Xerophilic Aspergillaceae Dominate the Communities of Culturable Fungi in the Mound Nests of the Western Thatching Ant (Formica obscuripes)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Water Activity, Water Content, pH, and Nutrient Analyses
2.2. Isolation and Identification of Fungi
2.3. Assessment of Xerotolerance
2.4. Statistical Analyses
3. Results
3.1. Soil Water Activity, Water Content, pH, and Nutrient Analyses
3.2. Composition, Richness, and Diversity of Fungal Communities
3.3. Assessment of Xerotolerance
4. Discussion
4.1. The Abundance and Diversity of Fungi in Soils from Mound Nests
4.2. Water Activity Is an Important but Poorly Explored Determinant of the Structure of Fungal Communities
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherba, G. Moisture regulation in mound nests of the ant, Formica ulkei Emery. Am. Midl. Nat. 1959, 61, 499–508. [Google Scholar] [CrossRef]
- Scherba, G. Mound temperatures of the ant Formica ulkei Emery. Am. Midl. Nat. 1962, 67, 373–385. [Google Scholar] [CrossRef]
- Frouz, J.; Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 2008, 11, 191–199. [Google Scholar]
- Jurgensen, M.F.; Finér, L.; Domisch, T.; Kileläinen, J.; Punttila, P.; Ohashi, M.; Niemelä, P.; Sundström, L.; Neuvonen, S.; Risch, A.C. Organic mound-building ants: Their impact on soil properties in temperate and boreal forests. J. Appl. Entomol. 2008, 132, 266–275. [Google Scholar] [CrossRef]
- Kadochová, S.; Frouz, J. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants (Formica rufa group). F1000 Res. 2014, 2, 280. [Google Scholar] [CrossRef]
- Lindström, S.; Timonen, S.; Sundstretöm, L. The bacterial and fungal community composition in time and space in the nest mounds of the ant Formica exsecta (Hymenoptera: Formicidae). MicrobiologyOpen 2021, 10, e1201. [Google Scholar] [CrossRef]
- Sorvari, J.; Hartikainen, S. Terpenes and fungal biomass in the nest mounds of Formica aquilonia wood ants. Eur. J. Soil Biol. 2021, 105, 103336. [Google Scholar] [CrossRef]
- Frouz, F.; Kalčík, J.; Cudlín, P. Accumulation of phosphorus in nests of red wood ants Formica s. str. Annal. Zool. Fenn. 2005, 42, 269–275. [Google Scholar]
- Jílková, V.; Matejícek, L.; Frouz, J. Changes in the pH and other soil chemical parameters in soil surrounding wood ant (Formica polyctena) nests. Eur. J. Soil Biol. 2011, 47, 72–76. [Google Scholar] [CrossRef]
- Duff, L.B.; Urichuk, T.M.; Hodgins, L.N.; Young, J.R.; Untereiner, W.A. Diversity of fungi from the mound nests of Formica ulkei and adjacent non-nest soils. Can. J. Microbiol. 2016, 62, 562–571. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Hamonts, K.; Singh, B.K. Ant colonies promote the diversity of soil microbial communities. ISME J. 2019, 13, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Lindström, S.; Timonen, S.; Sundstretöm, L.; Johansson, H. Ants reign over a distinct microbiome in forest soil. Soil Biol. Biochem. 2019, 139, 107529. [Google Scholar] [CrossRef]
- Aguilar-Colorado, Á.S.; Rivera-Chávez, J. Ants/nest-associated fungi and their specialized metabolites: Taxonomy, chemistry, and bioactivity. Rev. Bras. Farmacogn. 2023, 33, 901–923. [Google Scholar] [CrossRef]
- Christensen, M.; Tuthill, D.E. Aspergillus: An overview. In Advances in Penicillium and Aspergillus Systematics; Samson, R.A., Pitt, J.I., Eds.; (NSSA Volume 102); Springer: New York, NY, USA, 1986; pp. 195–209. [Google Scholar]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Anderson, B. Food and Indoor Fungi; CBS-KNAW Fungal Biodiversity Center: Utrecht, The Netherlands, 2010; p. 390. [Google Scholar]
- Petrovič, U.; Guande-Cimerman, N.; Zalar, P. Xerotolerant mycobiota from high altitude Annapurna soil, Nepal. FEMS Microbiol. Lett. 2000, 182, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Gunde-Cimerman, N.; Sonjak, S.; Zalar, P.; Frisvad, J.C.; Diderichsen, B.; Plemenitaš, A. Extremophilic fungi in arctic ice: A relationship between adaptation to low temperature and water activity. Phys. Chem. Earth 2003, 28, 1273–1278. [Google Scholar] [CrossRef]
- Micheluz, A.; Manente, S.; Tigini, V.; Prigione, V.; Pinzari, F.; Ravagnon, G.; Varese, G.C. The extreme environments of a library: Xerophilic fungi inhabiting indoor niches. Internat. Biodeter. Biodegradat. 2015, 99, 1–7. [Google Scholar] [CrossRef]
- Visagie, C.M.; Yilmaz, N.; Renaud, J.B.; Sumarah, M.W.; Hubka, V.; Frisvad, J.C.; Chen, A.J.; Meijer, M.; Seifert, K.A. A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. MycoKeys 2017, 19, 1–30. [Google Scholar] [CrossRef]
- Zak, J.C.; Wildman, H.G. Fungi in stressful environments. In Biodiversity of Fungi: Inventory and Monitoring; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Elsevier Academic Press: Burlington, VT, USA, 2004; pp. 303–315. [Google Scholar]
- Flannigan, B.; Miller, J.D. Microbial growth in indoor environments. In Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control, 2nd ed.; Flannigan, B., Samson, R.A., Miller, J.D., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 57–108. [Google Scholar]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009; p. 519. [Google Scholar]
- Adams, R.L.; Sylvain, I.; Spilak, M.P.; Taylor, J.W.; Waring, M.S.; Mendell, M.J. Fungal signature of moisture damage in buildings: Identification by targeted approaches with mycobiome data. Appl. Environ. Microbiol. 2020, 86, e011047-20. [Google Scholar] [CrossRef]
- Kujović, A.; Gostinčar, C.; Kavkler, K.; Govedić, N.; Gunde-Cimerman, N.; Zalar, P. Degradation potential of xerophilic and xerotolerant fungi contaminating historic canvas paintings. J. Fungi 2024, 10, 76. [Google Scholar] [CrossRef]
- Pitt, J.I. Xerophilic fungi and the spoilage of foods of plant origin. In Water Relations of Foods; Duckworth, R.B., Ed.; Academic Press: London, UK, 1975; pp. 273–307. [Google Scholar]
- Forster, J.C. Soil physical analysis. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 105–115. [Google Scholar]
- Forster, J.C. Determination of soil pH. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; p. 55. [Google Scholar]
- Laverty, D.H.; Bollo-Kamara, A. Recommended Methods of Soil Analyses for Canadian Prairie Agricultural Soils; Alberta Agriculture, Soils and Animal Nutrition Laboratory: Edmonton, AB, Canada, 1988; p. 38. [Google Scholar]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; Soil Survey Investigations Report no. 51, Version 2.0.; Burt, R., Ed.; Department of Agriculture, Natural Resources Conservation Service: Lincoln, NE, USA, 2014; p. 457. [Google Scholar]
- Goh, T.B.; Mermut, A.R. Carbonates. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 215–223. [Google Scholar]
- Quan, P.; Schoenaru, J.J.; Karamanos, R.E. Simultaneous extraction of available phosphorus and potassium with anew soil test: A modification of the Kelowna extraction. Commun. Soil Sci. Plant Anal. 2008, 25, 627–635. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Baldock, J.A. Total and organic carbon. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 225–237. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Braun-Holland, E., Lipps, W.C., Baxter, T.E., Eds.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- King, A.D., Jr.; Hocking, A.D.; Pitt, J.I. Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Appl. Environ. Microbiol. 1979, 3, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.A.; Hoekstra, E.S.; Frisvad, J.C. Introduction to Food-and Airborne Fungi, 7th ed.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2004; p. 389. [Google Scholar]
- Malloch, D. Moulds: Their Isolation, Cultivation and Identification; University of Toronto Press: Toronto, ON, Canada, 1981; p. 97. [Google Scholar]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- Vilgalys, R. Conserved Primer Sequences for PCR Amplification of Fungal rDNA. Available online: https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi/ (accessed on 1 September 2018).
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.B.; Cho, H.S.; Shin, H.D.; Frisvad, J.C.; Samson, R.A. Novel Neosartorya species isolated from soil in Korea. Int. J. Syst. Evol. Microbiol. 2006, 56, 477–486. [Google Scholar] [CrossRef]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, W.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef]
- Altschul, S.F.; Thomas, L.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Wheeler, K.A.; Hocking, A.; Pitt, J.I. Effects of temperature and water activity on germination and growth of Wallemia sebi. Trans. Br. Mycol. Soc. 1988, 90, 365–368. [Google Scholar] [CrossRef]
- Zheng, W.; Lehmann, A.; Ryo, M.; Vályi, K.K.; Rillig, M.C. Growth rate trades off with enzymatic investment in soil filamentous fungi. Sci. Rep. 2020, 10, 11013. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2018; p. 608. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.R-project.org/ (accessed on 1 September 2020).
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. In R Package Version 1.6.2-1. 2021. Available online: https://CRAN.Rproject.org//package=emmeans (accessed on 1 September 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis. 2016. Available online: https://ggplot2.tidyverse.org (accessed on 1 September 2020).
- Garnier, S. Viridis: Default Color Maps from ‘Matplotlib’. In R Package Version 0.5.1. 2018. Available online: https://CRAN.R-project.org/package=viridis (accessed on 1 September 2020).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package Version 2.5-7. 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 September 2020).
- Domsch, K.H.; Gams, W.; Anderson, T.-H. Compendium of Soil Fungi, 2nd ed.; IHW-Verlag: Eching, Germany, 2007; p. 672. [Google Scholar]
- Siedlecki, I.; Kochanowski, M.; Pawłowska, J.; Reszotnik, G.; Okrasińska, A.; Wrzosek, M. Ant’s nest as a microenvironment: Distinct Mucoromycota (Fungi) community of the red wood ant’s (Formica polyctena) mounds. Ecol. Evol. 2024, 14, e70333. [Google Scholar] [CrossRef]
- Wali, M.K.; Kannowski, P.B. Prairie ant mound ecology: Interrelationships of microclimate, soils and vegetation. In Prairie: A Multiple View; Wali, M.K., Ed.; The University of North Dakota University Press: Grand Forks, ND, USA, 1975; pp. 155–169. [Google Scholar]
- Elmes, G.W. Ant colonies and environmental disturbance. Symp. Zool. Soc. Lond. 1991, 63, 1–13. [Google Scholar]
- Cammeraat, E.L.H.; Risch, A.C. The impact of ants on mineral soil properties and processes at different spatial scales. J. Appl. Entomol. 2008, 132, 285–294. [Google Scholar] [CrossRef]
- Farji-Brener, A.G.; Werenkraut, V. The effects of ants on soil fertility and plant performance: A meta-analysis. J. Anim. Ecol. 2017, 86, 866–877. [Google Scholar] [CrossRef]
- Sklenář, F.; Glässnerová, K.; Jurjević, Ž.; Houbraken, J.; Samson, R.A.; Visagie, C.M.; Yilmaz, N.; Gené, J.; Cano, J.; Chen, A.J.; et al. Taxonomy of Aspergillus series Versicolores: Species reduction and lessons learned about intraspecific variability. Stud. Mycol. 2022, 102, 53–93. [Google Scholar] [CrossRef]
- Jurjevic, Z.; Peterson, S.W.; Horn, B.W. Aspergillus section Versicolores: Nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 2012, 3, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Sabino, R.; Veríssimo, C.; Parada, H.; Brandão, J.; Viegas, C.; Carolino, E.; Clemons, K.V.; Stevens, D.A. Molecular screening of 246 Portuguese Aspergillus isolates among different clinical and environmental sources. Med. Mycol. 2014, 52, 519–529. [Google Scholar] [CrossRef]
- Géry, A.; Rioult, J.P.; Heutte, N.; Séguin, V.; Bonhomme, J.; Garon, D. First characterization and description of Aspergillus Series Versicolores in French bioaerosols. J. Fungi 2021, 7, 676. [Google Scholar] [CrossRef]
- Houbraken, J.; Due, M.; Varga, J.; Meijer, M.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Aspergillus section Usti. Stud. Mycol. 2007, 59, 107–128. [Google Scholar] [CrossRef]
- Hubka, V.; Nováková, A.; Samson, R.A.; Houbraken, J.; Frisvad, J.C.; Sklenár, F.; Varga, J.; Kolařík, M. Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei). Plant Syst. Evol. 2016, 302, 641–650. [Google Scholar] [CrossRef]
- Northolt, M.D.; Soentoro, P.S.S. Fungal growth on foodstuffs related to mycotoxin contamination. In Introduction to Food-Borne Fungi, 3rd ed.; Samson, R.A., van Reenan Hoekstra, E.S., Eds.; Centraalbureau voor Schimmelcultures: Delft, The Netherlands, 1988; pp. 231–238. [Google Scholar]
- Rodríguez-Andrade, E.; Stchigel, A.M.; Terrab, A.; Guarro, J.; Cano-Lira, J.F. Diversity of xerotolerant and xerophilic fungi in honey. IMA Fungus 2019, 10, 20. [Google Scholar] [CrossRef]
- Butinar, L.; Frisvard, J.C.; Gunde-Cimerman, N. Hypersaline waters—A potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol. Ecol. 2011, 7, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Arenz, B.E.; Held, B.W.; Jurgens, J.A.; Farrell, R.L.; Blanchette, R.A. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol. Biochem. 2006, 38, 3057–3064. [Google Scholar] [CrossRef]
- Kochkina, G.A.; Ivanushkina, N.E.; Akimov, V.N.; Gilichinskii, D.A.; Ozerskaya, S.M. Halo- and psychrotolerant Geomyces fungi from Arctic cryopegs and marine deposits. Microbiology 2007, 76, 31–38. [Google Scholar] [CrossRef]
- Samson, R.A.; Yilmaz, N.; Houbraken, J.; Spierenburg, H.; Seifert, K.A.; Petersen, S.W.; Varga, J.; Frisvad, J.C. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud. Mycol. 2011, 70, 159–183. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J.A.; Fisher, K.A.; Dobrotka, C.J. A report on Purpureocillium lilacinum found naturally infecting the predatory mite, Balaustium murorum (Parasitengona: Erythraeidae). Int. J. Acarol. 2018, 44, 4–5. [Google Scholar] [CrossRef]
- Pitt, J.I. An appraisal of identification methods for Penicillium species: Novel taxonomic criteria based on temperature and water relations. Mycologia 1973, 65, 1135–1157. [Google Scholar] [CrossRef]
- Sewell, G.W.F. The effect of altered physical conditions of soil on biological control. In Ecology of Soil-Borne Plant Pathogens: Prelude to Biological Control; Baker, K.F., Synder, W.C., Eds.; University of California Press: Berkeley, CA, USA, 1963; pp. 479–494. [Google Scholar]
- Bell, L.N.; Labuza, T.P. Moisture Sorption: Practical Aspects of Isotherm Measurement and Use, 2nd ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; p. 122. [Google Scholar]
- Rowan, N.J.; Johnstone, C.M.; McLean, R.C.; Anderson, J.G.; Clarke, J.A. Prediction of toxigenic growth in buildings by using a novel modelling system. Appl. Environ. Microbiol. 1999, 65, 4814–4821. [Google Scholar] [CrossRef]
- Dedesko, S.; Siegel, J.A. Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome 2015, 3, 71. [Google Scholar] [CrossRef]
- Scott, W.J. Water relations of food spoilage microorganisms. Adv. Food Res. 1957, 7, 87–127. [Google Scholar]
- Katz, E.E.; Labuza, T.P. Effect of water activity on sensory crispness and mechanical deformation of snack food products. J. Food Sci. 1981, 46, 403–409. [Google Scholar] [CrossRef]
- Verdier, T.; Coutand, M.; Bertron, A.; Roques, C. A review of indoor microbial growth across building materials and sampling and analysis methods. Build. Environ. 2014, 80, 136–149. [Google Scholar] [CrossRef]
- Adan, O.C.G.; Samson, R.A. (Eds.) Introduction. In Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 13–38. [Google Scholar]
- Hocking, A.D.; Pitt, J.I. Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl. Environ. Microbiol. 1980, 39, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.A.; Alcala, M.; Marcos, A.; Fernandez-Salguero, J.; Garcia de Fernando, G.D.; Ordoñez, J.A.; Sanz, B. Water activity of culture media used in food microbiology. Int. J. Food Sci. Technol. 1990, 25, 464–468. [Google Scholar] [CrossRef]
- Segers, F.J.J.; Meijer, M.; Housbraken, J.; Samson, R.A.; Wösten, H.A.B.; Dijksterhuis, J. Xerotolerant Cladosporium sphaerospermum are predominant on indoor surfaces compared to other Cladosporium species. PLoS ONE 2015, 10, e0145415. [Google Scholar] [CrossRef]
- Hirooka, Y.; Tanney, J.B.; Nguyen, H.D.T.; Seifert, K.A. Xerotolerant fungi in house dust: Taxonomy of Spiromastix, Pseudospiromastix and Sigleria gen. nov. in Spiromastigaceae (Onygenales, Eurotiomycetes). Mycologia 2016, 108, 135–156. [Google Scholar] [CrossRef]
- Hung, L.L.; Caulfield, S.M.; Miller, D.J. (Eds.) Recognition, Evaluation, and Control of Indoor Mold, 2nd ed.; American Industrial Hygiene Association Press: Fairfax, VA, USA, 2020; p. 258. [Google Scholar]
Property | M (n = 3) | L (n = 3) | N (n = 3) | Site Effect (d.f. = 2, 6) |
---|---|---|---|---|
aw | 0.75 ± 0.11 N | 0.82 ± 0.03 N | 1.00 ± 0.00 M,L | 11.79 ** |
WC (%) | 10.93 ± 0.45 N | 13.03 ± 1.46 N | 19.20 ± 1.67 M,L | 32.47 *** |
pH | 6.33 ± 0.12 L,N | 5.89 ± 0.13 M,N | 6.86 ± 0.04 M,L | 63.85 *** |
Property | M (n = 3) | L (n = 3) | N (n = 3) | Site Effect (d.f. = 2, 6) |
---|---|---|---|---|
Total carbon (%) | 15.23 ± 2.35 N | 11.57 ± 1.53 N | 5.71 ± 0.47 M,L | 25.77 ** |
Total organic carbon (%) | 14.20 ± 2.50 N | 10.67 ± 1.26 N | 3.98 ± 0.18 M,L | 30.80 *** |
Available nitrate (mg kg−1) | 88.23 ± 9.61 ns | 163.67 ± 91.08 N | 4.77 ± 1.70 L | 6.78 * |
Available phosphorus (mg kg−1) | 91.33 ± 30.29 N | 124.67 ± 30.37 N | 3.53 ± 1.07 M,L | 19.14 ** |
Available potassium (mg kg−1) | 1173.33 ± 395.77 N | 1620.00 ± 355.95 N | 339.33 ± 22.30 M,L | 13.40 ** |
Available sulfate (mg kg−1) | 27.87 ± 6.63 N | 37.00 ± 8.54 N | 6.07 ± 0.49 M,L | 19.40 ** |
Electrical conductivity (ds m−1) | 0.71 ± 0.16 L | 1.74 ± 0.55 M,N | 0.32 ± 0.01 M | 14.60 ** |
Particle Size | M (n = 3) | N (n = 3) |
---|---|---|
% Clay (<4 µm) | 22.6 ± 3.8 | 24.5 ± 2.0 |
% Silt (4 µm–0.063 mm) | 55.5 ± 2.4 | 49.6 ± 5.4 |
% Fine sand (0.063–0.2 mm) | 9.2 ± 1.4 | 8.5 ± 0.4 |
% Coarse sand (0.2–2.0 mm) | 12.6 ± 3.1 | 15.1 ± 2.6 |
Medium | M1 | M2 | M3 | L1 | L2 | L3 | N1 | N2 | N3 | Total |
---|---|---|---|---|---|---|---|---|---|---|
DRBA (aw = 0.998) | 139 | 116 | 139 | 168 | 91 | 185 | 22 | 30 | 16 | 906 |
DRBAG (aw = 0.944) | 343 | 391 | 529 | 179 | 13 | 124 | 158 | 91 | 49 | 1877 |
MEA20S (aw = 0.987) | 147 | 76 | 156 | 89 | 51 | 25 | 111 | 98 | 58 | 811 |
Total | 629 | 583 | 824 | 436 | 155 | 334 | 291 | 219 | 123 | 3594 |
Medium | M1 | M2 | M3 | L1 | L2 | L3 | N1 | N2 | N3 | Total |
---|---|---|---|---|---|---|---|---|---|---|
DRBA (aw = 0.998) | 46 | 69 | 65 | 127 | 71 | 80 | 20 | 5 | 2 | 485 |
DRBAG (aw = 0.944) | 287 | 341 | 430 | 167 | 13 | 67 | 91 | 39 | 19 | 1454 |
MEA20S (aw = 0.987) | 97 | 36 | 46 | 81 | 34 | 8 | 63 | 50 | 17 | 432 |
Total | 430 | 446 | 541 | 375 | 118 | 155 | 174 | 94 | 38 | 2371 |
Site | Medium | Species Richness | Shannon Diversity | Simpson Diversity | Simpson Inverse |
---|---|---|---|---|---|
M | DRBA | 27.33 ± 3.48 L,N | 2.97 ± 0.10 ns | 0.93 ± 0.01 ns | 13.79 ± 0.90 ns |
DRBAG | 18.67 ± 1.45 ns | 2.05 ± 0.23 N | 0.81 ± 0.05 ns | 5.96 ± 1.46 ns | |
MEA20S | 22.33 ± 2.40 L | 2.65 ± 0.28 ns | 0.84 ± 0.07 ns | 9.49 ± 4.02 ns | |
L | DRBA | 19.67 ± 2.60 M,N | 2.43 ± 0.04 ns | 0.86 ± 0.02 ns | 7.13 ± 0.87 ns |
DRBAG | 11.67 ± 4.48 N | 1.83 ± 0.43 N | 0.76 ± 0.07 ns | 5.17 ± 1.77 ns | |
MEA20S | 10.67 ± 0.88 M, N | 1.96 ± 0.22 N | 0.79 ± 0.08 ns | 6.10 ± 1.67 ns | |
N | DRBA | 10.33 ± 2.33 M,L | 2.20 ± 0.31 ns | 0.86 ± 0.06 ns | 9.36 ± 2.83 ns |
DRBAG | 25.33 ± 1.67 L | 2.99 ± 0.09 M,L | 0.93 ± 0.01 ns | 15.82 ± 2.83 ns | |
MEA20S | 23.33 ± 1.76 L | 2.93 ± 0.06 L | 0.93 ± 0.01 ns | 14.22 ± 1.21 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, R.M.; Geer, C.L.; Perreaux, J.D.; Maharaj, A.; Du, S.; Scott, J.A.; Untereiner, W.A. Xerophilic Aspergillaceae Dominate the Communities of Culturable Fungi in the Mound Nests of the Western Thatching Ant (Formica obscuripes). J. Fungi 2024, 10, 735. https://doi.org/10.3390/jof10110735
Gross RM, Geer CL, Perreaux JD, Maharaj A, Du S, Scott JA, Untereiner WA. Xerophilic Aspergillaceae Dominate the Communities of Culturable Fungi in the Mound Nests of the Western Thatching Ant (Formica obscuripes). Journal of Fungi. 2024; 10(11):735. https://doi.org/10.3390/jof10110735
Chicago/Turabian StyleGross, Rachelle M., Courtney L. Geer, Jillian D. Perreaux, Amin Maharaj, Susan Du, James A. Scott, and Wendy A. Untereiner. 2024. "Xerophilic Aspergillaceae Dominate the Communities of Culturable Fungi in the Mound Nests of the Western Thatching Ant (Formica obscuripes)" Journal of Fungi 10, no. 11: 735. https://doi.org/10.3390/jof10110735
APA StyleGross, R. M., Geer, C. L., Perreaux, J. D., Maharaj, A., Du, S., Scott, J. A., & Untereiner, W. A. (2024). Xerophilic Aspergillaceae Dominate the Communities of Culturable Fungi in the Mound Nests of the Western Thatching Ant (Formica obscuripes). Journal of Fungi, 10(11), 735. https://doi.org/10.3390/jof10110735