Google Scholar] [CrossRef]
- de Vries, R.P.; Visser, J. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiol. Mol. Biol. Rev. 2001, 65, 497–522. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, H.; Wang, C.; Xu, J.R. Comparative Analysis of Fungal Genomes Reveals Different Plant Cell Wall Degrading Capacity in Fungi. BMC Genom. 2013, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.F.M.; Hilário, S.; Tacão, M.; Van de Peer, Y.; Alves, A.; Esteves, A.C. Genome and Metabolome Ms-Based Mining of a Marine Strain of Aspergillus affinis. J. Fungi 2021, 7, 1091. [Google Scholar] [CrossRef] [PubMed]
Sample Site | Depth (m) | Fungal ASVs | Shannon Diversity Index |
---|---|---|---|
MA2 | 5838 | 10 | 1.82 |
MC-1 | 10,901 | 17 | 2.05 |
MD | 6067 | 19 | 1.84 |
ME | 4700 | 17 | 1.96 |
MF | 5183 | 31 | 2.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varrella, S.; Barone, G.; Corinaldesi, C.; Giorgetti, A.; Nomaki, H.; Nunoura, T.; Rastelli, E.; Tangherlini, M.; Danovaro, R.; Dell’Anno, A. Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth. J. Fungi 2024, 10, 73. https://doi.org/10.3390/jof10010073
Varrella S, Barone G, Corinaldesi C, Giorgetti A, Nomaki H, Nunoura T, Rastelli E, Tangherlini M, Danovaro R, Dell’Anno A. Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth. Journal of Fungi. 2024; 10(1):73. https://doi.org/10.3390/jof10010073
Chicago/Turabian StyleVarrella, Stefano, Giulio Barone, Cinzia Corinaldesi, Alessio Giorgetti, Hidetaka Nomaki, Takuro Nunoura, Eugenio Rastelli, Michael Tangherlini, Roberto Danovaro, and Antonio Dell’Anno. 2024. "Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth" Journal of Fungi 10, no. 1: 73. https://doi.org/10.3390/jof10010073
APA StyleVarrella, S., Barone, G., Corinaldesi, C., Giorgetti, A., Nomaki, H., Nunoura, T., Rastelli, E., Tangherlini, M., Danovaro, R., & Dell’Anno, A. (2024). Fungal Abundance and Diversity in the Mariana Trench, the Deepest Ecosystem on Earth. Journal of Fungi, 10(1), 73. https://doi.org/10.3390/jof10010073